Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method
Autor*in: |
Wu, Qingbiao [verfasserIn] |
---|
Format: |
Artikel |
---|
Erschienen: |
2008 |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied mathematics and computation - Amsterdam [u.a.] : Elsevier, 1975, 192(2008), 2, Seite 405-412 |
---|---|
Übergeordnetes Werk: |
volume:192 ; year:2008 ; number:2 ; pages:405-412 ; extent:8 |
Katalog-ID: |
OLC1785315188 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC1785315188 | ||
003 | DE-627 | ||
005 | 20220222143133.0 | ||
007 | tu | ||
008 | 080114s2008 xx ||||| 00| ||und c | ||
028 | 5 | 2 | |a sw080114 |
035 | |a (DE-627)OLC1785315188 | ||
035 | |a (DE-599)GBVOLC1785315188 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
082 | 0 | 4 | |a 510 |
084 | |a 31.80 |2 bkl | ||
084 | |a 31.76 |2 bkl | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Wu, Qingbiao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method |
264 | 1 | |c 2008 | |
300 | |a 8 | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
700 | 1 | |a Zhao, Yueqing |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Applied mathematics and computation |d Amsterdam [u.a.] : Elsevier, 1975 |g 192(2008), 2, Seite 405-412 |w (DE-627)129436682 |w (DE-600)193976-2 |w (DE-576)014807483 |x 0096-3003 |7 nnns |
773 | 1 | 8 | |g volume:192 |g year:2008 |g number:2 |g pages:405-412 |g extent:8 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.80 |q AVZ |
936 | b | k | |a 31.76 |q AVZ |
936 | b | k | |a 31.00 |q AVZ |
951 | |a AR | ||
952 | |d 192 |j 2008 |e 2 |h 405-412 |g 8 |
author_variant |
q w qw |
---|---|
matchkey_str |
article:00963003:2008----::etnatrvctpcnegnehoefrfmlonwe |
hierarchy_sort_str |
2008 |
bklnumber |
31.80 31.76 31.00 |
publishDate |
2008 |
allfields |
sw080114 (DE-627)OLC1785315188 (DE-599)GBVOLC1785315188 DE-627 ger DE-627 rakwb 510 31.80 bkl 31.76 bkl 31.00 bkl Wu, Qingbiao verfasserin aut Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method 2008 8 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Zhao, Yueqing oth Enthalten in Applied mathematics and computation Amsterdam [u.a.] : Elsevier, 1975 192(2008), 2, Seite 405-412 (DE-627)129436682 (DE-600)193976-2 (DE-576)014807483 0096-3003 nnns volume:192 year:2008 number:2 pages:405-412 extent:8 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4325 GBV_ILN_4700 31.80 AVZ 31.76 AVZ 31.00 AVZ AR 192 2008 2 405-412 8 |
spelling |
sw080114 (DE-627)OLC1785315188 (DE-599)GBVOLC1785315188 DE-627 ger DE-627 rakwb 510 31.80 bkl 31.76 bkl 31.00 bkl Wu, Qingbiao verfasserin aut Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method 2008 8 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Zhao, Yueqing oth Enthalten in Applied mathematics and computation Amsterdam [u.a.] : Elsevier, 1975 192(2008), 2, Seite 405-412 (DE-627)129436682 (DE-600)193976-2 (DE-576)014807483 0096-3003 nnns volume:192 year:2008 number:2 pages:405-412 extent:8 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4325 GBV_ILN_4700 31.80 AVZ 31.76 AVZ 31.00 AVZ AR 192 2008 2 405-412 8 |
allfields_unstemmed |
sw080114 (DE-627)OLC1785315188 (DE-599)GBVOLC1785315188 DE-627 ger DE-627 rakwb 510 31.80 bkl 31.76 bkl 31.00 bkl Wu, Qingbiao verfasserin aut Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method 2008 8 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Zhao, Yueqing oth Enthalten in Applied mathematics and computation Amsterdam [u.a.] : Elsevier, 1975 192(2008), 2, Seite 405-412 (DE-627)129436682 (DE-600)193976-2 (DE-576)014807483 0096-3003 nnns volume:192 year:2008 number:2 pages:405-412 extent:8 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4325 GBV_ILN_4700 31.80 AVZ 31.76 AVZ 31.00 AVZ AR 192 2008 2 405-412 8 |
allfieldsGer |
sw080114 (DE-627)OLC1785315188 (DE-599)GBVOLC1785315188 DE-627 ger DE-627 rakwb 510 31.80 bkl 31.76 bkl 31.00 bkl Wu, Qingbiao verfasserin aut Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method 2008 8 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Zhao, Yueqing oth Enthalten in Applied mathematics and computation Amsterdam [u.a.] : Elsevier, 1975 192(2008), 2, Seite 405-412 (DE-627)129436682 (DE-600)193976-2 (DE-576)014807483 0096-3003 nnns volume:192 year:2008 number:2 pages:405-412 extent:8 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4325 GBV_ILN_4700 31.80 AVZ 31.76 AVZ 31.00 AVZ AR 192 2008 2 405-412 8 |
allfieldsSound |
sw080114 (DE-627)OLC1785315188 (DE-599)GBVOLC1785315188 DE-627 ger DE-627 rakwb 510 31.80 bkl 31.76 bkl 31.00 bkl Wu, Qingbiao verfasserin aut Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method 2008 8 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Zhao, Yueqing oth Enthalten in Applied mathematics and computation Amsterdam [u.a.] : Elsevier, 1975 192(2008), 2, Seite 405-412 (DE-627)129436682 (DE-600)193976-2 (DE-576)014807483 0096-3003 nnns volume:192 year:2008 number:2 pages:405-412 extent:8 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4325 GBV_ILN_4700 31.80 AVZ 31.76 AVZ 31.00 AVZ AR 192 2008 2 405-412 8 |
source |
Enthalten in Applied mathematics and computation 192(2008), 2, Seite 405-412 volume:192 year:2008 number:2 pages:405-412 extent:8 |
sourceStr |
Enthalten in Applied mathematics and computation 192(2008), 2, Seite 405-412 volume:192 year:2008 number:2 pages:405-412 extent:8 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Applied mathematics and computation |
authorswithroles_txt_mv |
Wu, Qingbiao @@aut@@ Zhao, Yueqing @@oth@@ |
publishDateDaySort_date |
2008-01-01T00:00:00Z |
hierarchy_top_id |
129436682 |
dewey-sort |
3510 |
id |
OLC1785315188 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC1785315188</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220222143133.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">080114s2008 xx ||||| 00| ||und c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">sw080114</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1785315188</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1785315188</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.76</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Qingbiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yueqing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied mathematics and computation</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1975</subfield><subfield code="g">192(2008), 2, Seite 405-412</subfield><subfield code="w">(DE-627)129436682</subfield><subfield code="w">(DE-600)193976-2</subfield><subfield code="w">(DE-576)014807483</subfield><subfield code="x">0096-3003</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:192</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:405-412</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.76</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">192</subfield><subfield code="j">2008</subfield><subfield code="e">2</subfield><subfield code="h">405-412</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
author |
Wu, Qingbiao |
spellingShingle |
Wu, Qingbiao ddc 510 bkl 31.80 bkl 31.76 bkl 31.00 Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method |
authorStr |
Wu, Qingbiao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129436682 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0096-3003 |
topic_title |
510 31.80 bkl 31.76 bkl 31.00 bkl Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method |
topic |
ddc 510 bkl 31.80 bkl 31.76 bkl 31.00 |
topic_unstemmed |
ddc 510 bkl 31.80 bkl 31.76 bkl 31.00 |
topic_browse |
ddc 510 bkl 31.80 bkl 31.76 bkl 31.00 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
y z yz |
hierarchy_parent_title |
Applied mathematics and computation |
hierarchy_parent_id |
129436682 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Applied mathematics and computation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129436682 (DE-600)193976-2 (DE-576)014807483 |
title |
Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method |
ctrlnum |
(DE-627)OLC1785315188 (DE-599)GBVOLC1785315188 |
title_full |
Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method |
author_sort |
Wu, Qingbiao |
journal |
Applied mathematics and computation |
journalStr |
Applied mathematics and computation |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2008 |
contenttype_str_mv |
txt |
container_start_page |
405 |
author_browse |
Wu, Qingbiao |
container_volume |
192 |
physical |
8 |
class |
510 31.80 bkl 31.76 bkl 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Wu, Qingbiao |
dewey-full |
510 |
title_sort |
newton–kantorovich type convergence theorem for a family of new deformed chebyshev method |
title_auth |
Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method |
remote_bool |
false |
author2 |
Zhao, Yueqing |
author2Str |
Zhao, Yueqing |
ppnlink |
129436682 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
up_date |
2024-07-03T16:15:50.720Z |
_version_ |
1803575205006671872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC1785315188</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220222143133.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">080114s2008 xx ||||| 00| ||und c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">sw080114</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1785315188</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1785315188</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.76</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Qingbiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yueqing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied mathematics and computation</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1975</subfield><subfield code="g">192(2008), 2, Seite 405-412</subfield><subfield code="w">(DE-627)129436682</subfield><subfield code="w">(DE-600)193976-2</subfield><subfield code="w">(DE-576)014807483</subfield><subfield code="x">0096-3003</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:192</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:405-412</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.76</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">192</subfield><subfield code="j">2008</subfield><subfield code="e">2</subfield><subfield code="h">405-412</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
score |
7.4007626 |