System for Automatic Singing Voice Recognition - A neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). Parameters related to singing were defined to form feature vectors. Single vowel samples for each singer were judged by six experts to establish a quality index. In a test based on a database of 2690 samples, 90% of the decisions were correct. These results show that it is possible to use neural networks to create an expert system to evaluate singing.
Autor*in: |
Zwan, Pawel [verfasserIn] |
---|
Format: |
Artikel |
---|
Erschienen: |
2008 |
---|
Umfang: |
14 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of the Audio Engineering Society - New York, NY : AES, 1953, 56(2008), 9, Seite 710-723 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2008 ; number:9 ; pages:710-723 ; extent:14 |
Katalog-ID: |
OLC1803392398 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC1803392398 | ||
003 | DE-627 | ||
005 | 20220220192631.0 | ||
007 | tu | ||
008 | 081103s2008 xx ||||| 00| ||und c | ||
028 | 5 | 2 | |a sw081103 |
035 | |a (DE-627)OLC1803392398 | ||
035 | |a (DE-599)GBVOLC1803392398 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
082 | 0 | 4 | |a 620 |
084 | |a 33.12 |2 bkl | ||
084 | |a 50.36 |2 bkl | ||
084 | |a 53.79 |2 bkl | ||
100 | 1 | |a Zwan, Pawel |e verfasserin |4 aut | |
245 | 1 | 0 | |a System for Automatic Singing Voice Recognition - A neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). Parameters related to singing were defined to form feature vectors. Single vowel samples for each singer were judged by six experts to establish a quality index. In a test based on a database of 2690 samples, 90% of the decisions were correct. These results show that it is possible to use neural networks to create an expert system to evaluate singing. |
264 | 1 | |c 2008 | |
300 | |a 14 | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
700 | 1 | |a Kostek, Bozena |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of the Audio Engineering Society |d New York, NY : AES, 1953 |g 56(2008), 9, Seite 710-723 |w (DE-627)129358207 |w (DE-600)160393-0 |w (DE-576)014730421 |x 1549-4950 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2008 |g number:9 |g pages:710-723 |g extent:14 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_122 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4327 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 33.12 |q AVZ |
936 | b | k | |a 50.36 |q AVZ |
936 | b | k | |a 53.79 |q AVZ |
951 | |a AR | ||
952 | |d 56 |j 2008 |e 9 |h 710-723 |g 14 |
author_variant |
p z pz |
---|---|
matchkey_str |
article:15494950:2008----::ytmoatmtcignvieeontoaerlewrwsrieadetdorvdatmtdlsiiainfignviebtrcgiigocqaiymtusmpoesoaadrfsinlnvieyeasaioeeoatmzoornadornprmtrrltdoignwrdfndoometrvcosigeoesmlsoecsnewrjdebsxxettetbihqaiyneiaetaeoaaaa |
hierarchy_sort_str |
2008 |
bklnumber |
33.12 50.36 53.79 |
publishDate |
2008 |
allfields |
sw081103 (DE-627)OLC1803392398 (DE-599)GBVOLC1803392398 DE-627 ger DE-627 rakwb 620 33.12 bkl 50.36 bkl 53.79 bkl Zwan, Pawel verfasserin aut System for Automatic Singing Voice Recognition - A neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). Parameters related to singing were defined to form feature vectors. Single vowel samples for each singer were judged by six experts to establish a quality index. In a test based on a database of 2690 samples, 90% of the decisions were correct. These results show that it is possible to use neural networks to create an expert system to evaluate singing. 2008 14 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Kostek, Bozena oth Enthalten in Journal of the Audio Engineering Society New York, NY : AES, 1953 56(2008), 9, Seite 710-723 (DE-627)129358207 (DE-600)160393-0 (DE-576)014730421 1549-4950 nnns volume:56 year:2008 number:9 pages:710-723 extent:14 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_120 GBV_ILN_122 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4327 GBV_ILN_4700 33.12 AVZ 50.36 AVZ 53.79 AVZ AR 56 2008 9 710-723 14 |
spelling |
sw081103 (DE-627)OLC1803392398 (DE-599)GBVOLC1803392398 DE-627 ger DE-627 rakwb 620 33.12 bkl 50.36 bkl 53.79 bkl Zwan, Pawel verfasserin aut System for Automatic Singing Voice Recognition - A neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). Parameters related to singing were defined to form feature vectors. Single vowel samples for each singer were judged by six experts to establish a quality index. In a test based on a database of 2690 samples, 90% of the decisions were correct. These results show that it is possible to use neural networks to create an expert system to evaluate singing. 2008 14 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Kostek, Bozena oth Enthalten in Journal of the Audio Engineering Society New York, NY : AES, 1953 56(2008), 9, Seite 710-723 (DE-627)129358207 (DE-600)160393-0 (DE-576)014730421 1549-4950 nnns volume:56 year:2008 number:9 pages:710-723 extent:14 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_120 GBV_ILN_122 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4327 GBV_ILN_4700 33.12 AVZ 50.36 AVZ 53.79 AVZ AR 56 2008 9 710-723 14 |
allfields_unstemmed |
sw081103 (DE-627)OLC1803392398 (DE-599)GBVOLC1803392398 DE-627 ger DE-627 rakwb 620 33.12 bkl 50.36 bkl 53.79 bkl Zwan, Pawel verfasserin aut System for Automatic Singing Voice Recognition - A neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). Parameters related to singing were defined to form feature vectors. Single vowel samples for each singer were judged by six experts to establish a quality index. In a test based on a database of 2690 samples, 90% of the decisions were correct. These results show that it is possible to use neural networks to create an expert system to evaluate singing. 2008 14 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Kostek, Bozena oth Enthalten in Journal of the Audio Engineering Society New York, NY : AES, 1953 56(2008), 9, Seite 710-723 (DE-627)129358207 (DE-600)160393-0 (DE-576)014730421 1549-4950 nnns volume:56 year:2008 number:9 pages:710-723 extent:14 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_120 GBV_ILN_122 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4327 GBV_ILN_4700 33.12 AVZ 50.36 AVZ 53.79 AVZ AR 56 2008 9 710-723 14 |
allfieldsGer |
sw081103 (DE-627)OLC1803392398 (DE-599)GBVOLC1803392398 DE-627 ger DE-627 rakwb 620 33.12 bkl 50.36 bkl 53.79 bkl Zwan, Pawel verfasserin aut System for Automatic Singing Voice Recognition - A neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). Parameters related to singing were defined to form feature vectors. Single vowel samples for each singer were judged by six experts to establish a quality index. In a test based on a database of 2690 samples, 90% of the decisions were correct. These results show that it is possible to use neural networks to create an expert system to evaluate singing. 2008 14 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Kostek, Bozena oth Enthalten in Journal of the Audio Engineering Society New York, NY : AES, 1953 56(2008), 9, Seite 710-723 (DE-627)129358207 (DE-600)160393-0 (DE-576)014730421 1549-4950 nnns volume:56 year:2008 number:9 pages:710-723 extent:14 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_120 GBV_ILN_122 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4327 GBV_ILN_4700 33.12 AVZ 50.36 AVZ 53.79 AVZ AR 56 2008 9 710-723 14 |
allfieldsSound |
sw081103 (DE-627)OLC1803392398 (DE-599)GBVOLC1803392398 DE-627 ger DE-627 rakwb 620 33.12 bkl 50.36 bkl 53.79 bkl Zwan, Pawel verfasserin aut System for Automatic Singing Voice Recognition - A neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). Parameters related to singing were defined to form feature vectors. Single vowel samples for each singer were judged by six experts to establish a quality index. In a test based on a database of 2690 samples, 90% of the decisions were correct. These results show that it is possible to use neural networks to create an expert system to evaluate singing. 2008 14 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Kostek, Bozena oth Enthalten in Journal of the Audio Engineering Society New York, NY : AES, 1953 56(2008), 9, Seite 710-723 (DE-627)129358207 (DE-600)160393-0 (DE-576)014730421 1549-4950 nnns volume:56 year:2008 number:9 pages:710-723 extent:14 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_120 GBV_ILN_122 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4327 GBV_ILN_4700 33.12 AVZ 50.36 AVZ 53.79 AVZ AR 56 2008 9 710-723 14 |
source |
Enthalten in Journal of the Audio Engineering Society 56(2008), 9, Seite 710-723 volume:56 year:2008 number:9 pages:710-723 extent:14 |
sourceStr |
Enthalten in Journal of the Audio Engineering Society 56(2008), 9, Seite 710-723 volume:56 year:2008 number:9 pages:710-723 extent:14 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of the Audio Engineering Society |
authorswithroles_txt_mv |
Zwan, Pawel @@aut@@ Kostek, Bozena @@oth@@ |
publishDateDaySort_date |
2008-01-01T00:00:00Z |
hierarchy_top_id |
129358207 |
dewey-sort |
3620 |
id |
OLC1803392398 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC1803392398</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220192631.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">081103s2008 xx ||||| 00| ||und c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">sw081103</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1803392398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1803392398</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.79</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zwan, Pawel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">System for Automatic Singing Voice Recognition - A neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). Parameters related to singing were defined to form feature vectors. Single vowel samples for each singer were judged by six experts to establish a quality index. In a test based on a database of 2690 samples, 90% of the decisions were correct. These results show that it is possible to use neural networks to create an expert system to evaluate singing.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kostek, Bozena</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the Audio Engineering Society</subfield><subfield code="d">New York, NY : AES, 1953</subfield><subfield code="g">56(2008), 9, Seite 710-723</subfield><subfield code="w">(DE-627)129358207</subfield><subfield code="w">(DE-600)160393-0</subfield><subfield code="w">(DE-576)014730421</subfield><subfield code="x">1549-4950</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:710-723</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4327</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.12</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.36</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.79</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2008</subfield><subfield code="e">9</subfield><subfield code="h">710-723</subfield><subfield code="g">14</subfield></datafield></record></collection>
|
author |
Zwan, Pawel |
spellingShingle |
Zwan, Pawel ddc 620 bkl 33.12 bkl 50.36 bkl 53.79 System for Automatic Singing Voice Recognition - A neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). Parameters related to singing were defined to form feature vectors. Single vowel samples for each singer were judged by six experts to establish a quality index. In a test based on a database of 2690 samples, 90% of the decisions were correct. These results show that it is possible to use neural networks to create an expert system to evaluate singing. |
authorStr |
Zwan, Pawel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129358207 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1549-4950 |
topic_title |
620 33.12 bkl 50.36 bkl 53.79 bkl System for Automatic Singing Voice Recognition - A neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). Parameters related to singing were defined to form feature vectors. Single vowel samples for each singer were judged by six experts to establish a quality index. In a test based on a database of 2690 samples, 90% of the decisions were correct. These results show that it is possible to use neural networks to create an expert system to evaluate singing |
topic |
ddc 620 bkl 33.12 bkl 50.36 bkl 53.79 |
topic_unstemmed |
ddc 620 bkl 33.12 bkl 50.36 bkl 53.79 |
topic_browse |
ddc 620 bkl 33.12 bkl 50.36 bkl 53.79 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
b k bk |
hierarchy_parent_title |
Journal of the Audio Engineering Society |
hierarchy_parent_id |
129358207 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Journal of the Audio Engineering Society |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129358207 (DE-600)160393-0 (DE-576)014730421 |
title |
System for Automatic Singing Voice Recognition - A neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). Parameters related to singing were defined to form feature vectors. Single vowel samples for each singer were judged by six experts to establish a quality index. In a test based on a database of 2690 samples, 90% of the decisions were correct. These results show that it is possible to use neural networks to create an expert system to evaluate singing. |
ctrlnum |
(DE-627)OLC1803392398 (DE-599)GBVOLC1803392398 |
title_full |
System for Automatic Singing Voice Recognition - A neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). Parameters related to singing were defined to form feature vectors. Single vowel samples for each singer were judged by six experts to establish a quality index. In a test based on a database of 2690 samples, 90% of the decisions were correct. These results show that it is possible to use neural networks to create an expert system to evaluate singing |
author_sort |
Zwan, Pawel |
journal |
Journal of the Audio Engineering Society |
journalStr |
Journal of the Audio Engineering Society |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2008 |
contenttype_str_mv |
txt |
container_start_page |
710 |
author_browse |
Zwan, Pawel |
container_volume |
56 |
physical |
14 |
class |
620 33.12 bkl 50.36 bkl 53.79 bkl |
format_se |
Aufsätze |
author-letter |
Zwan, Pawel |
dewey-full |
620 |
title_sort |
system for automatic singing voice recognition - a neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). parameters related to singing were defined to form feature vectors. single vowel samples for each singer were judged by six experts to establish a quality index. in a test based on a database of 2690 samples, 90% of the decisions were correct. these results show that it is possible to use neural networks to create an expert system to evaluate singing |
title_auth |
System for Automatic Singing Voice Recognition - A neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). Parameters related to singing were defined to form feature vectors. Single vowel samples for each singer were judged by six experts to establish a quality index. In a test based on a database of 2690 samples, 90% of the decisions were correct. These results show that it is possible to use neural networks to create an expert system to evaluate singing. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_120 GBV_ILN_122 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4327 GBV_ILN_4700 |
container_issue |
9 |
title_short |
System for Automatic Singing Voice Recognition - A neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). Parameters related to singing were defined to form feature vectors. Single vowel samples for each singer were judged by six experts to establish a quality index. In a test based on a database of 2690 samples, 90% of the decisions were correct. These results show that it is possible to use neural networks to create an expert system to evaluate singing. |
remote_bool |
false |
author2 |
Kostek, Bozena |
author2Str |
Kostek, Bozena |
ppnlink |
129358207 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
up_date |
2024-07-03T21:09:09.148Z |
_version_ |
1803593658294861824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC1803392398</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220192631.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">081103s2008 xx ||||| 00| ||und c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">sw081103</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1803392398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1803392398</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.79</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zwan, Pawel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">System for Automatic Singing Voice Recognition - A neural network was trained and tested to provide automated classification of singing voices, both recognizing voice quality (amateur, semiprofessional, and professional) and voice type (bass, baritone, tenor, alto, mezzo-soprano, and soprano). Parameters related to singing were defined to form feature vectors. Single vowel samples for each singer were judged by six experts to establish a quality index. In a test based on a database of 2690 samples, 90% of the decisions were correct. These results show that it is possible to use neural networks to create an expert system to evaluate singing.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kostek, Bozena</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the Audio Engineering Society</subfield><subfield code="d">New York, NY : AES, 1953</subfield><subfield code="g">56(2008), 9, Seite 710-723</subfield><subfield code="w">(DE-627)129358207</subfield><subfield code="w">(DE-600)160393-0</subfield><subfield code="w">(DE-576)014730421</subfield><subfield code="x">1549-4950</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:710-723</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4327</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.12</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.36</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.79</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2008</subfield><subfield code="e">9</subfield><subfield code="h">710-723</subfield><subfield code="g">14</subfield></datafield></record></collection>
|
score |
7.40149 |