Novel thermal error modeling method for machining centers
Thermal deformation is one of the main contributors to machining errors in machine tools. In this paper, a novel approach to build an effective thermal error model for a machining center is proposed. Adaptive vector quantization network clustering algorithm is conducted to identify the temperature v...
Ausführliche Beschreibung
Autor*in: |
Xiaolong Zhu [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Proceedings of the Institution of Mechanical Engineers / C - Los Angeles, Calif. [u.a.] : Sage, 1983, 229(2015), 8, Seite 1500 |
---|---|
Übergeordnetes Werk: |
volume:229 ; year:2015 ; number:8 ; pages:1500 |
Links: |
---|
Katalog-ID: |
OLC195655081X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC195655081X | ||
003 | DE-627 | ||
005 | 20220220183022.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC195655081X | ||
035 | |a (DE-599)GBVOLC195655081X | ||
035 | |a (PRQ)p1764-f9d381a4b3743fd5f562fb46d30cb125b4d5db18fc4bfbd5b16cd9ba59bf35a00 | ||
035 | |a (KEY)0121116120150000229000801500novelthermalerrormodelingmethodformachiningcenters | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a 52.10 |2 bkl | ||
100 | 0 | |a Xiaolong Zhu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Novel thermal error modeling method for machining centers |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Thermal deformation is one of the main contributors to machining errors in machine tools. In this paper, a novel approach to build an effective thermal error model for a machining center is proposed. Adaptive vector quantization network clustering algorithm is conducted to identify the temperature variables, and then one temperature variable is selected from each cluster to represent the same cluster. Furthermore, a non-linear model based on output-hidden feedback Elman neural network is adopted to establish the relationship between thermal error and temperature variables. The output-hidden feedback Elman network is adopted to predict the thermal deformation of the machining center. Back propagation (BP) neural network is introduced for comparison. A verification experiment on the machining center is carried out to validate the efficiency of the newly proposed method. Experimental verification shows that the adaptive vector quantization network clustering algorithm and output-hidden feedback Elman neural network is an accurate and effective method. | ||
650 | 4 | |a Experiments | |
650 | 4 | |a Variables | |
650 | 4 | |a Back propagation | |
650 | 4 | |a Machinery | |
650 | 4 | |a Temperature | |
650 | 4 | |a Accuracy | |
650 | 4 | |a Deformation | |
700 | 0 | |a Sitong Xiang |4 oth | |
700 | 0 | |a Jianguo Yang |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Proceedings of the Institution of Mechanical Engineers / C |d Los Angeles, Calif. [u.a.] : Sage, 1983 |g 229(2015), 8, Seite 1500 |w (DE-627)130863114 |w (DE-600)1030844-1 |w (DE-576)023106441 |x 0954-4062 |7 nnns |
773 | 1 | 8 | |g volume:229 |g year:2015 |g number:8 |g pages:1500 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1693688682 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.10 |q AVZ |
951 | |a AR | ||
952 | |d 229 |j 2015 |e 8 |h 1500 |
author_variant |
x z xz |
---|---|
matchkey_str |
article:09544062:2015----::oetemlromdlnmtofra |
hierarchy_sort_str |
2015 |
bklnumber |
52.10 |
publishDate |
2015 |
allfields |
PQ20160617 (DE-627)OLC195655081X (DE-599)GBVOLC195655081X (PRQ)p1764-f9d381a4b3743fd5f562fb46d30cb125b4d5db18fc4bfbd5b16cd9ba59bf35a00 (KEY)0121116120150000229000801500novelthermalerrormodelingmethodformachiningcenters DE-627 ger DE-627 rakwb eng 620 DNB 52.10 bkl Xiaolong Zhu verfasserin aut Novel thermal error modeling method for machining centers 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Thermal deformation is one of the main contributors to machining errors in machine tools. In this paper, a novel approach to build an effective thermal error model for a machining center is proposed. Adaptive vector quantization network clustering algorithm is conducted to identify the temperature variables, and then one temperature variable is selected from each cluster to represent the same cluster. Furthermore, a non-linear model based on output-hidden feedback Elman neural network is adopted to establish the relationship between thermal error and temperature variables. The output-hidden feedback Elman network is adopted to predict the thermal deformation of the machining center. Back propagation (BP) neural network is introduced for comparison. A verification experiment on the machining center is carried out to validate the efficiency of the newly proposed method. Experimental verification shows that the adaptive vector quantization network clustering algorithm and output-hidden feedback Elman neural network is an accurate and effective method. Experiments Variables Back propagation Machinery Temperature Accuracy Deformation Sitong Xiang oth Jianguo Yang oth Enthalten in Proceedings of the Institution of Mechanical Engineers / C Los Angeles, Calif. [u.a.] : Sage, 1983 229(2015), 8, Seite 1500 (DE-627)130863114 (DE-600)1030844-1 (DE-576)023106441 0954-4062 nnns volume:229 year:2015 number:8 pages:1500 http://search.proquest.com/docview/1693688682 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_62 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4700 52.10 AVZ AR 229 2015 8 1500 |
spelling |
PQ20160617 (DE-627)OLC195655081X (DE-599)GBVOLC195655081X (PRQ)p1764-f9d381a4b3743fd5f562fb46d30cb125b4d5db18fc4bfbd5b16cd9ba59bf35a00 (KEY)0121116120150000229000801500novelthermalerrormodelingmethodformachiningcenters DE-627 ger DE-627 rakwb eng 620 DNB 52.10 bkl Xiaolong Zhu verfasserin aut Novel thermal error modeling method for machining centers 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Thermal deformation is one of the main contributors to machining errors in machine tools. In this paper, a novel approach to build an effective thermal error model for a machining center is proposed. Adaptive vector quantization network clustering algorithm is conducted to identify the temperature variables, and then one temperature variable is selected from each cluster to represent the same cluster. Furthermore, a non-linear model based on output-hidden feedback Elman neural network is adopted to establish the relationship between thermal error and temperature variables. The output-hidden feedback Elman network is adopted to predict the thermal deformation of the machining center. Back propagation (BP) neural network is introduced for comparison. A verification experiment on the machining center is carried out to validate the efficiency of the newly proposed method. Experimental verification shows that the adaptive vector quantization network clustering algorithm and output-hidden feedback Elman neural network is an accurate and effective method. Experiments Variables Back propagation Machinery Temperature Accuracy Deformation Sitong Xiang oth Jianguo Yang oth Enthalten in Proceedings of the Institution of Mechanical Engineers / C Los Angeles, Calif. [u.a.] : Sage, 1983 229(2015), 8, Seite 1500 (DE-627)130863114 (DE-600)1030844-1 (DE-576)023106441 0954-4062 nnns volume:229 year:2015 number:8 pages:1500 http://search.proquest.com/docview/1693688682 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_62 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4700 52.10 AVZ AR 229 2015 8 1500 |
allfields_unstemmed |
PQ20160617 (DE-627)OLC195655081X (DE-599)GBVOLC195655081X (PRQ)p1764-f9d381a4b3743fd5f562fb46d30cb125b4d5db18fc4bfbd5b16cd9ba59bf35a00 (KEY)0121116120150000229000801500novelthermalerrormodelingmethodformachiningcenters DE-627 ger DE-627 rakwb eng 620 DNB 52.10 bkl Xiaolong Zhu verfasserin aut Novel thermal error modeling method for machining centers 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Thermal deformation is one of the main contributors to machining errors in machine tools. In this paper, a novel approach to build an effective thermal error model for a machining center is proposed. Adaptive vector quantization network clustering algorithm is conducted to identify the temperature variables, and then one temperature variable is selected from each cluster to represent the same cluster. Furthermore, a non-linear model based on output-hidden feedback Elman neural network is adopted to establish the relationship between thermal error and temperature variables. The output-hidden feedback Elman network is adopted to predict the thermal deformation of the machining center. Back propagation (BP) neural network is introduced for comparison. A verification experiment on the machining center is carried out to validate the efficiency of the newly proposed method. Experimental verification shows that the adaptive vector quantization network clustering algorithm and output-hidden feedback Elman neural network is an accurate and effective method. Experiments Variables Back propagation Machinery Temperature Accuracy Deformation Sitong Xiang oth Jianguo Yang oth Enthalten in Proceedings of the Institution of Mechanical Engineers / C Los Angeles, Calif. [u.a.] : Sage, 1983 229(2015), 8, Seite 1500 (DE-627)130863114 (DE-600)1030844-1 (DE-576)023106441 0954-4062 nnns volume:229 year:2015 number:8 pages:1500 http://search.proquest.com/docview/1693688682 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_62 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4700 52.10 AVZ AR 229 2015 8 1500 |
allfieldsGer |
PQ20160617 (DE-627)OLC195655081X (DE-599)GBVOLC195655081X (PRQ)p1764-f9d381a4b3743fd5f562fb46d30cb125b4d5db18fc4bfbd5b16cd9ba59bf35a00 (KEY)0121116120150000229000801500novelthermalerrormodelingmethodformachiningcenters DE-627 ger DE-627 rakwb eng 620 DNB 52.10 bkl Xiaolong Zhu verfasserin aut Novel thermal error modeling method for machining centers 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Thermal deformation is one of the main contributors to machining errors in machine tools. In this paper, a novel approach to build an effective thermal error model for a machining center is proposed. Adaptive vector quantization network clustering algorithm is conducted to identify the temperature variables, and then one temperature variable is selected from each cluster to represent the same cluster. Furthermore, a non-linear model based on output-hidden feedback Elman neural network is adopted to establish the relationship between thermal error and temperature variables. The output-hidden feedback Elman network is adopted to predict the thermal deformation of the machining center. Back propagation (BP) neural network is introduced for comparison. A verification experiment on the machining center is carried out to validate the efficiency of the newly proposed method. Experimental verification shows that the adaptive vector quantization network clustering algorithm and output-hidden feedback Elman neural network is an accurate and effective method. Experiments Variables Back propagation Machinery Temperature Accuracy Deformation Sitong Xiang oth Jianguo Yang oth Enthalten in Proceedings of the Institution of Mechanical Engineers / C Los Angeles, Calif. [u.a.] : Sage, 1983 229(2015), 8, Seite 1500 (DE-627)130863114 (DE-600)1030844-1 (DE-576)023106441 0954-4062 nnns volume:229 year:2015 number:8 pages:1500 http://search.proquest.com/docview/1693688682 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_62 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4700 52.10 AVZ AR 229 2015 8 1500 |
allfieldsSound |
PQ20160617 (DE-627)OLC195655081X (DE-599)GBVOLC195655081X (PRQ)p1764-f9d381a4b3743fd5f562fb46d30cb125b4d5db18fc4bfbd5b16cd9ba59bf35a00 (KEY)0121116120150000229000801500novelthermalerrormodelingmethodformachiningcenters DE-627 ger DE-627 rakwb eng 620 DNB 52.10 bkl Xiaolong Zhu verfasserin aut Novel thermal error modeling method for machining centers 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Thermal deformation is one of the main contributors to machining errors in machine tools. In this paper, a novel approach to build an effective thermal error model for a machining center is proposed. Adaptive vector quantization network clustering algorithm is conducted to identify the temperature variables, and then one temperature variable is selected from each cluster to represent the same cluster. Furthermore, a non-linear model based on output-hidden feedback Elman neural network is adopted to establish the relationship between thermal error and temperature variables. The output-hidden feedback Elman network is adopted to predict the thermal deformation of the machining center. Back propagation (BP) neural network is introduced for comparison. A verification experiment on the machining center is carried out to validate the efficiency of the newly proposed method. Experimental verification shows that the adaptive vector quantization network clustering algorithm and output-hidden feedback Elman neural network is an accurate and effective method. Experiments Variables Back propagation Machinery Temperature Accuracy Deformation Sitong Xiang oth Jianguo Yang oth Enthalten in Proceedings of the Institution of Mechanical Engineers / C Los Angeles, Calif. [u.a.] : Sage, 1983 229(2015), 8, Seite 1500 (DE-627)130863114 (DE-600)1030844-1 (DE-576)023106441 0954-4062 nnns volume:229 year:2015 number:8 pages:1500 http://search.proquest.com/docview/1693688682 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_62 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4700 52.10 AVZ AR 229 2015 8 1500 |
language |
English |
source |
Enthalten in Proceedings of the Institution of Mechanical Engineers / C 229(2015), 8, Seite 1500 volume:229 year:2015 number:8 pages:1500 |
sourceStr |
Enthalten in Proceedings of the Institution of Mechanical Engineers / C 229(2015), 8, Seite 1500 volume:229 year:2015 number:8 pages:1500 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Experiments Variables Back propagation Machinery Temperature Accuracy Deformation |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Proceedings of the Institution of Mechanical Engineers / C |
authorswithroles_txt_mv |
Xiaolong Zhu @@aut@@ Sitong Xiang @@oth@@ Jianguo Yang @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
130863114 |
dewey-sort |
3620 |
id |
OLC195655081X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC195655081X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220183022.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC195655081X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC195655081X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1764-f9d381a4b3743fd5f562fb46d30cb125b4d5db18fc4bfbd5b16cd9ba59bf35a00</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0121116120150000229000801500novelthermalerrormodelingmethodformachiningcenters</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaolong Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Novel thermal error modeling method for machining centers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thermal deformation is one of the main contributors to machining errors in machine tools. In this paper, a novel approach to build an effective thermal error model for a machining center is proposed. Adaptive vector quantization network clustering algorithm is conducted to identify the temperature variables, and then one temperature variable is selected from each cluster to represent the same cluster. Furthermore, a non-linear model based on output-hidden feedback Elman neural network is adopted to establish the relationship between thermal error and temperature variables. The output-hidden feedback Elman network is adopted to predict the thermal deformation of the machining center. Back propagation (BP) neural network is introduced for comparison. A verification experiment on the machining center is carried out to validate the efficiency of the newly proposed method. Experimental verification shows that the adaptive vector quantization network clustering algorithm and output-hidden feedback Elman neural network is an accurate and effective method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experiments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Back propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machinery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deformation</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sitong Xiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianguo Yang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the Institution of Mechanical Engineers / C</subfield><subfield code="d">Los Angeles, Calif. [u.a.] : Sage, 1983</subfield><subfield code="g">229(2015), 8, Seite 1500</subfield><subfield code="w">(DE-627)130863114</subfield><subfield code="w">(DE-600)1030844-1</subfield><subfield code="w">(DE-576)023106441</subfield><subfield code="x">0954-4062</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:229</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:1500</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1693688682</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.10</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">229</subfield><subfield code="j">2015</subfield><subfield code="e">8</subfield><subfield code="h">1500</subfield></datafield></record></collection>
|
author |
Xiaolong Zhu |
spellingShingle |
Xiaolong Zhu ddc 620 bkl 52.10 misc Experiments misc Variables misc Back propagation misc Machinery misc Temperature misc Accuracy misc Deformation Novel thermal error modeling method for machining centers |
authorStr |
Xiaolong Zhu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130863114 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0954-4062 |
topic_title |
620 DNB 52.10 bkl Novel thermal error modeling method for machining centers Experiments Variables Back propagation Machinery Temperature Accuracy Deformation |
topic |
ddc 620 bkl 52.10 misc Experiments misc Variables misc Back propagation misc Machinery misc Temperature misc Accuracy misc Deformation |
topic_unstemmed |
ddc 620 bkl 52.10 misc Experiments misc Variables misc Back propagation misc Machinery misc Temperature misc Accuracy misc Deformation |
topic_browse |
ddc 620 bkl 52.10 misc Experiments misc Variables misc Back propagation misc Machinery misc Temperature misc Accuracy misc Deformation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
s x sx j y jy |
hierarchy_parent_title |
Proceedings of the Institution of Mechanical Engineers / C |
hierarchy_parent_id |
130863114 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Proceedings of the Institution of Mechanical Engineers / C |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130863114 (DE-600)1030844-1 (DE-576)023106441 |
title |
Novel thermal error modeling method for machining centers |
ctrlnum |
(DE-627)OLC195655081X (DE-599)GBVOLC195655081X (PRQ)p1764-f9d381a4b3743fd5f562fb46d30cb125b4d5db18fc4bfbd5b16cd9ba59bf35a00 (KEY)0121116120150000229000801500novelthermalerrormodelingmethodformachiningcenters |
title_full |
Novel thermal error modeling method for machining centers |
author_sort |
Xiaolong Zhu |
journal |
Proceedings of the Institution of Mechanical Engineers / C |
journalStr |
Proceedings of the Institution of Mechanical Engineers / C |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1500 |
author_browse |
Xiaolong Zhu |
container_volume |
229 |
class |
620 DNB 52.10 bkl |
format_se |
Aufsätze |
author-letter |
Xiaolong Zhu |
dewey-full |
620 |
title_sort |
novel thermal error modeling method for machining centers |
title_auth |
Novel thermal error modeling method for machining centers |
abstract |
Thermal deformation is one of the main contributors to machining errors in machine tools. In this paper, a novel approach to build an effective thermal error model for a machining center is proposed. Adaptive vector quantization network clustering algorithm is conducted to identify the temperature variables, and then one temperature variable is selected from each cluster to represent the same cluster. Furthermore, a non-linear model based on output-hidden feedback Elman neural network is adopted to establish the relationship between thermal error and temperature variables. The output-hidden feedback Elman network is adopted to predict the thermal deformation of the machining center. Back propagation (BP) neural network is introduced for comparison. A verification experiment on the machining center is carried out to validate the efficiency of the newly proposed method. Experimental verification shows that the adaptive vector quantization network clustering algorithm and output-hidden feedback Elman neural network is an accurate and effective method. |
abstractGer |
Thermal deformation is one of the main contributors to machining errors in machine tools. In this paper, a novel approach to build an effective thermal error model for a machining center is proposed. Adaptive vector quantization network clustering algorithm is conducted to identify the temperature variables, and then one temperature variable is selected from each cluster to represent the same cluster. Furthermore, a non-linear model based on output-hidden feedback Elman neural network is adopted to establish the relationship between thermal error and temperature variables. The output-hidden feedback Elman network is adopted to predict the thermal deformation of the machining center. Back propagation (BP) neural network is introduced for comparison. A verification experiment on the machining center is carried out to validate the efficiency of the newly proposed method. Experimental verification shows that the adaptive vector quantization network clustering algorithm and output-hidden feedback Elman neural network is an accurate and effective method. |
abstract_unstemmed |
Thermal deformation is one of the main contributors to machining errors in machine tools. In this paper, a novel approach to build an effective thermal error model for a machining center is proposed. Adaptive vector quantization network clustering algorithm is conducted to identify the temperature variables, and then one temperature variable is selected from each cluster to represent the same cluster. Furthermore, a non-linear model based on output-hidden feedback Elman neural network is adopted to establish the relationship between thermal error and temperature variables. The output-hidden feedback Elman network is adopted to predict the thermal deformation of the machining center. Back propagation (BP) neural network is introduced for comparison. A verification experiment on the machining center is carried out to validate the efficiency of the newly proposed method. Experimental verification shows that the adaptive vector quantization network clustering algorithm and output-hidden feedback Elman neural network is an accurate and effective method. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_62 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4700 |
container_issue |
8 |
title_short |
Novel thermal error modeling method for machining centers |
url |
http://search.proquest.com/docview/1693688682 |
remote_bool |
false |
author2 |
Sitong Xiang Jianguo Yang |
author2Str |
Sitong Xiang Jianguo Yang |
ppnlink |
130863114 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
up_date |
2024-07-03T21:00:26.835Z |
_version_ |
1803593110609985536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC195655081X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220183022.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC195655081X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC195655081X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1764-f9d381a4b3743fd5f562fb46d30cb125b4d5db18fc4bfbd5b16cd9ba59bf35a00</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0121116120150000229000801500novelthermalerrormodelingmethodformachiningcenters</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaolong Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Novel thermal error modeling method for machining centers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thermal deformation is one of the main contributors to machining errors in machine tools. In this paper, a novel approach to build an effective thermal error model for a machining center is proposed. Adaptive vector quantization network clustering algorithm is conducted to identify the temperature variables, and then one temperature variable is selected from each cluster to represent the same cluster. Furthermore, a non-linear model based on output-hidden feedback Elman neural network is adopted to establish the relationship between thermal error and temperature variables. The output-hidden feedback Elman network is adopted to predict the thermal deformation of the machining center. Back propagation (BP) neural network is introduced for comparison. A verification experiment on the machining center is carried out to validate the efficiency of the newly proposed method. Experimental verification shows that the adaptive vector quantization network clustering algorithm and output-hidden feedback Elman neural network is an accurate and effective method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experiments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Back propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machinery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deformation</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sitong Xiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianguo Yang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the Institution of Mechanical Engineers / C</subfield><subfield code="d">Los Angeles, Calif. [u.a.] : Sage, 1983</subfield><subfield code="g">229(2015), 8, Seite 1500</subfield><subfield code="w">(DE-627)130863114</subfield><subfield code="w">(DE-600)1030844-1</subfield><subfield code="w">(DE-576)023106441</subfield><subfield code="x">0954-4062</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:229</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:1500</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1693688682</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.10</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">229</subfield><subfield code="j">2015</subfield><subfield code="e">8</subfield><subfield code="h">1500</subfield></datafield></record></collection>
|
score |
7.4030848 |