Optimization of Long-Range Surface Plasmon Waveguides for Attenuation-Based Biosensing
The design and optimization of straight long-range surface plasmon waveguides to maximize attenuation surface sensitivity in biochemical sensing applications are discussed. The sensor consists of a Au stripe embedded in CYTOP, with a microfluidic channel etched into the top cladding to expose the su...
Ausführliche Beschreibung
Autor*in: |
Wei Ru Wong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
attenuation surface sensitivity biochemical sensing applications |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of lightwave technology - New York, NY : IEEE, 1983, 33(2015), 15, Seite 3234-3242 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2015 ; number:15 ; pages:3234-3242 |
Links: |
---|
DOI / URN: |
10.1109/JLT.2015.2431612 |
---|
Katalog-ID: |
OLC1956640436 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1956640436 | ||
003 | DE-627 | ||
005 | 20230714141623.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/JLT.2015.2431612 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1956640436 | ||
035 | |a (DE-599)GBVOLC1956640436 | ||
035 | |a (PRQ)c1301-36ac96f1983a95f21e58d7a6441ae142dd363d2571b89fb8c546c618b98cac1b0 | ||
035 | |a (KEY)0124889820150000033001503234optimizationoflongrangesurfaceplasmonwaveguidesfor | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 600 |a 620 |q DNB |
100 | 0 | |a Wei Ru Wong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimization of Long-Range Surface Plasmon Waveguides for Attenuation-Based Biosensing |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The design and optimization of straight long-range surface plasmon waveguides to maximize attenuation surface sensitivity in biochemical sensing applications are discussed. The sensor consists of a Au stripe embedded in CYTOP, with a microfluidic channel etched into the top cladding to expose the surface of the Au stripe and define the sensing channel. The attenuation α s of the structure changes as a biological adlayer grows on the Au surface. The dimensions of the stripe (thickness, width), the sensing length and the refractive index of the sensing buffer were varied in order to understand their impact on sensor performance. The attenuation sensitivity ∂α s /∂a dominates over a wide range of waveguide designs, so we define a parameter K = (∂α s /∂a)/αs where maximizing |K| and selecting the optimal sensing length as L opt = 1/(2α s ) maximizes the overall sensitivity of the structure. Experimental results based on observing the physisorption of bovine serum albumin (BSA) on bare Au waveguides agree qualitatively and quantitatively with theory. Detection limits of ΔΓ min <; 0.1 pg·mm -2 are predicted for optimal designs, and a detection limit of ΔΓ min = 4.1pg/mm 2 (SNR = 1) is demonstrated experimentally for a sub-optimal structure. | ||
650 | 4 | |a biosensors | |
650 | 4 | |a optical waveguides | |
650 | 4 | |a attenuation-based biosensing | |
650 | 4 | |a attenuation sensitivity | |
650 | 4 | |a Surface waves | |
650 | 4 | |a microsensors | |
650 | 4 | |a attenuation surface sensitivity | |
650 | 4 | |a biochemical sensing applications | |
650 | 4 | |a biosensor | |
650 | 4 | |a top cladding | |
650 | 4 | |a light attenuation | |
650 | 4 | |a attenuation | |
650 | 4 | |a surface plasmons | |
650 | 4 | |a long-range surface plasmon waveguide design | |
650 | 4 | |a micro-optomechanical devices | |
650 | 4 | |a microfluidic channel | |
650 | 4 | |a gold | |
650 | 4 | |a Sensitivity | |
650 | 4 | |a optimal sensing length | |
650 | 4 | |a BSA | |
650 | 4 | |a bovine serum albumin | |
650 | 4 | |a optimization | |
650 | 4 | |a molecular biophysics | |
650 | 4 | |a adsorption | |
650 | 4 | |a Optical surface waves | |
650 | 4 | |a Surface plasmon | |
650 | 4 | |a microchannel flow | |
650 | 4 | |a CYTOP | |
650 | 4 | |a biological adlayer | |
650 | 4 | |a stripe thickness | |
650 | 4 | |a sensing length | |
650 | 4 | |a stripe thickness width | |
650 | 4 | |a physisorption | |
650 | 4 | |a proteins | |
650 | 4 | |a optical design techniques | |
650 | 4 | |a refractive index | |
650 | 4 | |a optimisation | |
700 | 1 | |a Krupin, Oleksiy |4 oth | |
700 | 1 | |a Mahamd Adikan, Faisal Rafiq |4 oth | |
700 | 1 | |a Berini, Pierre |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of lightwave technology |d New York, NY : IEEE, 1983 |g 33(2015), 15, Seite 3234-3242 |w (DE-627)129620882 |w (DE-600)246121-3 |w (DE-576)015127214 |x 0733-8724 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:2015 |g number:15 |g pages:3234-3242 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/JLT.2015.2431612 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7104097 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_185 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 33 |j 2015 |e 15 |h 3234-3242 |
author_variant |
w r w wrw |
---|---|
matchkey_str |
article:07338724:2015----::piiainfogagsraelsowvgiefrteu |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1109/JLT.2015.2431612 doi PQ20160617 (DE-627)OLC1956640436 (DE-599)GBVOLC1956640436 (PRQ)c1301-36ac96f1983a95f21e58d7a6441ae142dd363d2571b89fb8c546c618b98cac1b0 (KEY)0124889820150000033001503234optimizationoflongrangesurfaceplasmonwaveguidesfor DE-627 ger DE-627 rakwb eng 530 600 620 DNB Wei Ru Wong verfasserin aut Optimization of Long-Range Surface Plasmon Waveguides for Attenuation-Based Biosensing 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The design and optimization of straight long-range surface plasmon waveguides to maximize attenuation surface sensitivity in biochemical sensing applications are discussed. The sensor consists of a Au stripe embedded in CYTOP, with a microfluidic channel etched into the top cladding to expose the surface of the Au stripe and define the sensing channel. The attenuation α s of the structure changes as a biological adlayer grows on the Au surface. The dimensions of the stripe (thickness, width), the sensing length and the refractive index of the sensing buffer were varied in order to understand their impact on sensor performance. The attenuation sensitivity ∂α s /∂a dominates over a wide range of waveguide designs, so we define a parameter K = (∂α s /∂a)/αs where maximizing |K| and selecting the optimal sensing length as L opt = 1/(2α s ) maximizes the overall sensitivity of the structure. Experimental results based on observing the physisorption of bovine serum albumin (BSA) on bare Au waveguides agree qualitatively and quantitatively with theory. Detection limits of ΔΓ min <; 0.1 pg·mm -2 are predicted for optimal designs, and a detection limit of ΔΓ min = 4.1pg/mm 2 (SNR = 1) is demonstrated experimentally for a sub-optimal structure. biosensors optical waveguides attenuation-based biosensing attenuation sensitivity Surface waves microsensors attenuation surface sensitivity biochemical sensing applications biosensor top cladding light attenuation attenuation surface plasmons long-range surface plasmon waveguide design micro-optomechanical devices microfluidic channel gold Sensitivity optimal sensing length BSA bovine serum albumin optimization molecular biophysics adsorption Optical surface waves Surface plasmon microchannel flow CYTOP biological adlayer stripe thickness sensing length stripe thickness width physisorption proteins optical design techniques refractive index optimisation Krupin, Oleksiy oth Mahamd Adikan, Faisal Rafiq oth Berini, Pierre oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 33(2015), 15, Seite 3234-3242 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:33 year:2015 number:15 pages:3234-3242 http://dx.doi.org/10.1109/JLT.2015.2431612 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7104097 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 AR 33 2015 15 3234-3242 |
spelling |
10.1109/JLT.2015.2431612 doi PQ20160617 (DE-627)OLC1956640436 (DE-599)GBVOLC1956640436 (PRQ)c1301-36ac96f1983a95f21e58d7a6441ae142dd363d2571b89fb8c546c618b98cac1b0 (KEY)0124889820150000033001503234optimizationoflongrangesurfaceplasmonwaveguidesfor DE-627 ger DE-627 rakwb eng 530 600 620 DNB Wei Ru Wong verfasserin aut Optimization of Long-Range Surface Plasmon Waveguides for Attenuation-Based Biosensing 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The design and optimization of straight long-range surface plasmon waveguides to maximize attenuation surface sensitivity in biochemical sensing applications are discussed. The sensor consists of a Au stripe embedded in CYTOP, with a microfluidic channel etched into the top cladding to expose the surface of the Au stripe and define the sensing channel. The attenuation α s of the structure changes as a biological adlayer grows on the Au surface. The dimensions of the stripe (thickness, width), the sensing length and the refractive index of the sensing buffer were varied in order to understand their impact on sensor performance. The attenuation sensitivity ∂α s /∂a dominates over a wide range of waveguide designs, so we define a parameter K = (∂α s /∂a)/αs where maximizing |K| and selecting the optimal sensing length as L opt = 1/(2α s ) maximizes the overall sensitivity of the structure. Experimental results based on observing the physisorption of bovine serum albumin (BSA) on bare Au waveguides agree qualitatively and quantitatively with theory. Detection limits of ΔΓ min <; 0.1 pg·mm -2 are predicted for optimal designs, and a detection limit of ΔΓ min = 4.1pg/mm 2 (SNR = 1) is demonstrated experimentally for a sub-optimal structure. biosensors optical waveguides attenuation-based biosensing attenuation sensitivity Surface waves microsensors attenuation surface sensitivity biochemical sensing applications biosensor top cladding light attenuation attenuation surface plasmons long-range surface plasmon waveguide design micro-optomechanical devices microfluidic channel gold Sensitivity optimal sensing length BSA bovine serum albumin optimization molecular biophysics adsorption Optical surface waves Surface plasmon microchannel flow CYTOP biological adlayer stripe thickness sensing length stripe thickness width physisorption proteins optical design techniques refractive index optimisation Krupin, Oleksiy oth Mahamd Adikan, Faisal Rafiq oth Berini, Pierre oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 33(2015), 15, Seite 3234-3242 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:33 year:2015 number:15 pages:3234-3242 http://dx.doi.org/10.1109/JLT.2015.2431612 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7104097 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 AR 33 2015 15 3234-3242 |
allfields_unstemmed |
10.1109/JLT.2015.2431612 doi PQ20160617 (DE-627)OLC1956640436 (DE-599)GBVOLC1956640436 (PRQ)c1301-36ac96f1983a95f21e58d7a6441ae142dd363d2571b89fb8c546c618b98cac1b0 (KEY)0124889820150000033001503234optimizationoflongrangesurfaceplasmonwaveguidesfor DE-627 ger DE-627 rakwb eng 530 600 620 DNB Wei Ru Wong verfasserin aut Optimization of Long-Range Surface Plasmon Waveguides for Attenuation-Based Biosensing 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The design and optimization of straight long-range surface plasmon waveguides to maximize attenuation surface sensitivity in biochemical sensing applications are discussed. The sensor consists of a Au stripe embedded in CYTOP, with a microfluidic channel etched into the top cladding to expose the surface of the Au stripe and define the sensing channel. The attenuation α s of the structure changes as a biological adlayer grows on the Au surface. The dimensions of the stripe (thickness, width), the sensing length and the refractive index of the sensing buffer were varied in order to understand their impact on sensor performance. The attenuation sensitivity ∂α s /∂a dominates over a wide range of waveguide designs, so we define a parameter K = (∂α s /∂a)/αs where maximizing |K| and selecting the optimal sensing length as L opt = 1/(2α s ) maximizes the overall sensitivity of the structure. Experimental results based on observing the physisorption of bovine serum albumin (BSA) on bare Au waveguides agree qualitatively and quantitatively with theory. Detection limits of ΔΓ min <; 0.1 pg·mm -2 are predicted for optimal designs, and a detection limit of ΔΓ min = 4.1pg/mm 2 (SNR = 1) is demonstrated experimentally for a sub-optimal structure. biosensors optical waveguides attenuation-based biosensing attenuation sensitivity Surface waves microsensors attenuation surface sensitivity biochemical sensing applications biosensor top cladding light attenuation attenuation surface plasmons long-range surface plasmon waveguide design micro-optomechanical devices microfluidic channel gold Sensitivity optimal sensing length BSA bovine serum albumin optimization molecular biophysics adsorption Optical surface waves Surface plasmon microchannel flow CYTOP biological adlayer stripe thickness sensing length stripe thickness width physisorption proteins optical design techniques refractive index optimisation Krupin, Oleksiy oth Mahamd Adikan, Faisal Rafiq oth Berini, Pierre oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 33(2015), 15, Seite 3234-3242 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:33 year:2015 number:15 pages:3234-3242 http://dx.doi.org/10.1109/JLT.2015.2431612 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7104097 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 AR 33 2015 15 3234-3242 |
allfieldsGer |
10.1109/JLT.2015.2431612 doi PQ20160617 (DE-627)OLC1956640436 (DE-599)GBVOLC1956640436 (PRQ)c1301-36ac96f1983a95f21e58d7a6441ae142dd363d2571b89fb8c546c618b98cac1b0 (KEY)0124889820150000033001503234optimizationoflongrangesurfaceplasmonwaveguidesfor DE-627 ger DE-627 rakwb eng 530 600 620 DNB Wei Ru Wong verfasserin aut Optimization of Long-Range Surface Plasmon Waveguides for Attenuation-Based Biosensing 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The design and optimization of straight long-range surface plasmon waveguides to maximize attenuation surface sensitivity in biochemical sensing applications are discussed. The sensor consists of a Au stripe embedded in CYTOP, with a microfluidic channel etched into the top cladding to expose the surface of the Au stripe and define the sensing channel. The attenuation α s of the structure changes as a biological adlayer grows on the Au surface. The dimensions of the stripe (thickness, width), the sensing length and the refractive index of the sensing buffer were varied in order to understand their impact on sensor performance. The attenuation sensitivity ∂α s /∂a dominates over a wide range of waveguide designs, so we define a parameter K = (∂α s /∂a)/αs where maximizing |K| and selecting the optimal sensing length as L opt = 1/(2α s ) maximizes the overall sensitivity of the structure. Experimental results based on observing the physisorption of bovine serum albumin (BSA) on bare Au waveguides agree qualitatively and quantitatively with theory. Detection limits of ΔΓ min <; 0.1 pg·mm -2 are predicted for optimal designs, and a detection limit of ΔΓ min = 4.1pg/mm 2 (SNR = 1) is demonstrated experimentally for a sub-optimal structure. biosensors optical waveguides attenuation-based biosensing attenuation sensitivity Surface waves microsensors attenuation surface sensitivity biochemical sensing applications biosensor top cladding light attenuation attenuation surface plasmons long-range surface plasmon waveguide design micro-optomechanical devices microfluidic channel gold Sensitivity optimal sensing length BSA bovine serum albumin optimization molecular biophysics adsorption Optical surface waves Surface plasmon microchannel flow CYTOP biological adlayer stripe thickness sensing length stripe thickness width physisorption proteins optical design techniques refractive index optimisation Krupin, Oleksiy oth Mahamd Adikan, Faisal Rafiq oth Berini, Pierre oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 33(2015), 15, Seite 3234-3242 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:33 year:2015 number:15 pages:3234-3242 http://dx.doi.org/10.1109/JLT.2015.2431612 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7104097 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 AR 33 2015 15 3234-3242 |
allfieldsSound |
10.1109/JLT.2015.2431612 doi PQ20160617 (DE-627)OLC1956640436 (DE-599)GBVOLC1956640436 (PRQ)c1301-36ac96f1983a95f21e58d7a6441ae142dd363d2571b89fb8c546c618b98cac1b0 (KEY)0124889820150000033001503234optimizationoflongrangesurfaceplasmonwaveguidesfor DE-627 ger DE-627 rakwb eng 530 600 620 DNB Wei Ru Wong verfasserin aut Optimization of Long-Range Surface Plasmon Waveguides for Attenuation-Based Biosensing 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The design and optimization of straight long-range surface plasmon waveguides to maximize attenuation surface sensitivity in biochemical sensing applications are discussed. The sensor consists of a Au stripe embedded in CYTOP, with a microfluidic channel etched into the top cladding to expose the surface of the Au stripe and define the sensing channel. The attenuation α s of the structure changes as a biological adlayer grows on the Au surface. The dimensions of the stripe (thickness, width), the sensing length and the refractive index of the sensing buffer were varied in order to understand their impact on sensor performance. The attenuation sensitivity ∂α s /∂a dominates over a wide range of waveguide designs, so we define a parameter K = (∂α s /∂a)/αs where maximizing |K| and selecting the optimal sensing length as L opt = 1/(2α s ) maximizes the overall sensitivity of the structure. Experimental results based on observing the physisorption of bovine serum albumin (BSA) on bare Au waveguides agree qualitatively and quantitatively with theory. Detection limits of ΔΓ min <; 0.1 pg·mm -2 are predicted for optimal designs, and a detection limit of ΔΓ min = 4.1pg/mm 2 (SNR = 1) is demonstrated experimentally for a sub-optimal structure. biosensors optical waveguides attenuation-based biosensing attenuation sensitivity Surface waves microsensors attenuation surface sensitivity biochemical sensing applications biosensor top cladding light attenuation attenuation surface plasmons long-range surface plasmon waveguide design micro-optomechanical devices microfluidic channel gold Sensitivity optimal sensing length BSA bovine serum albumin optimization molecular biophysics adsorption Optical surface waves Surface plasmon microchannel flow CYTOP biological adlayer stripe thickness sensing length stripe thickness width physisorption proteins optical design techniques refractive index optimisation Krupin, Oleksiy oth Mahamd Adikan, Faisal Rafiq oth Berini, Pierre oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 33(2015), 15, Seite 3234-3242 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:33 year:2015 number:15 pages:3234-3242 http://dx.doi.org/10.1109/JLT.2015.2431612 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7104097 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 AR 33 2015 15 3234-3242 |
language |
English |
source |
Enthalten in Journal of lightwave technology 33(2015), 15, Seite 3234-3242 volume:33 year:2015 number:15 pages:3234-3242 |
sourceStr |
Enthalten in Journal of lightwave technology 33(2015), 15, Seite 3234-3242 volume:33 year:2015 number:15 pages:3234-3242 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
biosensors optical waveguides attenuation-based biosensing attenuation sensitivity Surface waves microsensors attenuation surface sensitivity biochemical sensing applications biosensor top cladding light attenuation attenuation surface plasmons long-range surface plasmon waveguide design micro-optomechanical devices microfluidic channel gold Sensitivity optimal sensing length BSA bovine serum albumin optimization molecular biophysics adsorption Optical surface waves Surface plasmon microchannel flow CYTOP biological adlayer stripe thickness sensing length stripe thickness width physisorption proteins optical design techniques refractive index optimisation |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of lightwave technology |
authorswithroles_txt_mv |
Wei Ru Wong @@aut@@ Krupin, Oleksiy @@oth@@ Mahamd Adikan, Faisal Rafiq @@oth@@ Berini, Pierre @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129620882 |
dewey-sort |
3530 |
id |
OLC1956640436 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1956640436</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714141623.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JLT.2015.2431612</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1956640436</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1956640436</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1301-36ac96f1983a95f21e58d7a6441ae142dd363d2571b89fb8c546c618b98cac1b0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0124889820150000033001503234optimizationoflongrangesurfaceplasmonwaveguidesfor</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wei Ru Wong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of Long-Range Surface Plasmon Waveguides for Attenuation-Based Biosensing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The design and optimization of straight long-range surface plasmon waveguides to maximize attenuation surface sensitivity in biochemical sensing applications are discussed. The sensor consists of a Au stripe embedded in CYTOP, with a microfluidic channel etched into the top cladding to expose the surface of the Au stripe and define the sensing channel. The attenuation α s of the structure changes as a biological adlayer grows on the Au surface. The dimensions of the stripe (thickness, width), the sensing length and the refractive index of the sensing buffer were varied in order to understand their impact on sensor performance. The attenuation sensitivity ∂α s /∂a dominates over a wide range of waveguide designs, so we define a parameter K = (∂α s /∂a)/αs where maximizing |K| and selecting the optimal sensing length as L opt = 1/(2α s ) maximizes the overall sensitivity of the structure. Experimental results based on observing the physisorption of bovine serum albumin (BSA) on bare Au waveguides agree qualitatively and quantitatively with theory. Detection limits of ΔΓ min <; 0.1 pg·mm -2 are predicted for optimal designs, and a detection limit of ΔΓ min = 4.1pg/mm 2 (SNR = 1) is demonstrated experimentally for a sub-optimal structure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biosensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attenuation-based biosensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attenuation sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microsensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attenuation surface sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biochemical sensing applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biosensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">top cladding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">light attenuation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attenuation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface plasmons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long-range surface plasmon waveguide design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">micro-optomechanical devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microfluidic channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gold</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimal sensing length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BSA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bovine serum albumin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">molecular biophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adsorption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical surface waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface plasmon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microchannel flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CYTOP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biological adlayer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stripe thickness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sensing length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stripe thickness width</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">physisorption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proteins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical design techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">refractive index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimisation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krupin, Oleksiy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahamd Adikan, Faisal Rafiq</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berini, Pierre</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of lightwave technology</subfield><subfield code="d">New York, NY : IEEE, 1983</subfield><subfield code="g">33(2015), 15, Seite 3234-3242</subfield><subfield code="w">(DE-627)129620882</subfield><subfield code="w">(DE-600)246121-3</subfield><subfield code="w">(DE-576)015127214</subfield><subfield code="x">0733-8724</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:15</subfield><subfield code="g">pages:3234-3242</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JLT.2015.2431612</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7104097</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2015</subfield><subfield code="e">15</subfield><subfield code="h">3234-3242</subfield></datafield></record></collection>
|
author |
Wei Ru Wong |
spellingShingle |
Wei Ru Wong ddc 530 misc biosensors misc optical waveguides misc attenuation-based biosensing misc attenuation sensitivity misc Surface waves misc microsensors misc attenuation surface sensitivity misc biochemical sensing applications misc biosensor misc top cladding misc light attenuation misc attenuation misc surface plasmons misc long-range surface plasmon waveguide design misc micro-optomechanical devices misc microfluidic channel misc gold misc Sensitivity misc optimal sensing length misc BSA misc bovine serum albumin misc optimization misc molecular biophysics misc adsorption misc Optical surface waves misc Surface plasmon misc microchannel flow misc CYTOP misc biological adlayer misc stripe thickness misc sensing length misc stripe thickness width misc physisorption misc proteins misc optical design techniques misc refractive index misc optimisation Optimization of Long-Range Surface Plasmon Waveguides for Attenuation-Based Biosensing |
authorStr |
Wei Ru Wong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129620882 |
format |
Article |
dewey-ones |
530 - Physics 600 - Technology 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0733-8724 |
topic_title |
530 600 620 DNB Optimization of Long-Range Surface Plasmon Waveguides for Attenuation-Based Biosensing biosensors optical waveguides attenuation-based biosensing attenuation sensitivity Surface waves microsensors attenuation surface sensitivity biochemical sensing applications biosensor top cladding light attenuation attenuation surface plasmons long-range surface plasmon waveguide design micro-optomechanical devices microfluidic channel gold Sensitivity optimal sensing length BSA bovine serum albumin optimization molecular biophysics adsorption Optical surface waves Surface plasmon microchannel flow CYTOP biological adlayer stripe thickness sensing length stripe thickness width physisorption proteins optical design techniques refractive index optimisation |
topic |
ddc 530 misc biosensors misc optical waveguides misc attenuation-based biosensing misc attenuation sensitivity misc Surface waves misc microsensors misc attenuation surface sensitivity misc biochemical sensing applications misc biosensor misc top cladding misc light attenuation misc attenuation misc surface plasmons misc long-range surface plasmon waveguide design misc micro-optomechanical devices misc microfluidic channel misc gold misc Sensitivity misc optimal sensing length misc BSA misc bovine serum albumin misc optimization misc molecular biophysics misc adsorption misc Optical surface waves misc Surface plasmon misc microchannel flow misc CYTOP misc biological adlayer misc stripe thickness misc sensing length misc stripe thickness width misc physisorption misc proteins misc optical design techniques misc refractive index misc optimisation |
topic_unstemmed |
ddc 530 misc biosensors misc optical waveguides misc attenuation-based biosensing misc attenuation sensitivity misc Surface waves misc microsensors misc attenuation surface sensitivity misc biochemical sensing applications misc biosensor misc top cladding misc light attenuation misc attenuation misc surface plasmons misc long-range surface plasmon waveguide design misc micro-optomechanical devices misc microfluidic channel misc gold misc Sensitivity misc optimal sensing length misc BSA misc bovine serum albumin misc optimization misc molecular biophysics misc adsorption misc Optical surface waves misc Surface plasmon misc microchannel flow misc CYTOP misc biological adlayer misc stripe thickness misc sensing length misc stripe thickness width misc physisorption misc proteins misc optical design techniques misc refractive index misc optimisation |
topic_browse |
ddc 530 misc biosensors misc optical waveguides misc attenuation-based biosensing misc attenuation sensitivity misc Surface waves misc microsensors misc attenuation surface sensitivity misc biochemical sensing applications misc biosensor misc top cladding misc light attenuation misc attenuation misc surface plasmons misc long-range surface plasmon waveguide design misc micro-optomechanical devices misc microfluidic channel misc gold misc Sensitivity misc optimal sensing length misc BSA misc bovine serum albumin misc optimization misc molecular biophysics misc adsorption misc Optical surface waves misc Surface plasmon misc microchannel flow misc CYTOP misc biological adlayer misc stripe thickness misc sensing length misc stripe thickness width misc physisorption misc proteins misc optical design techniques misc refractive index misc optimisation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
o k ok a f r m afr afrm p b pb |
hierarchy_parent_title |
Journal of lightwave technology |
hierarchy_parent_id |
129620882 |
dewey-tens |
530 - Physics 600 - Technology 620 - Engineering |
hierarchy_top_title |
Journal of lightwave technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 |
title |
Optimization of Long-Range Surface Plasmon Waveguides for Attenuation-Based Biosensing |
ctrlnum |
(DE-627)OLC1956640436 (DE-599)GBVOLC1956640436 (PRQ)c1301-36ac96f1983a95f21e58d7a6441ae142dd363d2571b89fb8c546c618b98cac1b0 (KEY)0124889820150000033001503234optimizationoflongrangesurfaceplasmonwaveguidesfor |
title_full |
Optimization of Long-Range Surface Plasmon Waveguides for Attenuation-Based Biosensing |
author_sort |
Wei Ru Wong |
journal |
Journal of lightwave technology |
journalStr |
Journal of lightwave technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
3234 |
author_browse |
Wei Ru Wong |
container_volume |
33 |
class |
530 600 620 DNB |
format_se |
Aufsätze |
author-letter |
Wei Ru Wong |
doi_str_mv |
10.1109/JLT.2015.2431612 |
dewey-full |
530 600 620 |
title_sort |
optimization of long-range surface plasmon waveguides for attenuation-based biosensing |
title_auth |
Optimization of Long-Range Surface Plasmon Waveguides for Attenuation-Based Biosensing |
abstract |
The design and optimization of straight long-range surface plasmon waveguides to maximize attenuation surface sensitivity in biochemical sensing applications are discussed. The sensor consists of a Au stripe embedded in CYTOP, with a microfluidic channel etched into the top cladding to expose the surface of the Au stripe and define the sensing channel. The attenuation α s of the structure changes as a biological adlayer grows on the Au surface. The dimensions of the stripe (thickness, width), the sensing length and the refractive index of the sensing buffer were varied in order to understand their impact on sensor performance. The attenuation sensitivity ∂α s /∂a dominates over a wide range of waveguide designs, so we define a parameter K = (∂α s /∂a)/αs where maximizing |K| and selecting the optimal sensing length as L opt = 1/(2α s ) maximizes the overall sensitivity of the structure. Experimental results based on observing the physisorption of bovine serum albumin (BSA) on bare Au waveguides agree qualitatively and quantitatively with theory. Detection limits of ΔΓ min <; 0.1 pg·mm -2 are predicted for optimal designs, and a detection limit of ΔΓ min = 4.1pg/mm 2 (SNR = 1) is demonstrated experimentally for a sub-optimal structure. |
abstractGer |
The design and optimization of straight long-range surface plasmon waveguides to maximize attenuation surface sensitivity in biochemical sensing applications are discussed. The sensor consists of a Au stripe embedded in CYTOP, with a microfluidic channel etched into the top cladding to expose the surface of the Au stripe and define the sensing channel. The attenuation α s of the structure changes as a biological adlayer grows on the Au surface. The dimensions of the stripe (thickness, width), the sensing length and the refractive index of the sensing buffer were varied in order to understand their impact on sensor performance. The attenuation sensitivity ∂α s /∂a dominates over a wide range of waveguide designs, so we define a parameter K = (∂α s /∂a)/αs where maximizing |K| and selecting the optimal sensing length as L opt = 1/(2α s ) maximizes the overall sensitivity of the structure. Experimental results based on observing the physisorption of bovine serum albumin (BSA) on bare Au waveguides agree qualitatively and quantitatively with theory. Detection limits of ΔΓ min <; 0.1 pg·mm -2 are predicted for optimal designs, and a detection limit of ΔΓ min = 4.1pg/mm 2 (SNR = 1) is demonstrated experimentally for a sub-optimal structure. |
abstract_unstemmed |
The design and optimization of straight long-range surface plasmon waveguides to maximize attenuation surface sensitivity in biochemical sensing applications are discussed. The sensor consists of a Au stripe embedded in CYTOP, with a microfluidic channel etched into the top cladding to expose the surface of the Au stripe and define the sensing channel. The attenuation α s of the structure changes as a biological adlayer grows on the Au surface. The dimensions of the stripe (thickness, width), the sensing length and the refractive index of the sensing buffer were varied in order to understand their impact on sensor performance. The attenuation sensitivity ∂α s /∂a dominates over a wide range of waveguide designs, so we define a parameter K = (∂α s /∂a)/αs where maximizing |K| and selecting the optimal sensing length as L opt = 1/(2α s ) maximizes the overall sensitivity of the structure. Experimental results based on observing the physisorption of bovine serum albumin (BSA) on bare Au waveguides agree qualitatively and quantitatively with theory. Detection limits of ΔΓ min <; 0.1 pg·mm -2 are predicted for optimal designs, and a detection limit of ΔΓ min = 4.1pg/mm 2 (SNR = 1) is demonstrated experimentally for a sub-optimal structure. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 |
container_issue |
15 |
title_short |
Optimization of Long-Range Surface Plasmon Waveguides for Attenuation-Based Biosensing |
url |
http://dx.doi.org/10.1109/JLT.2015.2431612 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7104097 |
remote_bool |
false |
author2 |
Krupin, Oleksiy Mahamd Adikan, Faisal Rafiq Berini, Pierre |
author2Str |
Krupin, Oleksiy Mahamd Adikan, Faisal Rafiq Berini, Pierre |
ppnlink |
129620882 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1109/JLT.2015.2431612 |
up_date |
2024-07-03T21:23:11.627Z |
_version_ |
1803594541699170304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1956640436</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714141623.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JLT.2015.2431612</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1956640436</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1956640436</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1301-36ac96f1983a95f21e58d7a6441ae142dd363d2571b89fb8c546c618b98cac1b0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0124889820150000033001503234optimizationoflongrangesurfaceplasmonwaveguidesfor</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wei Ru Wong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of Long-Range Surface Plasmon Waveguides for Attenuation-Based Biosensing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The design and optimization of straight long-range surface plasmon waveguides to maximize attenuation surface sensitivity in biochemical sensing applications are discussed. The sensor consists of a Au stripe embedded in CYTOP, with a microfluidic channel etched into the top cladding to expose the surface of the Au stripe and define the sensing channel. The attenuation α s of the structure changes as a biological adlayer grows on the Au surface. The dimensions of the stripe (thickness, width), the sensing length and the refractive index of the sensing buffer were varied in order to understand their impact on sensor performance. The attenuation sensitivity ∂α s /∂a dominates over a wide range of waveguide designs, so we define a parameter K = (∂α s /∂a)/αs where maximizing |K| and selecting the optimal sensing length as L opt = 1/(2α s ) maximizes the overall sensitivity of the structure. Experimental results based on observing the physisorption of bovine serum albumin (BSA) on bare Au waveguides agree qualitatively and quantitatively with theory. Detection limits of ΔΓ min <; 0.1 pg·mm -2 are predicted for optimal designs, and a detection limit of ΔΓ min = 4.1pg/mm 2 (SNR = 1) is demonstrated experimentally for a sub-optimal structure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biosensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attenuation-based biosensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attenuation sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microsensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attenuation surface sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biochemical sensing applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biosensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">top cladding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">light attenuation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attenuation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface plasmons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long-range surface plasmon waveguide design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">micro-optomechanical devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microfluidic channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gold</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimal sensing length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BSA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bovine serum albumin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">molecular biophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adsorption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical surface waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface plasmon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microchannel flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CYTOP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biological adlayer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stripe thickness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sensing length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stripe thickness width</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">physisorption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proteins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical design techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">refractive index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimisation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krupin, Oleksiy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahamd Adikan, Faisal Rafiq</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berini, Pierre</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of lightwave technology</subfield><subfield code="d">New York, NY : IEEE, 1983</subfield><subfield code="g">33(2015), 15, Seite 3234-3242</subfield><subfield code="w">(DE-627)129620882</subfield><subfield code="w">(DE-600)246121-3</subfield><subfield code="w">(DE-576)015127214</subfield><subfield code="x">0733-8724</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:15</subfield><subfield code="g">pages:3234-3242</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JLT.2015.2431612</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7104097</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2015</subfield><subfield code="e">15</subfield><subfield code="h">3234-3242</subfield></datafield></record></collection>
|
score |
7.4023256 |