Parametric Analysis of Spectral Fano Lineshape for Plasmonic Waveguide-Coupled Dual Nanoresonator
Numerical investigations of metal-dielectric-metal waveguide-coupled dual nanoresonator is demonstrated. Phase dependent resonant behavior along with its complex plane analysis is investigated in wavelength regime. Detailed analysis of the influence of the structural parameters on the resonance curv...
Ausführliche Beschreibung
Autor*in: |
Paul, Sushmita [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
phase dependent resonant behavior metal-dielectric-metal waveguide differential phase sensitivity |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of lightwave technology - New York, NY : IEEE, 1983, 33(2015), 13, Seite 2824-2830 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2015 ; number:13 ; pages:2824-2830 |
Links: |
---|
DOI / URN: |
10.1109/JLT.2015.2414449 |
---|
Katalog-ID: |
OLC1956643028 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1956643028 | ||
003 | DE-627 | ||
005 | 20230714141629.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/JLT.2015.2414449 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1956643028 | ||
035 | |a (DE-599)GBVOLC1956643028 | ||
035 | |a (PRQ)c1306-fada9749561e1bb4af013f8379c4c15bb28d88074bdddbd7d639596e11c8c36d0 | ||
035 | |a (KEY)0124889820150000033001302824parametricanalysisofspectralfanolineshapeforplasmo | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 600 |a 620 |q DNB |
100 | 1 | |a Paul, Sushmita |e verfasserin |4 aut | |
245 | 1 | 0 | |a Parametric Analysis of Spectral Fano Lineshape for Plasmonic Waveguide-Coupled Dual Nanoresonator |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Numerical investigations of metal-dielectric-metal waveguide-coupled dual nanoresonator is demonstrated. Phase dependent resonant behavior along with its complex plane analysis is investigated in wavelength regime. Detailed analysis of the influence of the structural parameters on the resonance curve helps to determine the correct device parameters for different plasmonic applications. This waveguide-coupled plasmonic resonator can be utilized for chemical and biological sensing. In this context, figure of merit related to the asymmetric Fano line shape is redefined, incorporating both differential phase and quality (Q)-factor. Theoretical analysis of differential phase sensitivity in wavelength regime predicts the possibility of detection of refractive index change of the order of 10 -8 RIU. | ||
650 | 4 | |a biosensors | |
650 | 4 | |a quality factor | |
650 | 4 | |a refractive index change | |
650 | 4 | |a optical waveguides | |
650 | 4 | |a waveguide | |
650 | 4 | |a optical resonators | |
650 | 4 | |a asymmetric Fano line shape | |
650 | 4 | |a Reflectivity | |
650 | 4 | |a phase dependent resonant behavior | |
650 | 4 | |a chemical sensors | |
650 | 4 | |a differential phase | |
650 | 4 | |a nanophotonics | |
650 | 4 | |a Fano resonance | |
650 | 4 | |a Cavity resonators | |
650 | 4 | |a plasmonics | |
650 | 4 | |a metal-dielectric-metal waveguide | |
650 | 4 | |a differential phase sensitivity | |
650 | 4 | |a plasmonic waveguide-coupled dual nanoresonator | |
650 | 4 | |a nanoresonators | |
650 | 4 | |a spectral Fano lineshape | |
650 | 4 | |a Q-factor | |
650 | 4 | |a Interference | |
650 | 4 | |a resonance curve | |
650 | 4 | |a Dielectrics | |
650 | 4 | |a biological sensing | |
650 | 4 | |a parametric analysis | |
650 | 4 | |a Plasmons | |
650 | 4 | |a chemical sensing | |
650 | 4 | |a nanosensors | |
650 | 4 | |a complex plane analysis | |
650 | 4 | |a refractive index | |
700 | 1 | |a Bera, Mahua |4 oth | |
700 | 1 | |a Ray, Mina |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of lightwave technology |d New York, NY : IEEE, 1983 |g 33(2015), 13, Seite 2824-2830 |w (DE-627)129620882 |w (DE-600)246121-3 |w (DE-576)015127214 |x 0733-8724 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:2015 |g number:13 |g pages:2824-2830 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/JLT.2015.2414449 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7064752 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_185 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 33 |j 2015 |e 13 |h 2824-2830 |
author_variant |
s p sp |
---|---|
matchkey_str |
article:07338724:2015----::aaercnlssfpcrlaoiehpfrlsoiwvgie |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1109/JLT.2015.2414449 doi PQ20160617 (DE-627)OLC1956643028 (DE-599)GBVOLC1956643028 (PRQ)c1306-fada9749561e1bb4af013f8379c4c15bb28d88074bdddbd7d639596e11c8c36d0 (KEY)0124889820150000033001302824parametricanalysisofspectralfanolineshapeforplasmo DE-627 ger DE-627 rakwb eng 530 600 620 DNB Paul, Sushmita verfasserin aut Parametric Analysis of Spectral Fano Lineshape for Plasmonic Waveguide-Coupled Dual Nanoresonator 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Numerical investigations of metal-dielectric-metal waveguide-coupled dual nanoresonator is demonstrated. Phase dependent resonant behavior along with its complex plane analysis is investigated in wavelength regime. Detailed analysis of the influence of the structural parameters on the resonance curve helps to determine the correct device parameters for different plasmonic applications. This waveguide-coupled plasmonic resonator can be utilized for chemical and biological sensing. In this context, figure of merit related to the asymmetric Fano line shape is redefined, incorporating both differential phase and quality (Q)-factor. Theoretical analysis of differential phase sensitivity in wavelength regime predicts the possibility of detection of refractive index change of the order of 10 -8 RIU. biosensors quality factor refractive index change optical waveguides waveguide optical resonators asymmetric Fano line shape Reflectivity phase dependent resonant behavior chemical sensors differential phase nanophotonics Fano resonance Cavity resonators plasmonics metal-dielectric-metal waveguide differential phase sensitivity plasmonic waveguide-coupled dual nanoresonator nanoresonators spectral Fano lineshape Q-factor Interference resonance curve Dielectrics biological sensing parametric analysis Plasmons chemical sensing nanosensors complex plane analysis refractive index Bera, Mahua oth Ray, Mina oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 33(2015), 13, Seite 2824-2830 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:33 year:2015 number:13 pages:2824-2830 http://dx.doi.org/10.1109/JLT.2015.2414449 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7064752 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 AR 33 2015 13 2824-2830 |
spelling |
10.1109/JLT.2015.2414449 doi PQ20160617 (DE-627)OLC1956643028 (DE-599)GBVOLC1956643028 (PRQ)c1306-fada9749561e1bb4af013f8379c4c15bb28d88074bdddbd7d639596e11c8c36d0 (KEY)0124889820150000033001302824parametricanalysisofspectralfanolineshapeforplasmo DE-627 ger DE-627 rakwb eng 530 600 620 DNB Paul, Sushmita verfasserin aut Parametric Analysis of Spectral Fano Lineshape for Plasmonic Waveguide-Coupled Dual Nanoresonator 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Numerical investigations of metal-dielectric-metal waveguide-coupled dual nanoresonator is demonstrated. Phase dependent resonant behavior along with its complex plane analysis is investigated in wavelength regime. Detailed analysis of the influence of the structural parameters on the resonance curve helps to determine the correct device parameters for different plasmonic applications. This waveguide-coupled plasmonic resonator can be utilized for chemical and biological sensing. In this context, figure of merit related to the asymmetric Fano line shape is redefined, incorporating both differential phase and quality (Q)-factor. Theoretical analysis of differential phase sensitivity in wavelength regime predicts the possibility of detection of refractive index change of the order of 10 -8 RIU. biosensors quality factor refractive index change optical waveguides waveguide optical resonators asymmetric Fano line shape Reflectivity phase dependent resonant behavior chemical sensors differential phase nanophotonics Fano resonance Cavity resonators plasmonics metal-dielectric-metal waveguide differential phase sensitivity plasmonic waveguide-coupled dual nanoresonator nanoresonators spectral Fano lineshape Q-factor Interference resonance curve Dielectrics biological sensing parametric analysis Plasmons chemical sensing nanosensors complex plane analysis refractive index Bera, Mahua oth Ray, Mina oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 33(2015), 13, Seite 2824-2830 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:33 year:2015 number:13 pages:2824-2830 http://dx.doi.org/10.1109/JLT.2015.2414449 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7064752 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 AR 33 2015 13 2824-2830 |
allfields_unstemmed |
10.1109/JLT.2015.2414449 doi PQ20160617 (DE-627)OLC1956643028 (DE-599)GBVOLC1956643028 (PRQ)c1306-fada9749561e1bb4af013f8379c4c15bb28d88074bdddbd7d639596e11c8c36d0 (KEY)0124889820150000033001302824parametricanalysisofspectralfanolineshapeforplasmo DE-627 ger DE-627 rakwb eng 530 600 620 DNB Paul, Sushmita verfasserin aut Parametric Analysis of Spectral Fano Lineshape for Plasmonic Waveguide-Coupled Dual Nanoresonator 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Numerical investigations of metal-dielectric-metal waveguide-coupled dual nanoresonator is demonstrated. Phase dependent resonant behavior along with its complex plane analysis is investigated in wavelength regime. Detailed analysis of the influence of the structural parameters on the resonance curve helps to determine the correct device parameters for different plasmonic applications. This waveguide-coupled plasmonic resonator can be utilized for chemical and biological sensing. In this context, figure of merit related to the asymmetric Fano line shape is redefined, incorporating both differential phase and quality (Q)-factor. Theoretical analysis of differential phase sensitivity in wavelength regime predicts the possibility of detection of refractive index change of the order of 10 -8 RIU. biosensors quality factor refractive index change optical waveguides waveguide optical resonators asymmetric Fano line shape Reflectivity phase dependent resonant behavior chemical sensors differential phase nanophotonics Fano resonance Cavity resonators plasmonics metal-dielectric-metal waveguide differential phase sensitivity plasmonic waveguide-coupled dual nanoresonator nanoresonators spectral Fano lineshape Q-factor Interference resonance curve Dielectrics biological sensing parametric analysis Plasmons chemical sensing nanosensors complex plane analysis refractive index Bera, Mahua oth Ray, Mina oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 33(2015), 13, Seite 2824-2830 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:33 year:2015 number:13 pages:2824-2830 http://dx.doi.org/10.1109/JLT.2015.2414449 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7064752 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 AR 33 2015 13 2824-2830 |
allfieldsGer |
10.1109/JLT.2015.2414449 doi PQ20160617 (DE-627)OLC1956643028 (DE-599)GBVOLC1956643028 (PRQ)c1306-fada9749561e1bb4af013f8379c4c15bb28d88074bdddbd7d639596e11c8c36d0 (KEY)0124889820150000033001302824parametricanalysisofspectralfanolineshapeforplasmo DE-627 ger DE-627 rakwb eng 530 600 620 DNB Paul, Sushmita verfasserin aut Parametric Analysis of Spectral Fano Lineshape for Plasmonic Waveguide-Coupled Dual Nanoresonator 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Numerical investigations of metal-dielectric-metal waveguide-coupled dual nanoresonator is demonstrated. Phase dependent resonant behavior along with its complex plane analysis is investigated in wavelength regime. Detailed analysis of the influence of the structural parameters on the resonance curve helps to determine the correct device parameters for different plasmonic applications. This waveguide-coupled plasmonic resonator can be utilized for chemical and biological sensing. In this context, figure of merit related to the asymmetric Fano line shape is redefined, incorporating both differential phase and quality (Q)-factor. Theoretical analysis of differential phase sensitivity in wavelength regime predicts the possibility of detection of refractive index change of the order of 10 -8 RIU. biosensors quality factor refractive index change optical waveguides waveguide optical resonators asymmetric Fano line shape Reflectivity phase dependent resonant behavior chemical sensors differential phase nanophotonics Fano resonance Cavity resonators plasmonics metal-dielectric-metal waveguide differential phase sensitivity plasmonic waveguide-coupled dual nanoresonator nanoresonators spectral Fano lineshape Q-factor Interference resonance curve Dielectrics biological sensing parametric analysis Plasmons chemical sensing nanosensors complex plane analysis refractive index Bera, Mahua oth Ray, Mina oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 33(2015), 13, Seite 2824-2830 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:33 year:2015 number:13 pages:2824-2830 http://dx.doi.org/10.1109/JLT.2015.2414449 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7064752 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 AR 33 2015 13 2824-2830 |
allfieldsSound |
10.1109/JLT.2015.2414449 doi PQ20160617 (DE-627)OLC1956643028 (DE-599)GBVOLC1956643028 (PRQ)c1306-fada9749561e1bb4af013f8379c4c15bb28d88074bdddbd7d639596e11c8c36d0 (KEY)0124889820150000033001302824parametricanalysisofspectralfanolineshapeforplasmo DE-627 ger DE-627 rakwb eng 530 600 620 DNB Paul, Sushmita verfasserin aut Parametric Analysis of Spectral Fano Lineshape for Plasmonic Waveguide-Coupled Dual Nanoresonator 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Numerical investigations of metal-dielectric-metal waveguide-coupled dual nanoresonator is demonstrated. Phase dependent resonant behavior along with its complex plane analysis is investigated in wavelength regime. Detailed analysis of the influence of the structural parameters on the resonance curve helps to determine the correct device parameters for different plasmonic applications. This waveguide-coupled plasmonic resonator can be utilized for chemical and biological sensing. In this context, figure of merit related to the asymmetric Fano line shape is redefined, incorporating both differential phase and quality (Q)-factor. Theoretical analysis of differential phase sensitivity in wavelength regime predicts the possibility of detection of refractive index change of the order of 10 -8 RIU. biosensors quality factor refractive index change optical waveguides waveguide optical resonators asymmetric Fano line shape Reflectivity phase dependent resonant behavior chemical sensors differential phase nanophotonics Fano resonance Cavity resonators plasmonics metal-dielectric-metal waveguide differential phase sensitivity plasmonic waveguide-coupled dual nanoresonator nanoresonators spectral Fano lineshape Q-factor Interference resonance curve Dielectrics biological sensing parametric analysis Plasmons chemical sensing nanosensors complex plane analysis refractive index Bera, Mahua oth Ray, Mina oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 33(2015), 13, Seite 2824-2830 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:33 year:2015 number:13 pages:2824-2830 http://dx.doi.org/10.1109/JLT.2015.2414449 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7064752 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 AR 33 2015 13 2824-2830 |
language |
English |
source |
Enthalten in Journal of lightwave technology 33(2015), 13, Seite 2824-2830 volume:33 year:2015 number:13 pages:2824-2830 |
sourceStr |
Enthalten in Journal of lightwave technology 33(2015), 13, Seite 2824-2830 volume:33 year:2015 number:13 pages:2824-2830 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
biosensors quality factor refractive index change optical waveguides waveguide optical resonators asymmetric Fano line shape Reflectivity phase dependent resonant behavior chemical sensors differential phase nanophotonics Fano resonance Cavity resonators plasmonics metal-dielectric-metal waveguide differential phase sensitivity plasmonic waveguide-coupled dual nanoresonator nanoresonators spectral Fano lineshape Q-factor Interference resonance curve Dielectrics biological sensing parametric analysis Plasmons chemical sensing nanosensors complex plane analysis refractive index |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of lightwave technology |
authorswithroles_txt_mv |
Paul, Sushmita @@aut@@ Bera, Mahua @@oth@@ Ray, Mina @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129620882 |
dewey-sort |
3530 |
id |
OLC1956643028 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1956643028</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714141629.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JLT.2015.2414449</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1956643028</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1956643028</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1306-fada9749561e1bb4af013f8379c4c15bb28d88074bdddbd7d639596e11c8c36d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0124889820150000033001302824parametricanalysisofspectralfanolineshapeforplasmo</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Paul, Sushmita</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parametric Analysis of Spectral Fano Lineshape for Plasmonic Waveguide-Coupled Dual Nanoresonator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Numerical investigations of metal-dielectric-metal waveguide-coupled dual nanoresonator is demonstrated. Phase dependent resonant behavior along with its complex plane analysis is investigated in wavelength regime. Detailed analysis of the influence of the structural parameters on the resonance curve helps to determine the correct device parameters for different plasmonic applications. This waveguide-coupled plasmonic resonator can be utilized for chemical and biological sensing. In this context, figure of merit related to the asymmetric Fano line shape is redefined, incorporating both differential phase and quality (Q)-factor. Theoretical analysis of differential phase sensitivity in wavelength regime predicts the possibility of detection of refractive index change of the order of 10 -8 RIU.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biosensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quality factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">refractive index change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">waveguide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical resonators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymmetric Fano line shape</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reflectivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase dependent resonant behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">differential phase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanophotonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fano resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cavity resonators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasmonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metal-dielectric-metal waveguide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">differential phase sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasmonic waveguide-coupled dual nanoresonator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanoresonators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectral Fano lineshape</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Q-factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resonance curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dielectrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biological sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parametric analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanosensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">complex plane analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">refractive index</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bera, Mahua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ray, Mina</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of lightwave technology</subfield><subfield code="d">New York, NY : IEEE, 1983</subfield><subfield code="g">33(2015), 13, Seite 2824-2830</subfield><subfield code="w">(DE-627)129620882</subfield><subfield code="w">(DE-600)246121-3</subfield><subfield code="w">(DE-576)015127214</subfield><subfield code="x">0733-8724</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:13</subfield><subfield code="g">pages:2824-2830</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JLT.2015.2414449</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7064752</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2015</subfield><subfield code="e">13</subfield><subfield code="h">2824-2830</subfield></datafield></record></collection>
|
author |
Paul, Sushmita |
spellingShingle |
Paul, Sushmita ddc 530 misc biosensors misc quality factor misc refractive index change misc optical waveguides misc waveguide misc optical resonators misc asymmetric Fano line shape misc Reflectivity misc phase dependent resonant behavior misc chemical sensors misc differential phase misc nanophotonics misc Fano resonance misc Cavity resonators misc plasmonics misc metal-dielectric-metal waveguide misc differential phase sensitivity misc plasmonic waveguide-coupled dual nanoresonator misc nanoresonators misc spectral Fano lineshape misc Q-factor misc Interference misc resonance curve misc Dielectrics misc biological sensing misc parametric analysis misc Plasmons misc chemical sensing misc nanosensors misc complex plane analysis misc refractive index Parametric Analysis of Spectral Fano Lineshape for Plasmonic Waveguide-Coupled Dual Nanoresonator |
authorStr |
Paul, Sushmita |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129620882 |
format |
Article |
dewey-ones |
530 - Physics 600 - Technology 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0733-8724 |
topic_title |
530 600 620 DNB Parametric Analysis of Spectral Fano Lineshape for Plasmonic Waveguide-Coupled Dual Nanoresonator biosensors quality factor refractive index change optical waveguides waveguide optical resonators asymmetric Fano line shape Reflectivity phase dependent resonant behavior chemical sensors differential phase nanophotonics Fano resonance Cavity resonators plasmonics metal-dielectric-metal waveguide differential phase sensitivity plasmonic waveguide-coupled dual nanoresonator nanoresonators spectral Fano lineshape Q-factor Interference resonance curve Dielectrics biological sensing parametric analysis Plasmons chemical sensing nanosensors complex plane analysis refractive index |
topic |
ddc 530 misc biosensors misc quality factor misc refractive index change misc optical waveguides misc waveguide misc optical resonators misc asymmetric Fano line shape misc Reflectivity misc phase dependent resonant behavior misc chemical sensors misc differential phase misc nanophotonics misc Fano resonance misc Cavity resonators misc plasmonics misc metal-dielectric-metal waveguide misc differential phase sensitivity misc plasmonic waveguide-coupled dual nanoresonator misc nanoresonators misc spectral Fano lineshape misc Q-factor misc Interference misc resonance curve misc Dielectrics misc biological sensing misc parametric analysis misc Plasmons misc chemical sensing misc nanosensors misc complex plane analysis misc refractive index |
topic_unstemmed |
ddc 530 misc biosensors misc quality factor misc refractive index change misc optical waveguides misc waveguide misc optical resonators misc asymmetric Fano line shape misc Reflectivity misc phase dependent resonant behavior misc chemical sensors misc differential phase misc nanophotonics misc Fano resonance misc Cavity resonators misc plasmonics misc metal-dielectric-metal waveguide misc differential phase sensitivity misc plasmonic waveguide-coupled dual nanoresonator misc nanoresonators misc spectral Fano lineshape misc Q-factor misc Interference misc resonance curve misc Dielectrics misc biological sensing misc parametric analysis misc Plasmons misc chemical sensing misc nanosensors misc complex plane analysis misc refractive index |
topic_browse |
ddc 530 misc biosensors misc quality factor misc refractive index change misc optical waveguides misc waveguide misc optical resonators misc asymmetric Fano line shape misc Reflectivity misc phase dependent resonant behavior misc chemical sensors misc differential phase misc nanophotonics misc Fano resonance misc Cavity resonators misc plasmonics misc metal-dielectric-metal waveguide misc differential phase sensitivity misc plasmonic waveguide-coupled dual nanoresonator misc nanoresonators misc spectral Fano lineshape misc Q-factor misc Interference misc resonance curve misc Dielectrics misc biological sensing misc parametric analysis misc Plasmons misc chemical sensing misc nanosensors misc complex plane analysis misc refractive index |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m b mb m r mr |
hierarchy_parent_title |
Journal of lightwave technology |
hierarchy_parent_id |
129620882 |
dewey-tens |
530 - Physics 600 - Technology 620 - Engineering |
hierarchy_top_title |
Journal of lightwave technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 |
title |
Parametric Analysis of Spectral Fano Lineshape for Plasmonic Waveguide-Coupled Dual Nanoresonator |
ctrlnum |
(DE-627)OLC1956643028 (DE-599)GBVOLC1956643028 (PRQ)c1306-fada9749561e1bb4af013f8379c4c15bb28d88074bdddbd7d639596e11c8c36d0 (KEY)0124889820150000033001302824parametricanalysisofspectralfanolineshapeforplasmo |
title_full |
Parametric Analysis of Spectral Fano Lineshape for Plasmonic Waveguide-Coupled Dual Nanoresonator |
author_sort |
Paul, Sushmita |
journal |
Journal of lightwave technology |
journalStr |
Journal of lightwave technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
2824 |
author_browse |
Paul, Sushmita |
container_volume |
33 |
class |
530 600 620 DNB |
format_se |
Aufsätze |
author-letter |
Paul, Sushmita |
doi_str_mv |
10.1109/JLT.2015.2414449 |
dewey-full |
530 600 620 |
title_sort |
parametric analysis of spectral fano lineshape for plasmonic waveguide-coupled dual nanoresonator |
title_auth |
Parametric Analysis of Spectral Fano Lineshape for Plasmonic Waveguide-Coupled Dual Nanoresonator |
abstract |
Numerical investigations of metal-dielectric-metal waveguide-coupled dual nanoresonator is demonstrated. Phase dependent resonant behavior along with its complex plane analysis is investigated in wavelength regime. Detailed analysis of the influence of the structural parameters on the resonance curve helps to determine the correct device parameters for different plasmonic applications. This waveguide-coupled plasmonic resonator can be utilized for chemical and biological sensing. In this context, figure of merit related to the asymmetric Fano line shape is redefined, incorporating both differential phase and quality (Q)-factor. Theoretical analysis of differential phase sensitivity in wavelength regime predicts the possibility of detection of refractive index change of the order of 10 -8 RIU. |
abstractGer |
Numerical investigations of metal-dielectric-metal waveguide-coupled dual nanoresonator is demonstrated. Phase dependent resonant behavior along with its complex plane analysis is investigated in wavelength regime. Detailed analysis of the influence of the structural parameters on the resonance curve helps to determine the correct device parameters for different plasmonic applications. This waveguide-coupled plasmonic resonator can be utilized for chemical and biological sensing. In this context, figure of merit related to the asymmetric Fano line shape is redefined, incorporating both differential phase and quality (Q)-factor. Theoretical analysis of differential phase sensitivity in wavelength regime predicts the possibility of detection of refractive index change of the order of 10 -8 RIU. |
abstract_unstemmed |
Numerical investigations of metal-dielectric-metal waveguide-coupled dual nanoresonator is demonstrated. Phase dependent resonant behavior along with its complex plane analysis is investigated in wavelength regime. Detailed analysis of the influence of the structural parameters on the resonance curve helps to determine the correct device parameters for different plasmonic applications. This waveguide-coupled plasmonic resonator can be utilized for chemical and biological sensing. In this context, figure of merit related to the asymmetric Fano line shape is redefined, incorporating both differential phase and quality (Q)-factor. Theoretical analysis of differential phase sensitivity in wavelength regime predicts the possibility of detection of refractive index change of the order of 10 -8 RIU. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 |
container_issue |
13 |
title_short |
Parametric Analysis of Spectral Fano Lineshape for Plasmonic Waveguide-Coupled Dual Nanoresonator |
url |
http://dx.doi.org/10.1109/JLT.2015.2414449 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7064752 |
remote_bool |
false |
author2 |
Bera, Mahua Ray, Mina |
author2Str |
Bera, Mahua Ray, Mina |
ppnlink |
129620882 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/JLT.2015.2414449 |
up_date |
2024-07-03T21:23:57.373Z |
_version_ |
1803594589668376576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1956643028</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714141629.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JLT.2015.2414449</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1956643028</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1956643028</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1306-fada9749561e1bb4af013f8379c4c15bb28d88074bdddbd7d639596e11c8c36d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0124889820150000033001302824parametricanalysisofspectralfanolineshapeforplasmo</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Paul, Sushmita</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parametric Analysis of Spectral Fano Lineshape for Plasmonic Waveguide-Coupled Dual Nanoresonator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Numerical investigations of metal-dielectric-metal waveguide-coupled dual nanoresonator is demonstrated. Phase dependent resonant behavior along with its complex plane analysis is investigated in wavelength regime. Detailed analysis of the influence of the structural parameters on the resonance curve helps to determine the correct device parameters for different plasmonic applications. This waveguide-coupled plasmonic resonator can be utilized for chemical and biological sensing. In this context, figure of merit related to the asymmetric Fano line shape is redefined, incorporating both differential phase and quality (Q)-factor. Theoretical analysis of differential phase sensitivity in wavelength regime predicts the possibility of detection of refractive index change of the order of 10 -8 RIU.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biosensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quality factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">refractive index change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">waveguide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical resonators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymmetric Fano line shape</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reflectivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase dependent resonant behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">differential phase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanophotonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fano resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cavity resonators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasmonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metal-dielectric-metal waveguide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">differential phase sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasmonic waveguide-coupled dual nanoresonator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanoresonators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectral Fano lineshape</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Q-factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resonance curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dielectrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biological sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parametric analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanosensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">complex plane analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">refractive index</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bera, Mahua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ray, Mina</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of lightwave technology</subfield><subfield code="d">New York, NY : IEEE, 1983</subfield><subfield code="g">33(2015), 13, Seite 2824-2830</subfield><subfield code="w">(DE-627)129620882</subfield><subfield code="w">(DE-600)246121-3</subfield><subfield code="w">(DE-576)015127214</subfield><subfield code="x">0733-8724</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:13</subfield><subfield code="g">pages:2824-2830</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JLT.2015.2414449</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7064752</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2015</subfield><subfield code="e">13</subfield><subfield code="h">2824-2830</subfield></datafield></record></collection>
|
score |
7.399988 |