Simultaneous Analysis of Far Infrared Signals From Periorbital and Nostril Areas for Nonintrusive Lie Detection: Performance From Real Case Study
This paper highlights our simultaneous analysis of two-dimensional far-infrared data around the two periorbital and the nostril areas for nonintrusively evaluating the deception level of the subject. In our proposed approach, measured changes in maximum skin temperatures around two periorbital regio...
Ausführliche Beschreibung
Autor*in: |
Sumriddetchkajorn, Sarun [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
automatic baseline classification two-dimensional far-infrared data |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of lightwave technology - New York, NY : IEEE, 1983, 33(2015), 16, Seite 3406-3412 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2015 ; number:16 ; pages:3406-3412 |
Links: |
---|
DOI / URN: |
10.1109/JLT.2014.2371466 |
---|
Katalog-ID: |
OLC195664332X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC195664332X | ||
003 | DE-627 | ||
005 | 20230714141630.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/JLT.2014.2371466 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC195664332X | ||
035 | |a (DE-599)GBVOLC195664332X | ||
035 | |a (PRQ)c945-e7a46905c7cb2018e2f2f3f3c738c09157b07156696e25cf168b83a2814510d80 | ||
035 | |a (KEY)0124889820150000033001603406simultaneousanalysisoffarinfraredsignalsfromperior | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 600 |a 620 |q DNB |
100 | 1 | |a Sumriddetchkajorn, Sarun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Simultaneous Analysis of Far Infrared Signals From Periorbital and Nostril Areas for Nonintrusive Lie Detection: Performance From Real Case Study |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This paper highlights our simultaneous analysis of two-dimensional far-infrared data around the two periorbital and the nostril areas for nonintrusively evaluating the deception level of the subject. In our proposed approach, measured changes in maximum skin temperatures around two periorbital regions are converted to the change in the relative blood flow velocity. A signature of the respiration pattern is also simultaneously determined in terms of the ratio of the measured maximum and minimum temperatures in the nostril area. Our simultaneous analysis of these two far-infrared signatures is similar to the standard polygraph test in that more than one of our involuntary reflexes is examined at once. Our two-year field test study covers 18 examination tests on subjects who are suspected in involving in real crime cases in Thailand. Based on our automatic baseline classification and scoring criteria, we obtain a promising classification rate of 88.9%, which is about 10% improvement compared to our analysis using far-infrared data from either the periorbital or nostril area alone. | ||
650 | 4 | |a classification rate | |
650 | 4 | |a scoring criteria | |
650 | 4 | |a Non-intrusive analysis | |
650 | 4 | |a automatic baseline classification | |
650 | 4 | |a Thailand | |
650 | 4 | |a Thermal imaging cameras | |
650 | 4 | |a infrared imaging | |
650 | 4 | |a skin | |
650 | 4 | |a respiration pattern | |
650 | 4 | |a relative blood flow velocity | |
650 | 4 | |a nonintrusive lie detection | |
650 | 4 | |a Polygraph test | |
650 | 4 | |a Blood flow | |
650 | 4 | |a far infrared signals | |
650 | 4 | |a psychology | |
650 | 4 | |a standard polygraph test | |
650 | 4 | |a two-dimensional far-infrared data | |
650 | 4 | |a image classification | |
650 | 4 | |a haemodynamics | |
650 | 4 | |a Non-invasive physiological monitoring | |
650 | 4 | |a Temperature measurement | |
650 | 4 | |a periorbital areas | |
650 | 4 | |a time 2 year | |
650 | 4 | |a maximum temperatures | |
650 | 4 | |a deception level | |
650 | 4 | |a Lie detection | |
650 | 4 | |a real case study | |
650 | 4 | |a biomedical optical imaging | |
650 | 4 | |a simultaneous analysis | |
650 | 4 | |a medical image processing | |
650 | 4 | |a maximum skin temperatures | |
650 | 4 | |a far-infrared signatures | |
650 | 4 | |a involuntary reflexes | |
650 | 4 | |a nostril areas | |
650 | 4 | |a Infrared technology | |
650 | 4 | |a Cameras | |
650 | 4 | |a pneumodynamics | |
650 | 4 | |a minimum temperatures | |
650 | 4 | |a Standards | |
650 | 4 | |a two-year field test study | |
650 | 4 | |a Face | |
650 | 4 | |a biothermics | |
700 | 1 | |a Somboonkaew, Armote |4 oth | |
700 | 1 | |a Sodsong, Tawee |4 oth | |
700 | 1 | |a Promduang, Itthipol |4 oth | |
700 | 1 | |a Sumriddetchkajorn, Niti |4 oth | |
700 | 1 | |a Prada-in, Thawatchai |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of lightwave technology |d New York, NY : IEEE, 1983 |g 33(2015), 16, Seite 3406-3412 |w (DE-627)129620882 |w (DE-600)246121-3 |w (DE-576)015127214 |x 0733-8724 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:2015 |g number:16 |g pages:3406-3412 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/JLT.2014.2371466 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6967765 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_185 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 33 |j 2015 |e 16 |h 3406-3412 |
author_variant |
s s ss |
---|---|
matchkey_str |
article:07338724:2015----::iutnosnlssfaifaesgasrmeiriaadotiaesonnnrsvleee |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1109/JLT.2014.2371466 doi PQ20160617 (DE-627)OLC195664332X (DE-599)GBVOLC195664332X (PRQ)c945-e7a46905c7cb2018e2f2f3f3c738c09157b07156696e25cf168b83a2814510d80 (KEY)0124889820150000033001603406simultaneousanalysisoffarinfraredsignalsfromperior DE-627 ger DE-627 rakwb eng 530 600 620 DNB Sumriddetchkajorn, Sarun verfasserin aut Simultaneous Analysis of Far Infrared Signals From Periorbital and Nostril Areas for Nonintrusive Lie Detection: Performance From Real Case Study 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper highlights our simultaneous analysis of two-dimensional far-infrared data around the two periorbital and the nostril areas for nonintrusively evaluating the deception level of the subject. In our proposed approach, measured changes in maximum skin temperatures around two periorbital regions are converted to the change in the relative blood flow velocity. A signature of the respiration pattern is also simultaneously determined in terms of the ratio of the measured maximum and minimum temperatures in the nostril area. Our simultaneous analysis of these two far-infrared signatures is similar to the standard polygraph test in that more than one of our involuntary reflexes is examined at once. Our two-year field test study covers 18 examination tests on subjects who are suspected in involving in real crime cases in Thailand. Based on our automatic baseline classification and scoring criteria, we obtain a promising classification rate of 88.9%, which is about 10% improvement compared to our analysis using far-infrared data from either the periorbital or nostril area alone. classification rate scoring criteria Non-intrusive analysis automatic baseline classification Thailand Thermal imaging cameras infrared imaging skin respiration pattern relative blood flow velocity nonintrusive lie detection Polygraph test Blood flow far infrared signals psychology standard polygraph test two-dimensional far-infrared data image classification haemodynamics Non-invasive physiological monitoring Temperature measurement periorbital areas time 2 year maximum temperatures deception level Lie detection real case study biomedical optical imaging simultaneous analysis medical image processing maximum skin temperatures far-infrared signatures involuntary reflexes nostril areas Infrared technology Cameras pneumodynamics minimum temperatures Standards two-year field test study Face biothermics Somboonkaew, Armote oth Sodsong, Tawee oth Promduang, Itthipol oth Sumriddetchkajorn, Niti oth Prada-in, Thawatchai oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 33(2015), 16, Seite 3406-3412 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:33 year:2015 number:16 pages:3406-3412 http://dx.doi.org/10.1109/JLT.2014.2371466 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6967765 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 AR 33 2015 16 3406-3412 |
spelling |
10.1109/JLT.2014.2371466 doi PQ20160617 (DE-627)OLC195664332X (DE-599)GBVOLC195664332X (PRQ)c945-e7a46905c7cb2018e2f2f3f3c738c09157b07156696e25cf168b83a2814510d80 (KEY)0124889820150000033001603406simultaneousanalysisoffarinfraredsignalsfromperior DE-627 ger DE-627 rakwb eng 530 600 620 DNB Sumriddetchkajorn, Sarun verfasserin aut Simultaneous Analysis of Far Infrared Signals From Periorbital and Nostril Areas for Nonintrusive Lie Detection: Performance From Real Case Study 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper highlights our simultaneous analysis of two-dimensional far-infrared data around the two periorbital and the nostril areas for nonintrusively evaluating the deception level of the subject. In our proposed approach, measured changes in maximum skin temperatures around two periorbital regions are converted to the change in the relative blood flow velocity. A signature of the respiration pattern is also simultaneously determined in terms of the ratio of the measured maximum and minimum temperatures in the nostril area. Our simultaneous analysis of these two far-infrared signatures is similar to the standard polygraph test in that more than one of our involuntary reflexes is examined at once. Our two-year field test study covers 18 examination tests on subjects who are suspected in involving in real crime cases in Thailand. Based on our automatic baseline classification and scoring criteria, we obtain a promising classification rate of 88.9%, which is about 10% improvement compared to our analysis using far-infrared data from either the periorbital or nostril area alone. classification rate scoring criteria Non-intrusive analysis automatic baseline classification Thailand Thermal imaging cameras infrared imaging skin respiration pattern relative blood flow velocity nonintrusive lie detection Polygraph test Blood flow far infrared signals psychology standard polygraph test two-dimensional far-infrared data image classification haemodynamics Non-invasive physiological monitoring Temperature measurement periorbital areas time 2 year maximum temperatures deception level Lie detection real case study biomedical optical imaging simultaneous analysis medical image processing maximum skin temperatures far-infrared signatures involuntary reflexes nostril areas Infrared technology Cameras pneumodynamics minimum temperatures Standards two-year field test study Face biothermics Somboonkaew, Armote oth Sodsong, Tawee oth Promduang, Itthipol oth Sumriddetchkajorn, Niti oth Prada-in, Thawatchai oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 33(2015), 16, Seite 3406-3412 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:33 year:2015 number:16 pages:3406-3412 http://dx.doi.org/10.1109/JLT.2014.2371466 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6967765 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 AR 33 2015 16 3406-3412 |
allfields_unstemmed |
10.1109/JLT.2014.2371466 doi PQ20160617 (DE-627)OLC195664332X (DE-599)GBVOLC195664332X (PRQ)c945-e7a46905c7cb2018e2f2f3f3c738c09157b07156696e25cf168b83a2814510d80 (KEY)0124889820150000033001603406simultaneousanalysisoffarinfraredsignalsfromperior DE-627 ger DE-627 rakwb eng 530 600 620 DNB Sumriddetchkajorn, Sarun verfasserin aut Simultaneous Analysis of Far Infrared Signals From Periorbital and Nostril Areas for Nonintrusive Lie Detection: Performance From Real Case Study 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper highlights our simultaneous analysis of two-dimensional far-infrared data around the two periorbital and the nostril areas for nonintrusively evaluating the deception level of the subject. In our proposed approach, measured changes in maximum skin temperatures around two periorbital regions are converted to the change in the relative blood flow velocity. A signature of the respiration pattern is also simultaneously determined in terms of the ratio of the measured maximum and minimum temperatures in the nostril area. Our simultaneous analysis of these two far-infrared signatures is similar to the standard polygraph test in that more than one of our involuntary reflexes is examined at once. Our two-year field test study covers 18 examination tests on subjects who are suspected in involving in real crime cases in Thailand. Based on our automatic baseline classification and scoring criteria, we obtain a promising classification rate of 88.9%, which is about 10% improvement compared to our analysis using far-infrared data from either the periorbital or nostril area alone. classification rate scoring criteria Non-intrusive analysis automatic baseline classification Thailand Thermal imaging cameras infrared imaging skin respiration pattern relative blood flow velocity nonintrusive lie detection Polygraph test Blood flow far infrared signals psychology standard polygraph test two-dimensional far-infrared data image classification haemodynamics Non-invasive physiological monitoring Temperature measurement periorbital areas time 2 year maximum temperatures deception level Lie detection real case study biomedical optical imaging simultaneous analysis medical image processing maximum skin temperatures far-infrared signatures involuntary reflexes nostril areas Infrared technology Cameras pneumodynamics minimum temperatures Standards two-year field test study Face biothermics Somboonkaew, Armote oth Sodsong, Tawee oth Promduang, Itthipol oth Sumriddetchkajorn, Niti oth Prada-in, Thawatchai oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 33(2015), 16, Seite 3406-3412 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:33 year:2015 number:16 pages:3406-3412 http://dx.doi.org/10.1109/JLT.2014.2371466 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6967765 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 AR 33 2015 16 3406-3412 |
allfieldsGer |
10.1109/JLT.2014.2371466 doi PQ20160617 (DE-627)OLC195664332X (DE-599)GBVOLC195664332X (PRQ)c945-e7a46905c7cb2018e2f2f3f3c738c09157b07156696e25cf168b83a2814510d80 (KEY)0124889820150000033001603406simultaneousanalysisoffarinfraredsignalsfromperior DE-627 ger DE-627 rakwb eng 530 600 620 DNB Sumriddetchkajorn, Sarun verfasserin aut Simultaneous Analysis of Far Infrared Signals From Periorbital and Nostril Areas for Nonintrusive Lie Detection: Performance From Real Case Study 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper highlights our simultaneous analysis of two-dimensional far-infrared data around the two periorbital and the nostril areas for nonintrusively evaluating the deception level of the subject. In our proposed approach, measured changes in maximum skin temperatures around two periorbital regions are converted to the change in the relative blood flow velocity. A signature of the respiration pattern is also simultaneously determined in terms of the ratio of the measured maximum and minimum temperatures in the nostril area. Our simultaneous analysis of these two far-infrared signatures is similar to the standard polygraph test in that more than one of our involuntary reflexes is examined at once. Our two-year field test study covers 18 examination tests on subjects who are suspected in involving in real crime cases in Thailand. Based on our automatic baseline classification and scoring criteria, we obtain a promising classification rate of 88.9%, which is about 10% improvement compared to our analysis using far-infrared data from either the periorbital or nostril area alone. classification rate scoring criteria Non-intrusive analysis automatic baseline classification Thailand Thermal imaging cameras infrared imaging skin respiration pattern relative blood flow velocity nonintrusive lie detection Polygraph test Blood flow far infrared signals psychology standard polygraph test two-dimensional far-infrared data image classification haemodynamics Non-invasive physiological monitoring Temperature measurement periorbital areas time 2 year maximum temperatures deception level Lie detection real case study biomedical optical imaging simultaneous analysis medical image processing maximum skin temperatures far-infrared signatures involuntary reflexes nostril areas Infrared technology Cameras pneumodynamics minimum temperatures Standards two-year field test study Face biothermics Somboonkaew, Armote oth Sodsong, Tawee oth Promduang, Itthipol oth Sumriddetchkajorn, Niti oth Prada-in, Thawatchai oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 33(2015), 16, Seite 3406-3412 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:33 year:2015 number:16 pages:3406-3412 http://dx.doi.org/10.1109/JLT.2014.2371466 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6967765 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 AR 33 2015 16 3406-3412 |
allfieldsSound |
10.1109/JLT.2014.2371466 doi PQ20160617 (DE-627)OLC195664332X (DE-599)GBVOLC195664332X (PRQ)c945-e7a46905c7cb2018e2f2f3f3c738c09157b07156696e25cf168b83a2814510d80 (KEY)0124889820150000033001603406simultaneousanalysisoffarinfraredsignalsfromperior DE-627 ger DE-627 rakwb eng 530 600 620 DNB Sumriddetchkajorn, Sarun verfasserin aut Simultaneous Analysis of Far Infrared Signals From Periorbital and Nostril Areas for Nonintrusive Lie Detection: Performance From Real Case Study 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper highlights our simultaneous analysis of two-dimensional far-infrared data around the two periorbital and the nostril areas for nonintrusively evaluating the deception level of the subject. In our proposed approach, measured changes in maximum skin temperatures around two periorbital regions are converted to the change in the relative blood flow velocity. A signature of the respiration pattern is also simultaneously determined in terms of the ratio of the measured maximum and minimum temperatures in the nostril area. Our simultaneous analysis of these two far-infrared signatures is similar to the standard polygraph test in that more than one of our involuntary reflexes is examined at once. Our two-year field test study covers 18 examination tests on subjects who are suspected in involving in real crime cases in Thailand. Based on our automatic baseline classification and scoring criteria, we obtain a promising classification rate of 88.9%, which is about 10% improvement compared to our analysis using far-infrared data from either the periorbital or nostril area alone. classification rate scoring criteria Non-intrusive analysis automatic baseline classification Thailand Thermal imaging cameras infrared imaging skin respiration pattern relative blood flow velocity nonintrusive lie detection Polygraph test Blood flow far infrared signals psychology standard polygraph test two-dimensional far-infrared data image classification haemodynamics Non-invasive physiological monitoring Temperature measurement periorbital areas time 2 year maximum temperatures deception level Lie detection real case study biomedical optical imaging simultaneous analysis medical image processing maximum skin temperatures far-infrared signatures involuntary reflexes nostril areas Infrared technology Cameras pneumodynamics minimum temperatures Standards two-year field test study Face biothermics Somboonkaew, Armote oth Sodsong, Tawee oth Promduang, Itthipol oth Sumriddetchkajorn, Niti oth Prada-in, Thawatchai oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 33(2015), 16, Seite 3406-3412 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:33 year:2015 number:16 pages:3406-3412 http://dx.doi.org/10.1109/JLT.2014.2371466 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6967765 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 AR 33 2015 16 3406-3412 |
language |
English |
source |
Enthalten in Journal of lightwave technology 33(2015), 16, Seite 3406-3412 volume:33 year:2015 number:16 pages:3406-3412 |
sourceStr |
Enthalten in Journal of lightwave technology 33(2015), 16, Seite 3406-3412 volume:33 year:2015 number:16 pages:3406-3412 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
classification rate scoring criteria Non-intrusive analysis automatic baseline classification Thailand Thermal imaging cameras infrared imaging skin respiration pattern relative blood flow velocity nonintrusive lie detection Polygraph test Blood flow far infrared signals psychology standard polygraph test two-dimensional far-infrared data image classification haemodynamics Non-invasive physiological monitoring Temperature measurement periorbital areas time 2 year maximum temperatures deception level Lie detection real case study biomedical optical imaging simultaneous analysis medical image processing maximum skin temperatures far-infrared signatures involuntary reflexes nostril areas Infrared technology Cameras pneumodynamics minimum temperatures Standards two-year field test study Face biothermics |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of lightwave technology |
authorswithroles_txt_mv |
Sumriddetchkajorn, Sarun @@aut@@ Somboonkaew, Armote @@oth@@ Sodsong, Tawee @@oth@@ Promduang, Itthipol @@oth@@ Sumriddetchkajorn, Niti @@oth@@ Prada-in, Thawatchai @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129620882 |
dewey-sort |
3530 |
id |
OLC195664332X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC195664332X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714141630.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JLT.2014.2371466</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC195664332X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC195664332X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c945-e7a46905c7cb2018e2f2f3f3c738c09157b07156696e25cf168b83a2814510d80</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0124889820150000033001603406simultaneousanalysisoffarinfraredsignalsfromperior</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sumriddetchkajorn, Sarun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simultaneous Analysis of Far Infrared Signals From Periorbital and Nostril Areas for Nonintrusive Lie Detection: Performance From Real Case Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper highlights our simultaneous analysis of two-dimensional far-infrared data around the two periorbital and the nostril areas for nonintrusively evaluating the deception level of the subject. In our proposed approach, measured changes in maximum skin temperatures around two periorbital regions are converted to the change in the relative blood flow velocity. A signature of the respiration pattern is also simultaneously determined in terms of the ratio of the measured maximum and minimum temperatures in the nostril area. Our simultaneous analysis of these two far-infrared signatures is similar to the standard polygraph test in that more than one of our involuntary reflexes is examined at once. Our two-year field test study covers 18 examination tests on subjects who are suspected in involving in real crime cases in Thailand. Based on our automatic baseline classification and scoring criteria, we obtain a promising classification rate of 88.9%, which is about 10% improvement compared to our analysis using far-infrared data from either the periorbital or nostril area alone.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">classification rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scoring criteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-intrusive analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automatic baseline classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thailand</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal imaging cameras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">infrared imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">skin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">respiration pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">relative blood flow velocity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonintrusive lie detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polygraph test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">far infrared signals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">psychology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">standard polygraph test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-dimensional far-infrared data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">haemodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-invasive physiological monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">periorbital areas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time 2 year</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maximum temperatures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deception level</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">real case study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomedical optical imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simultaneous analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">medical image processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maximum skin temperatures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">far-infrared signatures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">involuntary reflexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nostril areas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infrared technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cameras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pneumodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">minimum temperatures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Standards</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-year field test study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Face</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biothermics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Somboonkaew, Armote</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sodsong, Tawee</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Promduang, Itthipol</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sumriddetchkajorn, Niti</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prada-in, Thawatchai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of lightwave technology</subfield><subfield code="d">New York, NY : IEEE, 1983</subfield><subfield code="g">33(2015), 16, Seite 3406-3412</subfield><subfield code="w">(DE-627)129620882</subfield><subfield code="w">(DE-600)246121-3</subfield><subfield code="w">(DE-576)015127214</subfield><subfield code="x">0733-8724</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:16</subfield><subfield code="g">pages:3406-3412</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JLT.2014.2371466</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6967765</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2015</subfield><subfield code="e">16</subfield><subfield code="h">3406-3412</subfield></datafield></record></collection>
|
author |
Sumriddetchkajorn, Sarun |
spellingShingle |
Sumriddetchkajorn, Sarun ddc 530 misc classification rate misc scoring criteria misc Non-intrusive analysis misc automatic baseline classification misc Thailand misc Thermal imaging cameras misc infrared imaging misc skin misc respiration pattern misc relative blood flow velocity misc nonintrusive lie detection misc Polygraph test misc Blood flow misc far infrared signals misc psychology misc standard polygraph test misc two-dimensional far-infrared data misc image classification misc haemodynamics misc Non-invasive physiological monitoring misc Temperature measurement misc periorbital areas misc time 2 year misc maximum temperatures misc deception level misc Lie detection misc real case study misc biomedical optical imaging misc simultaneous analysis misc medical image processing misc maximum skin temperatures misc far-infrared signatures misc involuntary reflexes misc nostril areas misc Infrared technology misc Cameras misc pneumodynamics misc minimum temperatures misc Standards misc two-year field test study misc Face misc biothermics Simultaneous Analysis of Far Infrared Signals From Periorbital and Nostril Areas for Nonintrusive Lie Detection: Performance From Real Case Study |
authorStr |
Sumriddetchkajorn, Sarun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129620882 |
format |
Article |
dewey-ones |
530 - Physics 600 - Technology 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0733-8724 |
topic_title |
530 600 620 DNB Simultaneous Analysis of Far Infrared Signals From Periorbital and Nostril Areas for Nonintrusive Lie Detection: Performance From Real Case Study classification rate scoring criteria Non-intrusive analysis automatic baseline classification Thailand Thermal imaging cameras infrared imaging skin respiration pattern relative blood flow velocity nonintrusive lie detection Polygraph test Blood flow far infrared signals psychology standard polygraph test two-dimensional far-infrared data image classification haemodynamics Non-invasive physiological monitoring Temperature measurement periorbital areas time 2 year maximum temperatures deception level Lie detection real case study biomedical optical imaging simultaneous analysis medical image processing maximum skin temperatures far-infrared signatures involuntary reflexes nostril areas Infrared technology Cameras pneumodynamics minimum temperatures Standards two-year field test study Face biothermics |
topic |
ddc 530 misc classification rate misc scoring criteria misc Non-intrusive analysis misc automatic baseline classification misc Thailand misc Thermal imaging cameras misc infrared imaging misc skin misc respiration pattern misc relative blood flow velocity misc nonintrusive lie detection misc Polygraph test misc Blood flow misc far infrared signals misc psychology misc standard polygraph test misc two-dimensional far-infrared data misc image classification misc haemodynamics misc Non-invasive physiological monitoring misc Temperature measurement misc periorbital areas misc time 2 year misc maximum temperatures misc deception level misc Lie detection misc real case study misc biomedical optical imaging misc simultaneous analysis misc medical image processing misc maximum skin temperatures misc far-infrared signatures misc involuntary reflexes misc nostril areas misc Infrared technology misc Cameras misc pneumodynamics misc minimum temperatures misc Standards misc two-year field test study misc Face misc biothermics |
topic_unstemmed |
ddc 530 misc classification rate misc scoring criteria misc Non-intrusive analysis misc automatic baseline classification misc Thailand misc Thermal imaging cameras misc infrared imaging misc skin misc respiration pattern misc relative blood flow velocity misc nonintrusive lie detection misc Polygraph test misc Blood flow misc far infrared signals misc psychology misc standard polygraph test misc two-dimensional far-infrared data misc image classification misc haemodynamics misc Non-invasive physiological monitoring misc Temperature measurement misc periorbital areas misc time 2 year misc maximum temperatures misc deception level misc Lie detection misc real case study misc biomedical optical imaging misc simultaneous analysis misc medical image processing misc maximum skin temperatures misc far-infrared signatures misc involuntary reflexes misc nostril areas misc Infrared technology misc Cameras misc pneumodynamics misc minimum temperatures misc Standards misc two-year field test study misc Face misc biothermics |
topic_browse |
ddc 530 misc classification rate misc scoring criteria misc Non-intrusive analysis misc automatic baseline classification misc Thailand misc Thermal imaging cameras misc infrared imaging misc skin misc respiration pattern misc relative blood flow velocity misc nonintrusive lie detection misc Polygraph test misc Blood flow misc far infrared signals misc psychology misc standard polygraph test misc two-dimensional far-infrared data misc image classification misc haemodynamics misc Non-invasive physiological monitoring misc Temperature measurement misc periorbital areas misc time 2 year misc maximum temperatures misc deception level misc Lie detection misc real case study misc biomedical optical imaging misc simultaneous analysis misc medical image processing misc maximum skin temperatures misc far-infrared signatures misc involuntary reflexes misc nostril areas misc Infrared technology misc Cameras misc pneumodynamics misc minimum temperatures misc Standards misc two-year field test study misc Face misc biothermics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
a s as t s ts i p ip n s ns t p i tpi |
hierarchy_parent_title |
Journal of lightwave technology |
hierarchy_parent_id |
129620882 |
dewey-tens |
530 - Physics 600 - Technology 620 - Engineering |
hierarchy_top_title |
Journal of lightwave technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 |
title |
Simultaneous Analysis of Far Infrared Signals From Periorbital and Nostril Areas for Nonintrusive Lie Detection: Performance From Real Case Study |
ctrlnum |
(DE-627)OLC195664332X (DE-599)GBVOLC195664332X (PRQ)c945-e7a46905c7cb2018e2f2f3f3c738c09157b07156696e25cf168b83a2814510d80 (KEY)0124889820150000033001603406simultaneousanalysisoffarinfraredsignalsfromperior |
title_full |
Simultaneous Analysis of Far Infrared Signals From Periorbital and Nostril Areas for Nonintrusive Lie Detection: Performance From Real Case Study |
author_sort |
Sumriddetchkajorn, Sarun |
journal |
Journal of lightwave technology |
journalStr |
Journal of lightwave technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
3406 |
author_browse |
Sumriddetchkajorn, Sarun |
container_volume |
33 |
class |
530 600 620 DNB |
format_se |
Aufsätze |
author-letter |
Sumriddetchkajorn, Sarun |
doi_str_mv |
10.1109/JLT.2014.2371466 |
dewey-full |
530 600 620 |
title_sort |
simultaneous analysis of far infrared signals from periorbital and nostril areas for nonintrusive lie detection: performance from real case study |
title_auth |
Simultaneous Analysis of Far Infrared Signals From Periorbital and Nostril Areas for Nonintrusive Lie Detection: Performance From Real Case Study |
abstract |
This paper highlights our simultaneous analysis of two-dimensional far-infrared data around the two periorbital and the nostril areas for nonintrusively evaluating the deception level of the subject. In our proposed approach, measured changes in maximum skin temperatures around two periorbital regions are converted to the change in the relative blood flow velocity. A signature of the respiration pattern is also simultaneously determined in terms of the ratio of the measured maximum and minimum temperatures in the nostril area. Our simultaneous analysis of these two far-infrared signatures is similar to the standard polygraph test in that more than one of our involuntary reflexes is examined at once. Our two-year field test study covers 18 examination tests on subjects who are suspected in involving in real crime cases in Thailand. Based on our automatic baseline classification and scoring criteria, we obtain a promising classification rate of 88.9%, which is about 10% improvement compared to our analysis using far-infrared data from either the periorbital or nostril area alone. |
abstractGer |
This paper highlights our simultaneous analysis of two-dimensional far-infrared data around the two periorbital and the nostril areas for nonintrusively evaluating the deception level of the subject. In our proposed approach, measured changes in maximum skin temperatures around two periorbital regions are converted to the change in the relative blood flow velocity. A signature of the respiration pattern is also simultaneously determined in terms of the ratio of the measured maximum and minimum temperatures in the nostril area. Our simultaneous analysis of these two far-infrared signatures is similar to the standard polygraph test in that more than one of our involuntary reflexes is examined at once. Our two-year field test study covers 18 examination tests on subjects who are suspected in involving in real crime cases in Thailand. Based on our automatic baseline classification and scoring criteria, we obtain a promising classification rate of 88.9%, which is about 10% improvement compared to our analysis using far-infrared data from either the periorbital or nostril area alone. |
abstract_unstemmed |
This paper highlights our simultaneous analysis of two-dimensional far-infrared data around the two periorbital and the nostril areas for nonintrusively evaluating the deception level of the subject. In our proposed approach, measured changes in maximum skin temperatures around two periorbital regions are converted to the change in the relative blood flow velocity. A signature of the respiration pattern is also simultaneously determined in terms of the ratio of the measured maximum and minimum temperatures in the nostril area. Our simultaneous analysis of these two far-infrared signatures is similar to the standard polygraph test in that more than one of our involuntary reflexes is examined at once. Our two-year field test study covers 18 examination tests on subjects who are suspected in involving in real crime cases in Thailand. Based on our automatic baseline classification and scoring criteria, we obtain a promising classification rate of 88.9%, which is about 10% improvement compared to our analysis using far-infrared data from either the periorbital or nostril area alone. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_185 GBV_ILN_4318 |
container_issue |
16 |
title_short |
Simultaneous Analysis of Far Infrared Signals From Periorbital and Nostril Areas for Nonintrusive Lie Detection: Performance From Real Case Study |
url |
http://dx.doi.org/10.1109/JLT.2014.2371466 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6967765 |
remote_bool |
false |
author2 |
Somboonkaew, Armote Sodsong, Tawee Promduang, Itthipol Sumriddetchkajorn, Niti Prada-in, Thawatchai |
author2Str |
Somboonkaew, Armote Sodsong, Tawee Promduang, Itthipol Sumriddetchkajorn, Niti Prada-in, Thawatchai |
ppnlink |
129620882 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1109/JLT.2014.2371466 |
up_date |
2024-07-03T21:24:02.924Z |
_version_ |
1803594595490070528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC195664332X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714141630.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JLT.2014.2371466</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC195664332X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC195664332X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c945-e7a46905c7cb2018e2f2f3f3c738c09157b07156696e25cf168b83a2814510d80</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0124889820150000033001603406simultaneousanalysisoffarinfraredsignalsfromperior</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sumriddetchkajorn, Sarun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simultaneous Analysis of Far Infrared Signals From Periorbital and Nostril Areas for Nonintrusive Lie Detection: Performance From Real Case Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper highlights our simultaneous analysis of two-dimensional far-infrared data around the two periorbital and the nostril areas for nonintrusively evaluating the deception level of the subject. In our proposed approach, measured changes in maximum skin temperatures around two periorbital regions are converted to the change in the relative blood flow velocity. A signature of the respiration pattern is also simultaneously determined in terms of the ratio of the measured maximum and minimum temperatures in the nostril area. Our simultaneous analysis of these two far-infrared signatures is similar to the standard polygraph test in that more than one of our involuntary reflexes is examined at once. Our two-year field test study covers 18 examination tests on subjects who are suspected in involving in real crime cases in Thailand. Based on our automatic baseline classification and scoring criteria, we obtain a promising classification rate of 88.9%, which is about 10% improvement compared to our analysis using far-infrared data from either the periorbital or nostril area alone.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">classification rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scoring criteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-intrusive analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automatic baseline classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thailand</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal imaging cameras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">infrared imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">skin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">respiration pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">relative blood flow velocity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonintrusive lie detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polygraph test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">far infrared signals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">psychology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">standard polygraph test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-dimensional far-infrared data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">haemodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-invasive physiological monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">periorbital areas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time 2 year</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maximum temperatures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deception level</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">real case study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomedical optical imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simultaneous analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">medical image processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maximum skin temperatures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">far-infrared signatures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">involuntary reflexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nostril areas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infrared technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cameras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pneumodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">minimum temperatures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Standards</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-year field test study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Face</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biothermics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Somboonkaew, Armote</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sodsong, Tawee</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Promduang, Itthipol</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sumriddetchkajorn, Niti</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prada-in, Thawatchai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of lightwave technology</subfield><subfield code="d">New York, NY : IEEE, 1983</subfield><subfield code="g">33(2015), 16, Seite 3406-3412</subfield><subfield code="w">(DE-627)129620882</subfield><subfield code="w">(DE-600)246121-3</subfield><subfield code="w">(DE-576)015127214</subfield><subfield code="x">0733-8724</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:16</subfield><subfield code="g">pages:3406-3412</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JLT.2014.2371466</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6967765</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2015</subfield><subfield code="e">16</subfield><subfield code="h">3406-3412</subfield></datafield></record></collection>
|
score |
7.401613 |