Thermodynamics-based design of microbial cell factories for anaerobic product formation
The field of metabolic engineering has delivered new microbial cell factories and processes for the production of different compounds including biofuels, (di)carboxylic acids, alcohols, and amino acids. Most of these processes are aerobic, with few exceptions (e.g., alcoholic fermentation), and atte...
Ausführliche Beschreibung
Autor*in: |
Cueto-Rojas, Hugo F [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2015 Elsevier Ltd. All rights reserved. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Trends in biotechnology - Cambridge : Elsevier, 1983, 33(2015), 9, Seite 534-546 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2015 ; number:9 ; pages:534-546 |
Links: |
---|
DOI / URN: |
10.1016/j.tibtech.2015.06.010 |
---|
Katalog-ID: |
OLC195675413X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC195675413X | ||
003 | DE-627 | ||
005 | 20230515072430.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.tibtech.2015.06.010 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC195675413X | ||
035 | |a (DE-599)GBVOLC195675413X | ||
035 | |a (PRQ)c2163-eb7bf09a0d494b5f229d505ed07a939da1b1f4af107d432fcd035986b0ace90d0 | ||
035 | |a (KEY)0131566820150000033000900534thermodynamicsbaseddesignofmicrobialcellfactoriesf | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |q DNB |
084 | |a 58.30 |2 bkl | ||
100 | 1 | |a Cueto-Rojas, Hugo F |e verfasserin |4 aut | |
245 | 1 | 0 | |a Thermodynamics-based design of microbial cell factories for anaerobic product formation |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The field of metabolic engineering has delivered new microbial cell factories and processes for the production of different compounds including biofuels, (di)carboxylic acids, alcohols, and amino acids. Most of these processes are aerobic, with few exceptions (e.g., alcoholic fermentation), and attention is focused on assembling a high-flux product pathway with a production limit usually set by the oxygen transfer rate. By contrast, anaerobic product synthesis offers significant benefits compared to aerobic systems: higher yields, less heat generation, reduced biomass production, and lower mechanical energy input, which can significantly reduce production costs. Using simple thermodynamic calculations, we demonstrate that many products can theoretically be produced under anaerobic conditions using several conventional and non-conventional substrates. | ||
540 | |a Nutzungsrecht: Copyright © 2015 Elsevier Ltd. All rights reserved. | ||
650 | 4 | |a bioprocess design | |
650 | 4 | |a microbial cell factories | |
650 | 4 | |a Agricultural production | |
650 | 4 | |a Food | |
650 | 4 | |a Alternative energy sources | |
650 | 4 | |a Solvents | |
650 | 4 | |a Glucose | |
650 | 4 | |a Raw materials | |
650 | 4 | |a Costs | |
650 | 4 | |a Synthesis gas | |
650 | 4 | |a Factories | |
650 | 4 | |a Glycerol | |
650 | 4 | |a anaerobic product formation | |
650 | 4 | |a Aqueous solutions | |
650 | 4 | |a thermodynamics | |
650 | 4 | |a Ethanol | |
700 | 1 | |a van Maris, A J A |4 oth | |
700 | 1 | |a Wahl, S Aljoscha |4 oth | |
700 | 1 | |a Heijnen, J J |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Trends in biotechnology |d Cambridge : Elsevier, 1983 |g 33(2015), 9, Seite 534-546 |w (DE-627)129140708 |w (DE-600)47474-5 |w (DE-576)014453339 |x 0167-7799 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:2015 |g number:9 |g pages:534-546 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.tibtech.2015.06.010 |3 Volltext |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/26232033 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1708154379 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2219 | ||
912 | |a GBV_ILN_4029 | ||
936 | b | k | |a 58.30 |q AVZ |
951 | |a AR | ||
952 | |d 33 |j 2015 |e 9 |h 534-546 |
author_variant |
h f c r hfc hfcr |
---|---|
matchkey_str |
article:01677799:2015----::hroyaisaedsgomcoilelatrefrne |
hierarchy_sort_str |
2015 |
bklnumber |
58.30 |
publishDate |
2015 |
allfields |
10.1016/j.tibtech.2015.06.010 doi PQ20160617 (DE-627)OLC195675413X (DE-599)GBVOLC195675413X (PRQ)c2163-eb7bf09a0d494b5f229d505ed07a939da1b1f4af107d432fcd035986b0ace90d0 (KEY)0131566820150000033000900534thermodynamicsbaseddesignofmicrobialcellfactoriesf DE-627 ger DE-627 rakwb eng 570 DNB 58.30 bkl Cueto-Rojas, Hugo F verfasserin aut Thermodynamics-based design of microbial cell factories for anaerobic product formation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The field of metabolic engineering has delivered new microbial cell factories and processes for the production of different compounds including biofuels, (di)carboxylic acids, alcohols, and amino acids. Most of these processes are aerobic, with few exceptions (e.g., alcoholic fermentation), and attention is focused on assembling a high-flux product pathway with a production limit usually set by the oxygen transfer rate. By contrast, anaerobic product synthesis offers significant benefits compared to aerobic systems: higher yields, less heat generation, reduced biomass production, and lower mechanical energy input, which can significantly reduce production costs. Using simple thermodynamic calculations, we demonstrate that many products can theoretically be produced under anaerobic conditions using several conventional and non-conventional substrates. Nutzungsrecht: Copyright © 2015 Elsevier Ltd. All rights reserved. bioprocess design microbial cell factories Agricultural production Food Alternative energy sources Solvents Glucose Raw materials Costs Synthesis gas Factories Glycerol anaerobic product formation Aqueous solutions thermodynamics Ethanol van Maris, A J A oth Wahl, S Aljoscha oth Heijnen, J J oth Enthalten in Trends in biotechnology Cambridge : Elsevier, 1983 33(2015), 9, Seite 534-546 (DE-627)129140708 (DE-600)47474-5 (DE-576)014453339 0167-7799 nnns volume:33 year:2015 number:9 pages:534-546 http://dx.doi.org/10.1016/j.tibtech.2015.06.010 Volltext http://www.ncbi.nlm.nih.gov/pubmed/26232033 http://search.proquest.com/docview/1708154379 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_70 GBV_ILN_252 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2219 GBV_ILN_4029 58.30 AVZ AR 33 2015 9 534-546 |
spelling |
10.1016/j.tibtech.2015.06.010 doi PQ20160617 (DE-627)OLC195675413X (DE-599)GBVOLC195675413X (PRQ)c2163-eb7bf09a0d494b5f229d505ed07a939da1b1f4af107d432fcd035986b0ace90d0 (KEY)0131566820150000033000900534thermodynamicsbaseddesignofmicrobialcellfactoriesf DE-627 ger DE-627 rakwb eng 570 DNB 58.30 bkl Cueto-Rojas, Hugo F verfasserin aut Thermodynamics-based design of microbial cell factories for anaerobic product formation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The field of metabolic engineering has delivered new microbial cell factories and processes for the production of different compounds including biofuels, (di)carboxylic acids, alcohols, and amino acids. Most of these processes are aerobic, with few exceptions (e.g., alcoholic fermentation), and attention is focused on assembling a high-flux product pathway with a production limit usually set by the oxygen transfer rate. By contrast, anaerobic product synthesis offers significant benefits compared to aerobic systems: higher yields, less heat generation, reduced biomass production, and lower mechanical energy input, which can significantly reduce production costs. Using simple thermodynamic calculations, we demonstrate that many products can theoretically be produced under anaerobic conditions using several conventional and non-conventional substrates. Nutzungsrecht: Copyright © 2015 Elsevier Ltd. All rights reserved. bioprocess design microbial cell factories Agricultural production Food Alternative energy sources Solvents Glucose Raw materials Costs Synthesis gas Factories Glycerol anaerobic product formation Aqueous solutions thermodynamics Ethanol van Maris, A J A oth Wahl, S Aljoscha oth Heijnen, J J oth Enthalten in Trends in biotechnology Cambridge : Elsevier, 1983 33(2015), 9, Seite 534-546 (DE-627)129140708 (DE-600)47474-5 (DE-576)014453339 0167-7799 nnns volume:33 year:2015 number:9 pages:534-546 http://dx.doi.org/10.1016/j.tibtech.2015.06.010 Volltext http://www.ncbi.nlm.nih.gov/pubmed/26232033 http://search.proquest.com/docview/1708154379 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_70 GBV_ILN_252 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2219 GBV_ILN_4029 58.30 AVZ AR 33 2015 9 534-546 |
allfields_unstemmed |
10.1016/j.tibtech.2015.06.010 doi PQ20160617 (DE-627)OLC195675413X (DE-599)GBVOLC195675413X (PRQ)c2163-eb7bf09a0d494b5f229d505ed07a939da1b1f4af107d432fcd035986b0ace90d0 (KEY)0131566820150000033000900534thermodynamicsbaseddesignofmicrobialcellfactoriesf DE-627 ger DE-627 rakwb eng 570 DNB 58.30 bkl Cueto-Rojas, Hugo F verfasserin aut Thermodynamics-based design of microbial cell factories for anaerobic product formation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The field of metabolic engineering has delivered new microbial cell factories and processes for the production of different compounds including biofuels, (di)carboxylic acids, alcohols, and amino acids. Most of these processes are aerobic, with few exceptions (e.g., alcoholic fermentation), and attention is focused on assembling a high-flux product pathway with a production limit usually set by the oxygen transfer rate. By contrast, anaerobic product synthesis offers significant benefits compared to aerobic systems: higher yields, less heat generation, reduced biomass production, and lower mechanical energy input, which can significantly reduce production costs. Using simple thermodynamic calculations, we demonstrate that many products can theoretically be produced under anaerobic conditions using several conventional and non-conventional substrates. Nutzungsrecht: Copyright © 2015 Elsevier Ltd. All rights reserved. bioprocess design microbial cell factories Agricultural production Food Alternative energy sources Solvents Glucose Raw materials Costs Synthesis gas Factories Glycerol anaerobic product formation Aqueous solutions thermodynamics Ethanol van Maris, A J A oth Wahl, S Aljoscha oth Heijnen, J J oth Enthalten in Trends in biotechnology Cambridge : Elsevier, 1983 33(2015), 9, Seite 534-546 (DE-627)129140708 (DE-600)47474-5 (DE-576)014453339 0167-7799 nnns volume:33 year:2015 number:9 pages:534-546 http://dx.doi.org/10.1016/j.tibtech.2015.06.010 Volltext http://www.ncbi.nlm.nih.gov/pubmed/26232033 http://search.proquest.com/docview/1708154379 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_70 GBV_ILN_252 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2219 GBV_ILN_4029 58.30 AVZ AR 33 2015 9 534-546 |
allfieldsGer |
10.1016/j.tibtech.2015.06.010 doi PQ20160617 (DE-627)OLC195675413X (DE-599)GBVOLC195675413X (PRQ)c2163-eb7bf09a0d494b5f229d505ed07a939da1b1f4af107d432fcd035986b0ace90d0 (KEY)0131566820150000033000900534thermodynamicsbaseddesignofmicrobialcellfactoriesf DE-627 ger DE-627 rakwb eng 570 DNB 58.30 bkl Cueto-Rojas, Hugo F verfasserin aut Thermodynamics-based design of microbial cell factories for anaerobic product formation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The field of metabolic engineering has delivered new microbial cell factories and processes for the production of different compounds including biofuels, (di)carboxylic acids, alcohols, and amino acids. Most of these processes are aerobic, with few exceptions (e.g., alcoholic fermentation), and attention is focused on assembling a high-flux product pathway with a production limit usually set by the oxygen transfer rate. By contrast, anaerobic product synthesis offers significant benefits compared to aerobic systems: higher yields, less heat generation, reduced biomass production, and lower mechanical energy input, which can significantly reduce production costs. Using simple thermodynamic calculations, we demonstrate that many products can theoretically be produced under anaerobic conditions using several conventional and non-conventional substrates. Nutzungsrecht: Copyright © 2015 Elsevier Ltd. All rights reserved. bioprocess design microbial cell factories Agricultural production Food Alternative energy sources Solvents Glucose Raw materials Costs Synthesis gas Factories Glycerol anaerobic product formation Aqueous solutions thermodynamics Ethanol van Maris, A J A oth Wahl, S Aljoscha oth Heijnen, J J oth Enthalten in Trends in biotechnology Cambridge : Elsevier, 1983 33(2015), 9, Seite 534-546 (DE-627)129140708 (DE-600)47474-5 (DE-576)014453339 0167-7799 nnns volume:33 year:2015 number:9 pages:534-546 http://dx.doi.org/10.1016/j.tibtech.2015.06.010 Volltext http://www.ncbi.nlm.nih.gov/pubmed/26232033 http://search.proquest.com/docview/1708154379 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_70 GBV_ILN_252 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2219 GBV_ILN_4029 58.30 AVZ AR 33 2015 9 534-546 |
allfieldsSound |
10.1016/j.tibtech.2015.06.010 doi PQ20160617 (DE-627)OLC195675413X (DE-599)GBVOLC195675413X (PRQ)c2163-eb7bf09a0d494b5f229d505ed07a939da1b1f4af107d432fcd035986b0ace90d0 (KEY)0131566820150000033000900534thermodynamicsbaseddesignofmicrobialcellfactoriesf DE-627 ger DE-627 rakwb eng 570 DNB 58.30 bkl Cueto-Rojas, Hugo F verfasserin aut Thermodynamics-based design of microbial cell factories for anaerobic product formation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The field of metabolic engineering has delivered new microbial cell factories and processes for the production of different compounds including biofuels, (di)carboxylic acids, alcohols, and amino acids. Most of these processes are aerobic, with few exceptions (e.g., alcoholic fermentation), and attention is focused on assembling a high-flux product pathway with a production limit usually set by the oxygen transfer rate. By contrast, anaerobic product synthesis offers significant benefits compared to aerobic systems: higher yields, less heat generation, reduced biomass production, and lower mechanical energy input, which can significantly reduce production costs. Using simple thermodynamic calculations, we demonstrate that many products can theoretically be produced under anaerobic conditions using several conventional and non-conventional substrates. Nutzungsrecht: Copyright © 2015 Elsevier Ltd. All rights reserved. bioprocess design microbial cell factories Agricultural production Food Alternative energy sources Solvents Glucose Raw materials Costs Synthesis gas Factories Glycerol anaerobic product formation Aqueous solutions thermodynamics Ethanol van Maris, A J A oth Wahl, S Aljoscha oth Heijnen, J J oth Enthalten in Trends in biotechnology Cambridge : Elsevier, 1983 33(2015), 9, Seite 534-546 (DE-627)129140708 (DE-600)47474-5 (DE-576)014453339 0167-7799 nnns volume:33 year:2015 number:9 pages:534-546 http://dx.doi.org/10.1016/j.tibtech.2015.06.010 Volltext http://www.ncbi.nlm.nih.gov/pubmed/26232033 http://search.proquest.com/docview/1708154379 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_70 GBV_ILN_252 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2219 GBV_ILN_4029 58.30 AVZ AR 33 2015 9 534-546 |
language |
English |
source |
Enthalten in Trends in biotechnology 33(2015), 9, Seite 534-546 volume:33 year:2015 number:9 pages:534-546 |
sourceStr |
Enthalten in Trends in biotechnology 33(2015), 9, Seite 534-546 volume:33 year:2015 number:9 pages:534-546 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
bioprocess design microbial cell factories Agricultural production Food Alternative energy sources Solvents Glucose Raw materials Costs Synthesis gas Factories Glycerol anaerobic product formation Aqueous solutions thermodynamics Ethanol |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Trends in biotechnology |
authorswithroles_txt_mv |
Cueto-Rojas, Hugo F @@aut@@ van Maris, A J A @@oth@@ Wahl, S Aljoscha @@oth@@ Heijnen, J J @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129140708 |
dewey-sort |
3570 |
id |
OLC195675413X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC195675413X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230515072430.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tibtech.2015.06.010</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC195675413X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC195675413X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2163-eb7bf09a0d494b5f229d505ed07a939da1b1f4af107d432fcd035986b0ace90d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0131566820150000033000900534thermodynamicsbaseddesignofmicrobialcellfactoriesf</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cueto-Rojas, Hugo F</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermodynamics-based design of microbial cell factories for anaerobic product formation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The field of metabolic engineering has delivered new microbial cell factories and processes for the production of different compounds including biofuels, (di)carboxylic acids, alcohols, and amino acids. Most of these processes are aerobic, with few exceptions (e.g., alcoholic fermentation), and attention is focused on assembling a high-flux product pathway with a production limit usually set by the oxygen transfer rate. By contrast, anaerobic product synthesis offers significant benefits compared to aerobic systems: higher yields, less heat generation, reduced biomass production, and lower mechanical energy input, which can significantly reduce production costs. Using simple thermodynamic calculations, we demonstrate that many products can theoretically be produced under anaerobic conditions using several conventional and non-conventional substrates.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 Elsevier Ltd. All rights reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bioprocess design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microbial cell factories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agricultural production</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Food</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alternative energy sources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solvents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glucose</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raw materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Costs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synthesis gas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Factories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glycerol</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anaerobic product formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aqueous solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ethanol</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Maris, A J A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wahl, S Aljoscha</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heijnen, J J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Trends in biotechnology</subfield><subfield code="d">Cambridge : Elsevier, 1983</subfield><subfield code="g">33(2015), 9, Seite 534-546</subfield><subfield code="w">(DE-627)129140708</subfield><subfield code="w">(DE-600)47474-5</subfield><subfield code="w">(DE-576)014453339</subfield><subfield code="x">0167-7799</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:534-546</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.tibtech.2015.06.010</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/26232033</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1708154379</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.30</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2015</subfield><subfield code="e">9</subfield><subfield code="h">534-546</subfield></datafield></record></collection>
|
author |
Cueto-Rojas, Hugo F |
spellingShingle |
Cueto-Rojas, Hugo F ddc 570 bkl 58.30 misc bioprocess design misc microbial cell factories misc Agricultural production misc Food misc Alternative energy sources misc Solvents misc Glucose misc Raw materials misc Costs misc Synthesis gas misc Factories misc Glycerol misc anaerobic product formation misc Aqueous solutions misc thermodynamics misc Ethanol Thermodynamics-based design of microbial cell factories for anaerobic product formation |
authorStr |
Cueto-Rojas, Hugo F |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129140708 |
format |
Article |
dewey-ones |
570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0167-7799 |
topic_title |
570 DNB 58.30 bkl Thermodynamics-based design of microbial cell factories for anaerobic product formation bioprocess design microbial cell factories Agricultural production Food Alternative energy sources Solvents Glucose Raw materials Costs Synthesis gas Factories Glycerol anaerobic product formation Aqueous solutions thermodynamics Ethanol |
topic |
ddc 570 bkl 58.30 misc bioprocess design misc microbial cell factories misc Agricultural production misc Food misc Alternative energy sources misc Solvents misc Glucose misc Raw materials misc Costs misc Synthesis gas misc Factories misc Glycerol misc anaerobic product formation misc Aqueous solutions misc thermodynamics misc Ethanol |
topic_unstemmed |
ddc 570 bkl 58.30 misc bioprocess design misc microbial cell factories misc Agricultural production misc Food misc Alternative energy sources misc Solvents misc Glucose misc Raw materials misc Costs misc Synthesis gas misc Factories misc Glycerol misc anaerobic product formation misc Aqueous solutions misc thermodynamics misc Ethanol |
topic_browse |
ddc 570 bkl 58.30 misc bioprocess design misc microbial cell factories misc Agricultural production misc Food misc Alternative energy sources misc Solvents misc Glucose misc Raw materials misc Costs misc Synthesis gas misc Factories misc Glycerol misc anaerobic product formation misc Aqueous solutions misc thermodynamics misc Ethanol |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m a j a v maja majav s a w sa saw j j h jj jjh |
hierarchy_parent_title |
Trends in biotechnology |
hierarchy_parent_id |
129140708 |
dewey-tens |
570 - Life sciences; biology |
hierarchy_top_title |
Trends in biotechnology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129140708 (DE-600)47474-5 (DE-576)014453339 |
title |
Thermodynamics-based design of microbial cell factories for anaerobic product formation |
ctrlnum |
(DE-627)OLC195675413X (DE-599)GBVOLC195675413X (PRQ)c2163-eb7bf09a0d494b5f229d505ed07a939da1b1f4af107d432fcd035986b0ace90d0 (KEY)0131566820150000033000900534thermodynamicsbaseddesignofmicrobialcellfactoriesf |
title_full |
Thermodynamics-based design of microbial cell factories for anaerobic product formation |
author_sort |
Cueto-Rojas, Hugo F |
journal |
Trends in biotechnology |
journalStr |
Trends in biotechnology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
534 |
author_browse |
Cueto-Rojas, Hugo F |
container_volume |
33 |
class |
570 DNB 58.30 bkl |
format_se |
Aufsätze |
author-letter |
Cueto-Rojas, Hugo F |
doi_str_mv |
10.1016/j.tibtech.2015.06.010 |
dewey-full |
570 |
title_sort |
thermodynamics-based design of microbial cell factories for anaerobic product formation |
title_auth |
Thermodynamics-based design of microbial cell factories for anaerobic product formation |
abstract |
The field of metabolic engineering has delivered new microbial cell factories and processes for the production of different compounds including biofuels, (di)carboxylic acids, alcohols, and amino acids. Most of these processes are aerobic, with few exceptions (e.g., alcoholic fermentation), and attention is focused on assembling a high-flux product pathway with a production limit usually set by the oxygen transfer rate. By contrast, anaerobic product synthesis offers significant benefits compared to aerobic systems: higher yields, less heat generation, reduced biomass production, and lower mechanical energy input, which can significantly reduce production costs. Using simple thermodynamic calculations, we demonstrate that many products can theoretically be produced under anaerobic conditions using several conventional and non-conventional substrates. |
abstractGer |
The field of metabolic engineering has delivered new microbial cell factories and processes for the production of different compounds including biofuels, (di)carboxylic acids, alcohols, and amino acids. Most of these processes are aerobic, with few exceptions (e.g., alcoholic fermentation), and attention is focused on assembling a high-flux product pathway with a production limit usually set by the oxygen transfer rate. By contrast, anaerobic product synthesis offers significant benefits compared to aerobic systems: higher yields, less heat generation, reduced biomass production, and lower mechanical energy input, which can significantly reduce production costs. Using simple thermodynamic calculations, we demonstrate that many products can theoretically be produced under anaerobic conditions using several conventional and non-conventional substrates. |
abstract_unstemmed |
The field of metabolic engineering has delivered new microbial cell factories and processes for the production of different compounds including biofuels, (di)carboxylic acids, alcohols, and amino acids. Most of these processes are aerobic, with few exceptions (e.g., alcoholic fermentation), and attention is focused on assembling a high-flux product pathway with a production limit usually set by the oxygen transfer rate. By contrast, anaerobic product synthesis offers significant benefits compared to aerobic systems: higher yields, less heat generation, reduced biomass production, and lower mechanical energy input, which can significantly reduce production costs. Using simple thermodynamic calculations, we demonstrate that many products can theoretically be produced under anaerobic conditions using several conventional and non-conventional substrates. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_70 GBV_ILN_252 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2219 GBV_ILN_4029 |
container_issue |
9 |
title_short |
Thermodynamics-based design of microbial cell factories for anaerobic product formation |
url |
http://dx.doi.org/10.1016/j.tibtech.2015.06.010 http://www.ncbi.nlm.nih.gov/pubmed/26232033 http://search.proquest.com/docview/1708154379 |
remote_bool |
false |
author2 |
van Maris, A J A Wahl, S Aljoscha Heijnen, J J |
author2Str |
van Maris, A J A Wahl, S Aljoscha Heijnen, J J |
ppnlink |
129140708 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.tibtech.2015.06.010 |
up_date |
2024-07-03T21:49:21.823Z |
_version_ |
1803596188171108352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC195675413X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230515072430.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tibtech.2015.06.010</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC195675413X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC195675413X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2163-eb7bf09a0d494b5f229d505ed07a939da1b1f4af107d432fcd035986b0ace90d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0131566820150000033000900534thermodynamicsbaseddesignofmicrobialcellfactoriesf</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cueto-Rojas, Hugo F</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermodynamics-based design of microbial cell factories for anaerobic product formation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The field of metabolic engineering has delivered new microbial cell factories and processes for the production of different compounds including biofuels, (di)carboxylic acids, alcohols, and amino acids. Most of these processes are aerobic, with few exceptions (e.g., alcoholic fermentation), and attention is focused on assembling a high-flux product pathway with a production limit usually set by the oxygen transfer rate. By contrast, anaerobic product synthesis offers significant benefits compared to aerobic systems: higher yields, less heat generation, reduced biomass production, and lower mechanical energy input, which can significantly reduce production costs. Using simple thermodynamic calculations, we demonstrate that many products can theoretically be produced under anaerobic conditions using several conventional and non-conventional substrates.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 Elsevier Ltd. All rights reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bioprocess design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microbial cell factories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agricultural production</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Food</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alternative energy sources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solvents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glucose</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raw materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Costs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synthesis gas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Factories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glycerol</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anaerobic product formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aqueous solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ethanol</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Maris, A J A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wahl, S Aljoscha</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heijnen, J J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Trends in biotechnology</subfield><subfield code="d">Cambridge : Elsevier, 1983</subfield><subfield code="g">33(2015), 9, Seite 534-546</subfield><subfield code="w">(DE-627)129140708</subfield><subfield code="w">(DE-600)47474-5</subfield><subfield code="w">(DE-576)014453339</subfield><subfield code="x">0167-7799</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:534-546</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.tibtech.2015.06.010</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/26232033</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1708154379</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.30</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2015</subfield><subfield code="e">9</subfield><subfield code="h">534-546</subfield></datafield></record></collection>
|
score |
7.4003143 |