Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances
In this paper, a reactive power sharing strategy that employs communication and the virtual impedance concept is proposed to enhance the accuracy of reactive power sharing in an islanded microgrid. Communication is utilized to facilitate the tuning of adaptive virtual impedances in order to compensa...
Ausführliche Beschreibung
Autor*in: |
Mahmood, Hisham [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
adaptive virtual impedance tuning |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on power electronics - New York, NY : IEEE, 1986, 30(2015), 3, Seite 1605-1617 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2015 ; number:3 ; pages:1605-1617 |
Links: |
---|
DOI / URN: |
10.1109/TPEL.2014.2314721 |
---|
Katalog-ID: |
OLC1957405384 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1957405384 | ||
003 | DE-627 | ||
005 | 20220220214801.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TPEL.2014.2314721 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1957405384 | ||
035 | |a (DE-599)GBVOLC1957405384 | ||
035 | |a (PRQ)c2695-24d434f1ec1c36328bf87b921bcef8a48f7f008e32903c779c2c27b6f0e4122b0 | ||
035 | |a (KEY)0151676020150000030000301605accuratereactivepowersharinginanislandedmicrogridu | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a ZG 1100: |q AVZ |2 rvk | ||
084 | |a 53.35 |2 bkl | ||
100 | 1 | |a Mahmood, Hisham |e verfasserin |4 aut | |
245 | 1 | 0 | |a Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, a reactive power sharing strategy that employs communication and the virtual impedance concept is proposed to enhance the accuracy of reactive power sharing in an islanded microgrid. Communication is utilized to facilitate the tuning of adaptive virtual impedances in order to compensate for the mismatch in voltage drops across feeders. Once the virtual impedances are tuned for a given load operating point, the strategy will result in accurate reactive power sharing even if communication is disrupted. If the load changes while communication is unavailable, the sharing accuracy is reduced, but the proposed strategy will still outperform the conventional droop control method. In addition, the reactive power sharing accuracy based on the proposed strategy is immune to the time delay in the communication channel. The sensitivity of the tuned controller parameters to changes in the system operating point is also explored. The control strategy is straightforward to implement and does not require knowledge of the feeder impedances. The feasibility and effectiveness of the proposed strategy are validated using simulation and experimental results from a 2-kVA microgrid. | ||
650 | 4 | |a Microgrids | |
650 | 4 | |a Impedance | |
650 | 4 | |a load operating point | |
650 | 4 | |a adaptive control | |
650 | 4 | |a Accuracy | |
650 | 4 | |a communication channel | |
650 | 4 | |a Reactive power | |
650 | 4 | |a electric potential | |
650 | 4 | |a adaptive virtual impedance tuning | |
650 | 4 | |a power generation control | |
650 | 4 | |a reactive power sharing strategy | |
650 | 4 | |a time delay | |
650 | 4 | |a control system synthesis | |
650 | 4 | |a electric impedance | |
650 | 4 | |a Voltage control | |
650 | 4 | |a Inverters | |
650 | 4 | |a voltage drop | |
650 | 4 | |a power grids | |
650 | 4 | |a islanded microgrid | |
650 | 4 | |a system operating point | |
650 | 4 | |a distributed power generation | |
650 | 4 | |a controller parameter tuning | |
650 | 4 | |a reactive power control | |
650 | 4 | |a Energy management | |
650 | 4 | |a apparent power 2 kVA | |
650 | 4 | |a droop control method | |
650 | 4 | |a Communication | |
650 | 4 | |a Sensitivity | |
650 | 4 | |a Feasibility | |
650 | 4 | |a Knowledge | |
650 | 4 | |a Effectiveness | |
700 | 1 | |a Michaelson, Dennis |4 oth | |
700 | 0 | |a Jin Jiang |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on power electronics |d New York, NY : IEEE, 1986 |g 30(2015), 3, Seite 1605-1617 |w (DE-627)129383333 |w (DE-600)165902-9 |w (DE-576)014769980 |x 0885-8993 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2015 |g number:3 |g pages:1605-1617 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TPEL.2014.2314721 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6781578 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1618846553 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2061 | ||
936 | r | v | |a ZG 1100: |
936 | b | k | |a 53.35 |q AVZ |
951 | |a AR | ||
952 | |d 30 |j 2015 |e 3 |h 1605-1617 |
author_variant |
h m hm |
---|---|
matchkey_str |
article:08858993:2015----::cuaeecieoesaignnsaddirgiuigd |
hierarchy_sort_str |
2015 |
bklnumber |
53.35 |
publishDate |
2015 |
allfields |
10.1109/TPEL.2014.2314721 doi PQ20160617 (DE-627)OLC1957405384 (DE-599)GBVOLC1957405384 (PRQ)c2695-24d434f1ec1c36328bf87b921bcef8a48f7f008e32903c779c2c27b6f0e4122b0 (KEY)0151676020150000030000301605accuratereactivepowersharinginanislandedmicrogridu DE-627 ger DE-627 rakwb eng 620 DNB ZG 1100: AVZ rvk 53.35 bkl Mahmood, Hisham verfasserin aut Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a reactive power sharing strategy that employs communication and the virtual impedance concept is proposed to enhance the accuracy of reactive power sharing in an islanded microgrid. Communication is utilized to facilitate the tuning of adaptive virtual impedances in order to compensate for the mismatch in voltage drops across feeders. Once the virtual impedances are tuned for a given load operating point, the strategy will result in accurate reactive power sharing even if communication is disrupted. If the load changes while communication is unavailable, the sharing accuracy is reduced, but the proposed strategy will still outperform the conventional droop control method. In addition, the reactive power sharing accuracy based on the proposed strategy is immune to the time delay in the communication channel. The sensitivity of the tuned controller parameters to changes in the system operating point is also explored. The control strategy is straightforward to implement and does not require knowledge of the feeder impedances. The feasibility and effectiveness of the proposed strategy are validated using simulation and experimental results from a 2-kVA microgrid. Microgrids Impedance load operating point adaptive control Accuracy communication channel Reactive power electric potential adaptive virtual impedance tuning power generation control reactive power sharing strategy time delay control system synthesis electric impedance Voltage control Inverters voltage drop power grids islanded microgrid system operating point distributed power generation controller parameter tuning reactive power control Energy management apparent power 2 kVA droop control method Communication Sensitivity Feasibility Knowledge Effectiveness Michaelson, Dennis oth Jin Jiang oth Enthalten in IEEE transactions on power electronics New York, NY : IEEE, 1986 30(2015), 3, Seite 1605-1617 (DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 0885-8993 nnns volume:30 year:2015 number:3 pages:1605-1617 http://dx.doi.org/10.1109/TPEL.2014.2314721 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6781578 http://search.proquest.com/docview/1618846553 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 ZG 1100: 53.35 AVZ AR 30 2015 3 1605-1617 |
spelling |
10.1109/TPEL.2014.2314721 doi PQ20160617 (DE-627)OLC1957405384 (DE-599)GBVOLC1957405384 (PRQ)c2695-24d434f1ec1c36328bf87b921bcef8a48f7f008e32903c779c2c27b6f0e4122b0 (KEY)0151676020150000030000301605accuratereactivepowersharinginanislandedmicrogridu DE-627 ger DE-627 rakwb eng 620 DNB ZG 1100: AVZ rvk 53.35 bkl Mahmood, Hisham verfasserin aut Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a reactive power sharing strategy that employs communication and the virtual impedance concept is proposed to enhance the accuracy of reactive power sharing in an islanded microgrid. Communication is utilized to facilitate the tuning of adaptive virtual impedances in order to compensate for the mismatch in voltage drops across feeders. Once the virtual impedances are tuned for a given load operating point, the strategy will result in accurate reactive power sharing even if communication is disrupted. If the load changes while communication is unavailable, the sharing accuracy is reduced, but the proposed strategy will still outperform the conventional droop control method. In addition, the reactive power sharing accuracy based on the proposed strategy is immune to the time delay in the communication channel. The sensitivity of the tuned controller parameters to changes in the system operating point is also explored. The control strategy is straightforward to implement and does not require knowledge of the feeder impedances. The feasibility and effectiveness of the proposed strategy are validated using simulation and experimental results from a 2-kVA microgrid. Microgrids Impedance load operating point adaptive control Accuracy communication channel Reactive power electric potential adaptive virtual impedance tuning power generation control reactive power sharing strategy time delay control system synthesis electric impedance Voltage control Inverters voltage drop power grids islanded microgrid system operating point distributed power generation controller parameter tuning reactive power control Energy management apparent power 2 kVA droop control method Communication Sensitivity Feasibility Knowledge Effectiveness Michaelson, Dennis oth Jin Jiang oth Enthalten in IEEE transactions on power electronics New York, NY : IEEE, 1986 30(2015), 3, Seite 1605-1617 (DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 0885-8993 nnns volume:30 year:2015 number:3 pages:1605-1617 http://dx.doi.org/10.1109/TPEL.2014.2314721 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6781578 http://search.proquest.com/docview/1618846553 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 ZG 1100: 53.35 AVZ AR 30 2015 3 1605-1617 |
allfields_unstemmed |
10.1109/TPEL.2014.2314721 doi PQ20160617 (DE-627)OLC1957405384 (DE-599)GBVOLC1957405384 (PRQ)c2695-24d434f1ec1c36328bf87b921bcef8a48f7f008e32903c779c2c27b6f0e4122b0 (KEY)0151676020150000030000301605accuratereactivepowersharinginanislandedmicrogridu DE-627 ger DE-627 rakwb eng 620 DNB ZG 1100: AVZ rvk 53.35 bkl Mahmood, Hisham verfasserin aut Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a reactive power sharing strategy that employs communication and the virtual impedance concept is proposed to enhance the accuracy of reactive power sharing in an islanded microgrid. Communication is utilized to facilitate the tuning of adaptive virtual impedances in order to compensate for the mismatch in voltage drops across feeders. Once the virtual impedances are tuned for a given load operating point, the strategy will result in accurate reactive power sharing even if communication is disrupted. If the load changes while communication is unavailable, the sharing accuracy is reduced, but the proposed strategy will still outperform the conventional droop control method. In addition, the reactive power sharing accuracy based on the proposed strategy is immune to the time delay in the communication channel. The sensitivity of the tuned controller parameters to changes in the system operating point is also explored. The control strategy is straightforward to implement and does not require knowledge of the feeder impedances. The feasibility and effectiveness of the proposed strategy are validated using simulation and experimental results from a 2-kVA microgrid. Microgrids Impedance load operating point adaptive control Accuracy communication channel Reactive power electric potential adaptive virtual impedance tuning power generation control reactive power sharing strategy time delay control system synthesis electric impedance Voltage control Inverters voltage drop power grids islanded microgrid system operating point distributed power generation controller parameter tuning reactive power control Energy management apparent power 2 kVA droop control method Communication Sensitivity Feasibility Knowledge Effectiveness Michaelson, Dennis oth Jin Jiang oth Enthalten in IEEE transactions on power electronics New York, NY : IEEE, 1986 30(2015), 3, Seite 1605-1617 (DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 0885-8993 nnns volume:30 year:2015 number:3 pages:1605-1617 http://dx.doi.org/10.1109/TPEL.2014.2314721 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6781578 http://search.proquest.com/docview/1618846553 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 ZG 1100: 53.35 AVZ AR 30 2015 3 1605-1617 |
allfieldsGer |
10.1109/TPEL.2014.2314721 doi PQ20160617 (DE-627)OLC1957405384 (DE-599)GBVOLC1957405384 (PRQ)c2695-24d434f1ec1c36328bf87b921bcef8a48f7f008e32903c779c2c27b6f0e4122b0 (KEY)0151676020150000030000301605accuratereactivepowersharinginanislandedmicrogridu DE-627 ger DE-627 rakwb eng 620 DNB ZG 1100: AVZ rvk 53.35 bkl Mahmood, Hisham verfasserin aut Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a reactive power sharing strategy that employs communication and the virtual impedance concept is proposed to enhance the accuracy of reactive power sharing in an islanded microgrid. Communication is utilized to facilitate the tuning of adaptive virtual impedances in order to compensate for the mismatch in voltage drops across feeders. Once the virtual impedances are tuned for a given load operating point, the strategy will result in accurate reactive power sharing even if communication is disrupted. If the load changes while communication is unavailable, the sharing accuracy is reduced, but the proposed strategy will still outperform the conventional droop control method. In addition, the reactive power sharing accuracy based on the proposed strategy is immune to the time delay in the communication channel. The sensitivity of the tuned controller parameters to changes in the system operating point is also explored. The control strategy is straightforward to implement and does not require knowledge of the feeder impedances. The feasibility and effectiveness of the proposed strategy are validated using simulation and experimental results from a 2-kVA microgrid. Microgrids Impedance load operating point adaptive control Accuracy communication channel Reactive power electric potential adaptive virtual impedance tuning power generation control reactive power sharing strategy time delay control system synthesis electric impedance Voltage control Inverters voltage drop power grids islanded microgrid system operating point distributed power generation controller parameter tuning reactive power control Energy management apparent power 2 kVA droop control method Communication Sensitivity Feasibility Knowledge Effectiveness Michaelson, Dennis oth Jin Jiang oth Enthalten in IEEE transactions on power electronics New York, NY : IEEE, 1986 30(2015), 3, Seite 1605-1617 (DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 0885-8993 nnns volume:30 year:2015 number:3 pages:1605-1617 http://dx.doi.org/10.1109/TPEL.2014.2314721 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6781578 http://search.proquest.com/docview/1618846553 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 ZG 1100: 53.35 AVZ AR 30 2015 3 1605-1617 |
allfieldsSound |
10.1109/TPEL.2014.2314721 doi PQ20160617 (DE-627)OLC1957405384 (DE-599)GBVOLC1957405384 (PRQ)c2695-24d434f1ec1c36328bf87b921bcef8a48f7f008e32903c779c2c27b6f0e4122b0 (KEY)0151676020150000030000301605accuratereactivepowersharinginanislandedmicrogridu DE-627 ger DE-627 rakwb eng 620 DNB ZG 1100: AVZ rvk 53.35 bkl Mahmood, Hisham verfasserin aut Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a reactive power sharing strategy that employs communication and the virtual impedance concept is proposed to enhance the accuracy of reactive power sharing in an islanded microgrid. Communication is utilized to facilitate the tuning of adaptive virtual impedances in order to compensate for the mismatch in voltage drops across feeders. Once the virtual impedances are tuned for a given load operating point, the strategy will result in accurate reactive power sharing even if communication is disrupted. If the load changes while communication is unavailable, the sharing accuracy is reduced, but the proposed strategy will still outperform the conventional droop control method. In addition, the reactive power sharing accuracy based on the proposed strategy is immune to the time delay in the communication channel. The sensitivity of the tuned controller parameters to changes in the system operating point is also explored. The control strategy is straightforward to implement and does not require knowledge of the feeder impedances. The feasibility and effectiveness of the proposed strategy are validated using simulation and experimental results from a 2-kVA microgrid. Microgrids Impedance load operating point adaptive control Accuracy communication channel Reactive power electric potential adaptive virtual impedance tuning power generation control reactive power sharing strategy time delay control system synthesis electric impedance Voltage control Inverters voltage drop power grids islanded microgrid system operating point distributed power generation controller parameter tuning reactive power control Energy management apparent power 2 kVA droop control method Communication Sensitivity Feasibility Knowledge Effectiveness Michaelson, Dennis oth Jin Jiang oth Enthalten in IEEE transactions on power electronics New York, NY : IEEE, 1986 30(2015), 3, Seite 1605-1617 (DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 0885-8993 nnns volume:30 year:2015 number:3 pages:1605-1617 http://dx.doi.org/10.1109/TPEL.2014.2314721 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6781578 http://search.proquest.com/docview/1618846553 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 ZG 1100: 53.35 AVZ AR 30 2015 3 1605-1617 |
language |
English |
source |
Enthalten in IEEE transactions on power electronics 30(2015), 3, Seite 1605-1617 volume:30 year:2015 number:3 pages:1605-1617 |
sourceStr |
Enthalten in IEEE transactions on power electronics 30(2015), 3, Seite 1605-1617 volume:30 year:2015 number:3 pages:1605-1617 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Microgrids Impedance load operating point adaptive control Accuracy communication channel Reactive power electric potential adaptive virtual impedance tuning power generation control reactive power sharing strategy time delay control system synthesis electric impedance Voltage control Inverters voltage drop power grids islanded microgrid system operating point distributed power generation controller parameter tuning reactive power control Energy management apparent power 2 kVA droop control method Communication Sensitivity Feasibility Knowledge Effectiveness |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on power electronics |
authorswithroles_txt_mv |
Mahmood, Hisham @@aut@@ Michaelson, Dennis @@oth@@ Jin Jiang @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129383333 |
dewey-sort |
3620 |
id |
OLC1957405384 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1957405384</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220214801.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPEL.2014.2314721</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1957405384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1957405384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2695-24d434f1ec1c36328bf87b921bcef8a48f7f008e32903c779c2c27b6f0e4122b0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0151676020150000030000301605accuratereactivepowersharinginanislandedmicrogridu</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZG 1100:</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mahmood, Hisham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a reactive power sharing strategy that employs communication and the virtual impedance concept is proposed to enhance the accuracy of reactive power sharing in an islanded microgrid. Communication is utilized to facilitate the tuning of adaptive virtual impedances in order to compensate for the mismatch in voltage drops across feeders. Once the virtual impedances are tuned for a given load operating point, the strategy will result in accurate reactive power sharing even if communication is disrupted. If the load changes while communication is unavailable, the sharing accuracy is reduced, but the proposed strategy will still outperform the conventional droop control method. In addition, the reactive power sharing accuracy based on the proposed strategy is immune to the time delay in the communication channel. The sensitivity of the tuned controller parameters to changes in the system operating point is also explored. The control strategy is straightforward to implement and does not require knowledge of the feeder impedances. The feasibility and effectiveness of the proposed strategy are validated using simulation and experimental results from a 2-kVA microgrid.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microgrids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impedance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">load operating point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">communication channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactive power</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electric potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive virtual impedance tuning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power generation control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reactive power sharing strategy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time delay</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control system synthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electric impedance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Voltage control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">voltage drop</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power grids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">islanded microgrid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">system operating point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed power generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">controller parameter tuning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reactive power control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">apparent power 2 kVA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">droop control method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feasibility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knowledge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Effectiveness</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Michaelson, Dennis</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jin Jiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on power electronics</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">30(2015), 3, Seite 1605-1617</subfield><subfield code="w">(DE-627)129383333</subfield><subfield code="w">(DE-600)165902-9</subfield><subfield code="w">(DE-576)014769980</subfield><subfield code="x">0885-8993</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1605-1617</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPEL.2014.2314721</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6781578</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1618846553</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">ZG 1100:</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.35</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">1605-1617</subfield></datafield></record></collection>
|
author |
Mahmood, Hisham |
spellingShingle |
Mahmood, Hisham ddc 620 rvk ZG 1100: bkl 53.35 misc Microgrids misc Impedance misc load operating point misc adaptive control misc Accuracy misc communication channel misc Reactive power misc electric potential misc adaptive virtual impedance tuning misc power generation control misc reactive power sharing strategy misc time delay misc control system synthesis misc electric impedance misc Voltage control misc Inverters misc voltage drop misc power grids misc islanded microgrid misc system operating point misc distributed power generation misc controller parameter tuning misc reactive power control misc Energy management misc apparent power 2 kVA misc droop control method misc Communication misc Sensitivity misc Feasibility misc Knowledge misc Effectiveness Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances |
authorStr |
Mahmood, Hisham |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129383333 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0885-8993 |
topic_title |
620 DNB ZG 1100: AVZ rvk 53.35 bkl Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances Microgrids Impedance load operating point adaptive control Accuracy communication channel Reactive power electric potential adaptive virtual impedance tuning power generation control reactive power sharing strategy time delay control system synthesis electric impedance Voltage control Inverters voltage drop power grids islanded microgrid system operating point distributed power generation controller parameter tuning reactive power control Energy management apparent power 2 kVA droop control method Communication Sensitivity Feasibility Knowledge Effectiveness |
topic |
ddc 620 rvk ZG 1100: bkl 53.35 misc Microgrids misc Impedance misc load operating point misc adaptive control misc Accuracy misc communication channel misc Reactive power misc electric potential misc adaptive virtual impedance tuning misc power generation control misc reactive power sharing strategy misc time delay misc control system synthesis misc electric impedance misc Voltage control misc Inverters misc voltage drop misc power grids misc islanded microgrid misc system operating point misc distributed power generation misc controller parameter tuning misc reactive power control misc Energy management misc apparent power 2 kVA misc droop control method misc Communication misc Sensitivity misc Feasibility misc Knowledge misc Effectiveness |
topic_unstemmed |
ddc 620 rvk ZG 1100: bkl 53.35 misc Microgrids misc Impedance misc load operating point misc adaptive control misc Accuracy misc communication channel misc Reactive power misc electric potential misc adaptive virtual impedance tuning misc power generation control misc reactive power sharing strategy misc time delay misc control system synthesis misc electric impedance misc Voltage control misc Inverters misc voltage drop misc power grids misc islanded microgrid misc system operating point misc distributed power generation misc controller parameter tuning misc reactive power control misc Energy management misc apparent power 2 kVA misc droop control method misc Communication misc Sensitivity misc Feasibility misc Knowledge misc Effectiveness |
topic_browse |
ddc 620 rvk ZG 1100: bkl 53.35 misc Microgrids misc Impedance misc load operating point misc adaptive control misc Accuracy misc communication channel misc Reactive power misc electric potential misc adaptive virtual impedance tuning misc power generation control misc reactive power sharing strategy misc time delay misc control system synthesis misc electric impedance misc Voltage control misc Inverters misc voltage drop misc power grids misc islanded microgrid misc system operating point misc distributed power generation misc controller parameter tuning misc reactive power control misc Energy management misc apparent power 2 kVA misc droop control method misc Communication misc Sensitivity misc Feasibility misc Knowledge misc Effectiveness |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
d m dm j j jj |
hierarchy_parent_title |
IEEE transactions on power electronics |
hierarchy_parent_id |
129383333 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on power electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 |
title |
Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances |
ctrlnum |
(DE-627)OLC1957405384 (DE-599)GBVOLC1957405384 (PRQ)c2695-24d434f1ec1c36328bf87b921bcef8a48f7f008e32903c779c2c27b6f0e4122b0 (KEY)0151676020150000030000301605accuratereactivepowersharinginanislandedmicrogridu |
title_full |
Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances |
author_sort |
Mahmood, Hisham |
journal |
IEEE transactions on power electronics |
journalStr |
IEEE transactions on power electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1605 |
author_browse |
Mahmood, Hisham |
container_volume |
30 |
class |
620 DNB ZG 1100: AVZ rvk 53.35 bkl |
format_se |
Aufsätze |
author-letter |
Mahmood, Hisham |
doi_str_mv |
10.1109/TPEL.2014.2314721 |
dewey-full |
620 |
title_sort |
accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances |
title_auth |
Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances |
abstract |
In this paper, a reactive power sharing strategy that employs communication and the virtual impedance concept is proposed to enhance the accuracy of reactive power sharing in an islanded microgrid. Communication is utilized to facilitate the tuning of adaptive virtual impedances in order to compensate for the mismatch in voltage drops across feeders. Once the virtual impedances are tuned for a given load operating point, the strategy will result in accurate reactive power sharing even if communication is disrupted. If the load changes while communication is unavailable, the sharing accuracy is reduced, but the proposed strategy will still outperform the conventional droop control method. In addition, the reactive power sharing accuracy based on the proposed strategy is immune to the time delay in the communication channel. The sensitivity of the tuned controller parameters to changes in the system operating point is also explored. The control strategy is straightforward to implement and does not require knowledge of the feeder impedances. The feasibility and effectiveness of the proposed strategy are validated using simulation and experimental results from a 2-kVA microgrid. |
abstractGer |
In this paper, a reactive power sharing strategy that employs communication and the virtual impedance concept is proposed to enhance the accuracy of reactive power sharing in an islanded microgrid. Communication is utilized to facilitate the tuning of adaptive virtual impedances in order to compensate for the mismatch in voltage drops across feeders. Once the virtual impedances are tuned for a given load operating point, the strategy will result in accurate reactive power sharing even if communication is disrupted. If the load changes while communication is unavailable, the sharing accuracy is reduced, but the proposed strategy will still outperform the conventional droop control method. In addition, the reactive power sharing accuracy based on the proposed strategy is immune to the time delay in the communication channel. The sensitivity of the tuned controller parameters to changes in the system operating point is also explored. The control strategy is straightforward to implement and does not require knowledge of the feeder impedances. The feasibility and effectiveness of the proposed strategy are validated using simulation and experimental results from a 2-kVA microgrid. |
abstract_unstemmed |
In this paper, a reactive power sharing strategy that employs communication and the virtual impedance concept is proposed to enhance the accuracy of reactive power sharing in an islanded microgrid. Communication is utilized to facilitate the tuning of adaptive virtual impedances in order to compensate for the mismatch in voltage drops across feeders. Once the virtual impedances are tuned for a given load operating point, the strategy will result in accurate reactive power sharing even if communication is disrupted. If the load changes while communication is unavailable, the sharing accuracy is reduced, but the proposed strategy will still outperform the conventional droop control method. In addition, the reactive power sharing accuracy based on the proposed strategy is immune to the time delay in the communication channel. The sensitivity of the tuned controller parameters to changes in the system operating point is also explored. The control strategy is straightforward to implement and does not require knowledge of the feeder impedances. The feasibility and effectiveness of the proposed strategy are validated using simulation and experimental results from a 2-kVA microgrid. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 |
container_issue |
3 |
title_short |
Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances |
url |
http://dx.doi.org/10.1109/TPEL.2014.2314721 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6781578 http://search.proquest.com/docview/1618846553 |
remote_bool |
false |
author2 |
Michaelson, Dennis Jin Jiang |
author2Str |
Michaelson, Dennis Jin Jiang |
ppnlink |
129383333 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/TPEL.2014.2314721 |
up_date |
2024-07-04T00:09:20.503Z |
_version_ |
1803604994822242304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1957405384</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220214801.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPEL.2014.2314721</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1957405384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1957405384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2695-24d434f1ec1c36328bf87b921bcef8a48f7f008e32903c779c2c27b6f0e4122b0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0151676020150000030000301605accuratereactivepowersharinginanislandedmicrogridu</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZG 1100:</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mahmood, Hisham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a reactive power sharing strategy that employs communication and the virtual impedance concept is proposed to enhance the accuracy of reactive power sharing in an islanded microgrid. Communication is utilized to facilitate the tuning of adaptive virtual impedances in order to compensate for the mismatch in voltage drops across feeders. Once the virtual impedances are tuned for a given load operating point, the strategy will result in accurate reactive power sharing even if communication is disrupted. If the load changes while communication is unavailable, the sharing accuracy is reduced, but the proposed strategy will still outperform the conventional droop control method. In addition, the reactive power sharing accuracy based on the proposed strategy is immune to the time delay in the communication channel. The sensitivity of the tuned controller parameters to changes in the system operating point is also explored. The control strategy is straightforward to implement and does not require knowledge of the feeder impedances. The feasibility and effectiveness of the proposed strategy are validated using simulation and experimental results from a 2-kVA microgrid.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microgrids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impedance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">load operating point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">communication channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactive power</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electric potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive virtual impedance tuning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power generation control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reactive power sharing strategy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time delay</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control system synthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electric impedance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Voltage control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">voltage drop</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power grids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">islanded microgrid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">system operating point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed power generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">controller parameter tuning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reactive power control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">apparent power 2 kVA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">droop control method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feasibility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knowledge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Effectiveness</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Michaelson, Dennis</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jin Jiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on power electronics</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">30(2015), 3, Seite 1605-1617</subfield><subfield code="w">(DE-627)129383333</subfield><subfield code="w">(DE-600)165902-9</subfield><subfield code="w">(DE-576)014769980</subfield><subfield code="x">0885-8993</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1605-1617</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPEL.2014.2314721</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6781578</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1618846553</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">ZG 1100:</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.35</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">1605-1617</subfield></datafield></record></collection>
|
score |
7.3993473 |