Active damping control strategy of matrix converter via modifying input reference currents
The matrix converter (MC) with an LC filter at source side suffers from system instability, thereby requiring damping control. To improve system stability, this paper proposes a novel active damping control strategy. First, the method of generating space vector modulation signals is improved, in ord...
Ausführliche Beschreibung
Autor*in: |
Jiaxing Lei [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
active damping control strategy |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on power electronics - New York, NY : IEEE, 1986, 30(2015), 9, Seite 5260-5271 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2015 ; number:9 ; pages:5260-5271 |
Links: |
---|
DOI / URN: |
10.1109/TPEL.2014.2365578 |
---|
Katalog-ID: |
OLC1957406038 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1957406038 | ||
003 | DE-627 | ||
005 | 20220220214820.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TPEL.2014.2365578 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1957406038 | ||
035 | |a (DE-599)GBVOLC1957406038 | ||
035 | |a (PRQ)c2340-472f7df8c41c661b58962dd99a520a6e8120e5f2faa85da908d4caebb3f557400 | ||
035 | |a (KEY)0151676020150000030000905260activedampingcontrolstrategyofmatrixconverterviamo | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a ZG 1100: |q AVZ |2 rvk | ||
084 | |a 53.35 |2 bkl | ||
100 | 0 | |a Jiaxing Lei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Active damping control strategy of matrix converter via modifying input reference currents |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The matrix converter (MC) with an LC filter at source side suffers from system instability, thereby requiring damping control. To improve system stability, this paper proposes a novel active damping control strategy. First, the method of generating space vector modulation signals is improved, in order to make the amplitude and phase angle of input currents directly controllable without affecting the priority of output voltage control. Then, the proposed strategy, which is realized by injecting damping signals into input reference currents, is presented. In this way, the proposed strategy can suppress the oscillations in source currents directly. Besides, it is effective with source voltages or capacitor voltages sampled for modulation, regardless of the operation mode of MC. Furthermore, it is applicable to most of existing modulation algorithms. Finally, experimental results of four-quadrant operation on a 2.4-kW prototype illustrate that, under the condition of the same parameters, the proposed active damping control strategy performs better than passive damping control in filtering and the same in damping at source side, without sacrificing the driving performance at output side. | ||
650 | 4 | |a passive damping control | |
650 | 4 | |a active damping control strategy | |
650 | 4 | |a matrix convertors | |
650 | 4 | |a stability improvement | |
650 | 4 | |a four-quadrant operation | |
650 | 4 | |a stability | |
650 | 4 | |a voltage control | |
650 | 4 | |a matrix converter | |
650 | 4 | |a power filters | |
650 | 4 | |a Active Damping Control | |
650 | 4 | |a phase angle | |
650 | 4 | |a Modulation | |
650 | 4 | |a amplitude angle | |
650 | 4 | |a Input currents control | |
650 | 4 | |a power 2.4 kW | |
650 | 4 | |a output voltage control | |
650 | 4 | |a Vectors | |
650 | 4 | |a Oscillators | |
650 | 4 | |a space vector modulation signals | |
650 | 4 | |a source currents | |
650 | 4 | |a input reference currents | |
650 | 4 | |a Matrix Converter (MC) | |
650 | 4 | |a LC filter | |
650 | 4 | |a Capacitors | |
650 | 4 | |a Resistors | |
650 | 4 | |a Damping | |
650 | 4 | |a Vector space | |
650 | 4 | |a Signal processing | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Electrical currents | |
650 | 4 | |a Matrix | |
650 | 4 | |a Controllers | |
650 | 4 | |a Research | |
650 | 4 | |a Stability | |
650 | 4 | |a Damping (Mechanics) | |
650 | 4 | |a Electric filters | |
700 | 0 | |a Bo Zhou |4 oth | |
700 | 0 | |a Xianhui Qin |4 oth | |
700 | 0 | |a Jiadan Wei |4 oth | |
700 | 0 | |a Jinliang Bian |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on power electronics |d New York, NY : IEEE, 1986 |g 30(2015), 9, Seite 5260-5271 |w (DE-627)129383333 |w (DE-600)165902-9 |w (DE-576)014769980 |x 0885-8993 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2015 |g number:9 |g pages:5260-5271 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TPEL.2014.2365578 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6939726 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1676112091 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2061 | ||
936 | r | v | |a ZG 1100: |
936 | b | k | |a 53.35 |q AVZ |
951 | |a AR | ||
952 | |d 30 |j 2015 |e 9 |h 5260-5271 |
author_variant |
j l jl |
---|---|
matchkey_str |
article:08858993:2015----::cieapncnrltaeyfarxovrevaoiyn |
hierarchy_sort_str |
2015 |
bklnumber |
53.35 |
publishDate |
2015 |
allfields |
10.1109/TPEL.2014.2365578 doi PQ20160617 (DE-627)OLC1957406038 (DE-599)GBVOLC1957406038 (PRQ)c2340-472f7df8c41c661b58962dd99a520a6e8120e5f2faa85da908d4caebb3f557400 (KEY)0151676020150000030000905260activedampingcontrolstrategyofmatrixconverterviamo DE-627 ger DE-627 rakwb eng 620 DNB ZG 1100: AVZ rvk 53.35 bkl Jiaxing Lei verfasserin aut Active damping control strategy of matrix converter via modifying input reference currents 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The matrix converter (MC) with an LC filter at source side suffers from system instability, thereby requiring damping control. To improve system stability, this paper proposes a novel active damping control strategy. First, the method of generating space vector modulation signals is improved, in order to make the amplitude and phase angle of input currents directly controllable without affecting the priority of output voltage control. Then, the proposed strategy, which is realized by injecting damping signals into input reference currents, is presented. In this way, the proposed strategy can suppress the oscillations in source currents directly. Besides, it is effective with source voltages or capacitor voltages sampled for modulation, regardless of the operation mode of MC. Furthermore, it is applicable to most of existing modulation algorithms. Finally, experimental results of four-quadrant operation on a 2.4-kW prototype illustrate that, under the condition of the same parameters, the proposed active damping control strategy performs better than passive damping control in filtering and the same in damping at source side, without sacrificing the driving performance at output side. passive damping control active damping control strategy matrix convertors stability improvement four-quadrant operation stability voltage control matrix converter power filters Active Damping Control phase angle Modulation amplitude angle Input currents control power 2.4 kW output voltage control Vectors Oscillators space vector modulation signals source currents input reference currents Matrix Converter (MC) LC filter Capacitors Resistors Damping Vector space Signal processing Algorithms Electrical currents Matrix Controllers Research Stability Damping (Mechanics) Electric filters Bo Zhou oth Xianhui Qin oth Jiadan Wei oth Jinliang Bian oth Enthalten in IEEE transactions on power electronics New York, NY : IEEE, 1986 30(2015), 9, Seite 5260-5271 (DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 0885-8993 nnns volume:30 year:2015 number:9 pages:5260-5271 http://dx.doi.org/10.1109/TPEL.2014.2365578 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6939726 http://search.proquest.com/docview/1676112091 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 ZG 1100: 53.35 AVZ AR 30 2015 9 5260-5271 |
spelling |
10.1109/TPEL.2014.2365578 doi PQ20160617 (DE-627)OLC1957406038 (DE-599)GBVOLC1957406038 (PRQ)c2340-472f7df8c41c661b58962dd99a520a6e8120e5f2faa85da908d4caebb3f557400 (KEY)0151676020150000030000905260activedampingcontrolstrategyofmatrixconverterviamo DE-627 ger DE-627 rakwb eng 620 DNB ZG 1100: AVZ rvk 53.35 bkl Jiaxing Lei verfasserin aut Active damping control strategy of matrix converter via modifying input reference currents 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The matrix converter (MC) with an LC filter at source side suffers from system instability, thereby requiring damping control. To improve system stability, this paper proposes a novel active damping control strategy. First, the method of generating space vector modulation signals is improved, in order to make the amplitude and phase angle of input currents directly controllable without affecting the priority of output voltage control. Then, the proposed strategy, which is realized by injecting damping signals into input reference currents, is presented. In this way, the proposed strategy can suppress the oscillations in source currents directly. Besides, it is effective with source voltages or capacitor voltages sampled for modulation, regardless of the operation mode of MC. Furthermore, it is applicable to most of existing modulation algorithms. Finally, experimental results of four-quadrant operation on a 2.4-kW prototype illustrate that, under the condition of the same parameters, the proposed active damping control strategy performs better than passive damping control in filtering and the same in damping at source side, without sacrificing the driving performance at output side. passive damping control active damping control strategy matrix convertors stability improvement four-quadrant operation stability voltage control matrix converter power filters Active Damping Control phase angle Modulation amplitude angle Input currents control power 2.4 kW output voltage control Vectors Oscillators space vector modulation signals source currents input reference currents Matrix Converter (MC) LC filter Capacitors Resistors Damping Vector space Signal processing Algorithms Electrical currents Matrix Controllers Research Stability Damping (Mechanics) Electric filters Bo Zhou oth Xianhui Qin oth Jiadan Wei oth Jinliang Bian oth Enthalten in IEEE transactions on power electronics New York, NY : IEEE, 1986 30(2015), 9, Seite 5260-5271 (DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 0885-8993 nnns volume:30 year:2015 number:9 pages:5260-5271 http://dx.doi.org/10.1109/TPEL.2014.2365578 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6939726 http://search.proquest.com/docview/1676112091 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 ZG 1100: 53.35 AVZ AR 30 2015 9 5260-5271 |
allfields_unstemmed |
10.1109/TPEL.2014.2365578 doi PQ20160617 (DE-627)OLC1957406038 (DE-599)GBVOLC1957406038 (PRQ)c2340-472f7df8c41c661b58962dd99a520a6e8120e5f2faa85da908d4caebb3f557400 (KEY)0151676020150000030000905260activedampingcontrolstrategyofmatrixconverterviamo DE-627 ger DE-627 rakwb eng 620 DNB ZG 1100: AVZ rvk 53.35 bkl Jiaxing Lei verfasserin aut Active damping control strategy of matrix converter via modifying input reference currents 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The matrix converter (MC) with an LC filter at source side suffers from system instability, thereby requiring damping control. To improve system stability, this paper proposes a novel active damping control strategy. First, the method of generating space vector modulation signals is improved, in order to make the amplitude and phase angle of input currents directly controllable without affecting the priority of output voltage control. Then, the proposed strategy, which is realized by injecting damping signals into input reference currents, is presented. In this way, the proposed strategy can suppress the oscillations in source currents directly. Besides, it is effective with source voltages or capacitor voltages sampled for modulation, regardless of the operation mode of MC. Furthermore, it is applicable to most of existing modulation algorithms. Finally, experimental results of four-quadrant operation on a 2.4-kW prototype illustrate that, under the condition of the same parameters, the proposed active damping control strategy performs better than passive damping control in filtering and the same in damping at source side, without sacrificing the driving performance at output side. passive damping control active damping control strategy matrix convertors stability improvement four-quadrant operation stability voltage control matrix converter power filters Active Damping Control phase angle Modulation amplitude angle Input currents control power 2.4 kW output voltage control Vectors Oscillators space vector modulation signals source currents input reference currents Matrix Converter (MC) LC filter Capacitors Resistors Damping Vector space Signal processing Algorithms Electrical currents Matrix Controllers Research Stability Damping (Mechanics) Electric filters Bo Zhou oth Xianhui Qin oth Jiadan Wei oth Jinliang Bian oth Enthalten in IEEE transactions on power electronics New York, NY : IEEE, 1986 30(2015), 9, Seite 5260-5271 (DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 0885-8993 nnns volume:30 year:2015 number:9 pages:5260-5271 http://dx.doi.org/10.1109/TPEL.2014.2365578 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6939726 http://search.proquest.com/docview/1676112091 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 ZG 1100: 53.35 AVZ AR 30 2015 9 5260-5271 |
allfieldsGer |
10.1109/TPEL.2014.2365578 doi PQ20160617 (DE-627)OLC1957406038 (DE-599)GBVOLC1957406038 (PRQ)c2340-472f7df8c41c661b58962dd99a520a6e8120e5f2faa85da908d4caebb3f557400 (KEY)0151676020150000030000905260activedampingcontrolstrategyofmatrixconverterviamo DE-627 ger DE-627 rakwb eng 620 DNB ZG 1100: AVZ rvk 53.35 bkl Jiaxing Lei verfasserin aut Active damping control strategy of matrix converter via modifying input reference currents 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The matrix converter (MC) with an LC filter at source side suffers from system instability, thereby requiring damping control. To improve system stability, this paper proposes a novel active damping control strategy. First, the method of generating space vector modulation signals is improved, in order to make the amplitude and phase angle of input currents directly controllable without affecting the priority of output voltage control. Then, the proposed strategy, which is realized by injecting damping signals into input reference currents, is presented. In this way, the proposed strategy can suppress the oscillations in source currents directly. Besides, it is effective with source voltages or capacitor voltages sampled for modulation, regardless of the operation mode of MC. Furthermore, it is applicable to most of existing modulation algorithms. Finally, experimental results of four-quadrant operation on a 2.4-kW prototype illustrate that, under the condition of the same parameters, the proposed active damping control strategy performs better than passive damping control in filtering and the same in damping at source side, without sacrificing the driving performance at output side. passive damping control active damping control strategy matrix convertors stability improvement four-quadrant operation stability voltage control matrix converter power filters Active Damping Control phase angle Modulation amplitude angle Input currents control power 2.4 kW output voltage control Vectors Oscillators space vector modulation signals source currents input reference currents Matrix Converter (MC) LC filter Capacitors Resistors Damping Vector space Signal processing Algorithms Electrical currents Matrix Controllers Research Stability Damping (Mechanics) Electric filters Bo Zhou oth Xianhui Qin oth Jiadan Wei oth Jinliang Bian oth Enthalten in IEEE transactions on power electronics New York, NY : IEEE, 1986 30(2015), 9, Seite 5260-5271 (DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 0885-8993 nnns volume:30 year:2015 number:9 pages:5260-5271 http://dx.doi.org/10.1109/TPEL.2014.2365578 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6939726 http://search.proquest.com/docview/1676112091 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 ZG 1100: 53.35 AVZ AR 30 2015 9 5260-5271 |
allfieldsSound |
10.1109/TPEL.2014.2365578 doi PQ20160617 (DE-627)OLC1957406038 (DE-599)GBVOLC1957406038 (PRQ)c2340-472f7df8c41c661b58962dd99a520a6e8120e5f2faa85da908d4caebb3f557400 (KEY)0151676020150000030000905260activedampingcontrolstrategyofmatrixconverterviamo DE-627 ger DE-627 rakwb eng 620 DNB ZG 1100: AVZ rvk 53.35 bkl Jiaxing Lei verfasserin aut Active damping control strategy of matrix converter via modifying input reference currents 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The matrix converter (MC) with an LC filter at source side suffers from system instability, thereby requiring damping control. To improve system stability, this paper proposes a novel active damping control strategy. First, the method of generating space vector modulation signals is improved, in order to make the amplitude and phase angle of input currents directly controllable without affecting the priority of output voltage control. Then, the proposed strategy, which is realized by injecting damping signals into input reference currents, is presented. In this way, the proposed strategy can suppress the oscillations in source currents directly. Besides, it is effective with source voltages or capacitor voltages sampled for modulation, regardless of the operation mode of MC. Furthermore, it is applicable to most of existing modulation algorithms. Finally, experimental results of four-quadrant operation on a 2.4-kW prototype illustrate that, under the condition of the same parameters, the proposed active damping control strategy performs better than passive damping control in filtering and the same in damping at source side, without sacrificing the driving performance at output side. passive damping control active damping control strategy matrix convertors stability improvement four-quadrant operation stability voltage control matrix converter power filters Active Damping Control phase angle Modulation amplitude angle Input currents control power 2.4 kW output voltage control Vectors Oscillators space vector modulation signals source currents input reference currents Matrix Converter (MC) LC filter Capacitors Resistors Damping Vector space Signal processing Algorithms Electrical currents Matrix Controllers Research Stability Damping (Mechanics) Electric filters Bo Zhou oth Xianhui Qin oth Jiadan Wei oth Jinliang Bian oth Enthalten in IEEE transactions on power electronics New York, NY : IEEE, 1986 30(2015), 9, Seite 5260-5271 (DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 0885-8993 nnns volume:30 year:2015 number:9 pages:5260-5271 http://dx.doi.org/10.1109/TPEL.2014.2365578 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6939726 http://search.proquest.com/docview/1676112091 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 ZG 1100: 53.35 AVZ AR 30 2015 9 5260-5271 |
language |
English |
source |
Enthalten in IEEE transactions on power electronics 30(2015), 9, Seite 5260-5271 volume:30 year:2015 number:9 pages:5260-5271 |
sourceStr |
Enthalten in IEEE transactions on power electronics 30(2015), 9, Seite 5260-5271 volume:30 year:2015 number:9 pages:5260-5271 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
passive damping control active damping control strategy matrix convertors stability improvement four-quadrant operation stability voltage control matrix converter power filters Active Damping Control phase angle Modulation amplitude angle Input currents control power 2.4 kW output voltage control Vectors Oscillators space vector modulation signals source currents input reference currents Matrix Converter (MC) LC filter Capacitors Resistors Damping Vector space Signal processing Algorithms Electrical currents Matrix Controllers Research Stability Damping (Mechanics) Electric filters |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on power electronics |
authorswithroles_txt_mv |
Jiaxing Lei @@aut@@ Bo Zhou @@oth@@ Xianhui Qin @@oth@@ Jiadan Wei @@oth@@ Jinliang Bian @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129383333 |
dewey-sort |
3620 |
id |
OLC1957406038 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1957406038</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220214820.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPEL.2014.2365578</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1957406038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1957406038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2340-472f7df8c41c661b58962dd99a520a6e8120e5f2faa85da908d4caebb3f557400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0151676020150000030000905260activedampingcontrolstrategyofmatrixconverterviamo</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZG 1100:</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiaxing Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Active damping control strategy of matrix converter via modifying input reference currents</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The matrix converter (MC) with an LC filter at source side suffers from system instability, thereby requiring damping control. To improve system stability, this paper proposes a novel active damping control strategy. First, the method of generating space vector modulation signals is improved, in order to make the amplitude and phase angle of input currents directly controllable without affecting the priority of output voltage control. Then, the proposed strategy, which is realized by injecting damping signals into input reference currents, is presented. In this way, the proposed strategy can suppress the oscillations in source currents directly. Besides, it is effective with source voltages or capacitor voltages sampled for modulation, regardless of the operation mode of MC. Furthermore, it is applicable to most of existing modulation algorithms. Finally, experimental results of four-quadrant operation on a 2.4-kW prototype illustrate that, under the condition of the same parameters, the proposed active damping control strategy performs better than passive damping control in filtering and the same in damping at source side, without sacrificing the driving performance at output side.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">passive damping control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">active damping control strategy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">matrix convertors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability improvement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">four-quadrant operation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">voltage control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">matrix converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power filters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Active Damping Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase angle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">amplitude angle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Input currents control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power 2.4 kW</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">output voltage control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oscillators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">space vector modulation signals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">source currents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">input reference currents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix Converter (MC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LC filter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Capacitors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resistors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical currents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Controllers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damping (Mechanics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric filters</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bo Zhou</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xianhui Qin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiadan Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinliang Bian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on power electronics</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">30(2015), 9, Seite 5260-5271</subfield><subfield code="w">(DE-627)129383333</subfield><subfield code="w">(DE-600)165902-9</subfield><subfield code="w">(DE-576)014769980</subfield><subfield code="x">0885-8993</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:5260-5271</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPEL.2014.2365578</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6939726</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1676112091</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">ZG 1100:</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.35</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2015</subfield><subfield code="e">9</subfield><subfield code="h">5260-5271</subfield></datafield></record></collection>
|
author |
Jiaxing Lei |
spellingShingle |
Jiaxing Lei ddc 620 rvk ZG 1100: bkl 53.35 misc passive damping control misc active damping control strategy misc matrix convertors misc stability improvement misc four-quadrant operation misc stability misc voltage control misc matrix converter misc power filters misc Active Damping Control misc phase angle misc Modulation misc amplitude angle misc Input currents control misc power 2.4 kW misc output voltage control misc Vectors misc Oscillators misc space vector modulation signals misc source currents misc input reference currents misc Matrix Converter (MC) misc LC filter misc Capacitors misc Resistors misc Damping misc Vector space misc Signal processing misc Algorithms misc Electrical currents misc Matrix misc Controllers misc Research misc Stability misc Damping (Mechanics) misc Electric filters Active damping control strategy of matrix converter via modifying input reference currents |
authorStr |
Jiaxing Lei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129383333 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0885-8993 |
topic_title |
620 DNB ZG 1100: AVZ rvk 53.35 bkl Active damping control strategy of matrix converter via modifying input reference currents passive damping control active damping control strategy matrix convertors stability improvement four-quadrant operation stability voltage control matrix converter power filters Active Damping Control phase angle Modulation amplitude angle Input currents control power 2.4 kW output voltage control Vectors Oscillators space vector modulation signals source currents input reference currents Matrix Converter (MC) LC filter Capacitors Resistors Damping Vector space Signal processing Algorithms Electrical currents Matrix Controllers Research Stability Damping (Mechanics) Electric filters |
topic |
ddc 620 rvk ZG 1100: bkl 53.35 misc passive damping control misc active damping control strategy misc matrix convertors misc stability improvement misc four-quadrant operation misc stability misc voltage control misc matrix converter misc power filters misc Active Damping Control misc phase angle misc Modulation misc amplitude angle misc Input currents control misc power 2.4 kW misc output voltage control misc Vectors misc Oscillators misc space vector modulation signals misc source currents misc input reference currents misc Matrix Converter (MC) misc LC filter misc Capacitors misc Resistors misc Damping misc Vector space misc Signal processing misc Algorithms misc Electrical currents misc Matrix misc Controllers misc Research misc Stability misc Damping (Mechanics) misc Electric filters |
topic_unstemmed |
ddc 620 rvk ZG 1100: bkl 53.35 misc passive damping control misc active damping control strategy misc matrix convertors misc stability improvement misc four-quadrant operation misc stability misc voltage control misc matrix converter misc power filters misc Active Damping Control misc phase angle misc Modulation misc amplitude angle misc Input currents control misc power 2.4 kW misc output voltage control misc Vectors misc Oscillators misc space vector modulation signals misc source currents misc input reference currents misc Matrix Converter (MC) misc LC filter misc Capacitors misc Resistors misc Damping misc Vector space misc Signal processing misc Algorithms misc Electrical currents misc Matrix misc Controllers misc Research misc Stability misc Damping (Mechanics) misc Electric filters |
topic_browse |
ddc 620 rvk ZG 1100: bkl 53.35 misc passive damping control misc active damping control strategy misc matrix convertors misc stability improvement misc four-quadrant operation misc stability misc voltage control misc matrix converter misc power filters misc Active Damping Control misc phase angle misc Modulation misc amplitude angle misc Input currents control misc power 2.4 kW misc output voltage control misc Vectors misc Oscillators misc space vector modulation signals misc source currents misc input reference currents misc Matrix Converter (MC) misc LC filter misc Capacitors misc Resistors misc Damping misc Vector space misc Signal processing misc Algorithms misc Electrical currents misc Matrix misc Controllers misc Research misc Stability misc Damping (Mechanics) misc Electric filters |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
b z bz x q xq j w jw j b jb |
hierarchy_parent_title |
IEEE transactions on power electronics |
hierarchy_parent_id |
129383333 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on power electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 |
title |
Active damping control strategy of matrix converter via modifying input reference currents |
ctrlnum |
(DE-627)OLC1957406038 (DE-599)GBVOLC1957406038 (PRQ)c2340-472f7df8c41c661b58962dd99a520a6e8120e5f2faa85da908d4caebb3f557400 (KEY)0151676020150000030000905260activedampingcontrolstrategyofmatrixconverterviamo |
title_full |
Active damping control strategy of matrix converter via modifying input reference currents |
author_sort |
Jiaxing Lei |
journal |
IEEE transactions on power electronics |
journalStr |
IEEE transactions on power electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
5260 |
author_browse |
Jiaxing Lei |
container_volume |
30 |
class |
620 DNB ZG 1100: AVZ rvk 53.35 bkl |
format_se |
Aufsätze |
author-letter |
Jiaxing Lei |
doi_str_mv |
10.1109/TPEL.2014.2365578 |
dewey-full |
620 |
title_sort |
active damping control strategy of matrix converter via modifying input reference currents |
title_auth |
Active damping control strategy of matrix converter via modifying input reference currents |
abstract |
The matrix converter (MC) with an LC filter at source side suffers from system instability, thereby requiring damping control. To improve system stability, this paper proposes a novel active damping control strategy. First, the method of generating space vector modulation signals is improved, in order to make the amplitude and phase angle of input currents directly controllable without affecting the priority of output voltage control. Then, the proposed strategy, which is realized by injecting damping signals into input reference currents, is presented. In this way, the proposed strategy can suppress the oscillations in source currents directly. Besides, it is effective with source voltages or capacitor voltages sampled for modulation, regardless of the operation mode of MC. Furthermore, it is applicable to most of existing modulation algorithms. Finally, experimental results of four-quadrant operation on a 2.4-kW prototype illustrate that, under the condition of the same parameters, the proposed active damping control strategy performs better than passive damping control in filtering and the same in damping at source side, without sacrificing the driving performance at output side. |
abstractGer |
The matrix converter (MC) with an LC filter at source side suffers from system instability, thereby requiring damping control. To improve system stability, this paper proposes a novel active damping control strategy. First, the method of generating space vector modulation signals is improved, in order to make the amplitude and phase angle of input currents directly controllable without affecting the priority of output voltage control. Then, the proposed strategy, which is realized by injecting damping signals into input reference currents, is presented. In this way, the proposed strategy can suppress the oscillations in source currents directly. Besides, it is effective with source voltages or capacitor voltages sampled for modulation, regardless of the operation mode of MC. Furthermore, it is applicable to most of existing modulation algorithms. Finally, experimental results of four-quadrant operation on a 2.4-kW prototype illustrate that, under the condition of the same parameters, the proposed active damping control strategy performs better than passive damping control in filtering and the same in damping at source side, without sacrificing the driving performance at output side. |
abstract_unstemmed |
The matrix converter (MC) with an LC filter at source side suffers from system instability, thereby requiring damping control. To improve system stability, this paper proposes a novel active damping control strategy. First, the method of generating space vector modulation signals is improved, in order to make the amplitude and phase angle of input currents directly controllable without affecting the priority of output voltage control. Then, the proposed strategy, which is realized by injecting damping signals into input reference currents, is presented. In this way, the proposed strategy can suppress the oscillations in source currents directly. Besides, it is effective with source voltages or capacitor voltages sampled for modulation, regardless of the operation mode of MC. Furthermore, it is applicable to most of existing modulation algorithms. Finally, experimental results of four-quadrant operation on a 2.4-kW prototype illustrate that, under the condition of the same parameters, the proposed active damping control strategy performs better than passive damping control in filtering and the same in damping at source side, without sacrificing the driving performance at output side. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 |
container_issue |
9 |
title_short |
Active damping control strategy of matrix converter via modifying input reference currents |
url |
http://dx.doi.org/10.1109/TPEL.2014.2365578 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6939726 http://search.proquest.com/docview/1676112091 |
remote_bool |
false |
author2 |
Bo Zhou Xianhui Qin Jiadan Wei Jinliang Bian |
author2Str |
Bo Zhou Xianhui Qin Jiadan Wei Jinliang Bian |
ppnlink |
129383333 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1109/TPEL.2014.2365578 |
up_date |
2024-07-04T00:09:31.180Z |
_version_ |
1803605006018936832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1957406038</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220214820.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPEL.2014.2365578</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1957406038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1957406038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2340-472f7df8c41c661b58962dd99a520a6e8120e5f2faa85da908d4caebb3f557400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0151676020150000030000905260activedampingcontrolstrategyofmatrixconverterviamo</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZG 1100:</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiaxing Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Active damping control strategy of matrix converter via modifying input reference currents</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The matrix converter (MC) with an LC filter at source side suffers from system instability, thereby requiring damping control. To improve system stability, this paper proposes a novel active damping control strategy. First, the method of generating space vector modulation signals is improved, in order to make the amplitude and phase angle of input currents directly controllable without affecting the priority of output voltage control. Then, the proposed strategy, which is realized by injecting damping signals into input reference currents, is presented. In this way, the proposed strategy can suppress the oscillations in source currents directly. Besides, it is effective with source voltages or capacitor voltages sampled for modulation, regardless of the operation mode of MC. Furthermore, it is applicable to most of existing modulation algorithms. Finally, experimental results of four-quadrant operation on a 2.4-kW prototype illustrate that, under the condition of the same parameters, the proposed active damping control strategy performs better than passive damping control in filtering and the same in damping at source side, without sacrificing the driving performance at output side.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">passive damping control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">active damping control strategy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">matrix convertors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability improvement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">four-quadrant operation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">voltage control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">matrix converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power filters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Active Damping Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase angle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">amplitude angle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Input currents control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power 2.4 kW</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">output voltage control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oscillators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">space vector modulation signals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">source currents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">input reference currents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix Converter (MC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LC filter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Capacitors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resistors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical currents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Controllers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damping (Mechanics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric filters</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bo Zhou</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xianhui Qin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiadan Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinliang Bian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on power electronics</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">30(2015), 9, Seite 5260-5271</subfield><subfield code="w">(DE-627)129383333</subfield><subfield code="w">(DE-600)165902-9</subfield><subfield code="w">(DE-576)014769980</subfield><subfield code="x">0885-8993</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:5260-5271</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPEL.2014.2365578</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6939726</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1676112091</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">ZG 1100:</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.35</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2015</subfield><subfield code="e">9</subfield><subfield code="h">5260-5271</subfield></datafield></record></collection>
|
score |
7.4008274 |