Closed-Loop d /d and d /d IGBT Gate Driver
This paper proposes a new concept for attaining a defined switching behavior of insulated-gate bipolar transistors (IGBTs) at inductive load (hard) switching, which is a key prerequisite for optimizing the switching behavior in terms of switching losses and electromagnetic interference (EMI). First,...
Ausführliche Beschreibung
Autor*in: |
Lobsiger, Yanick [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
closed-loop di/dt IGBT gate driver insulated-gate bipolar transistors IGBT switching transient control insulated gate bipolar transistors |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on power electronics - New York, NY : IEEE, 1986, 30(2015), 6, Seite 3402-3417 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2015 ; number:6 ; pages:3402-3417 |
Links: |
---|
DOI / URN: |
10.1109/TPEL.2014.2332811 |
---|
Katalog-ID: |
OLC1957410760 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1957410760 | ||
003 | DE-627 | ||
005 | 20220220214810.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TPEL.2014.2332811 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1957410760 | ||
035 | |a (DE-599)GBVOLC1957410760 | ||
035 | |a (PRQ)g1386-1436e680e2bc2f6f22969632caa94c723f544ac9a0b6832ab3454c00351ce47c0 | ||
035 | |a (KEY)0151676020150000030000603402closedloopddandddigbtgatedriver | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a ZG 1100: |q AVZ |2 rvk | ||
084 | |a 53.35 |2 bkl | ||
100 | 1 | |a Lobsiger, Yanick |e verfasserin |4 aut | |
245 | 1 | 0 | |a Closed-Loop d /d and d /d IGBT Gate Driver |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This paper proposes a new concept for attaining a defined switching behavior of insulated-gate bipolar transistors (IGBTs) at inductive load (hard) switching, which is a key prerequisite for optimizing the switching behavior in terms of switching losses and electromagnetic interference (EMI). First, state-of-theart gate driver concepts that enable a control of the IGBT's switching transients are reviewed. Thereafter, a highly dynamic closed-loop IGBT gate driver using simple passive di C /dt and dv CE /dt feedbacks and employing a single analog PI-controller is proposed. Contrary to conventional passive gate drivers, this concept enables an individual control of the current and voltage slopes largely independent of the specific parameters or nonlinearities of the IGBT. Accordingly, a means for optimizing the tradeoff between switching losses, switching delay times, reverse recovery current of the freewheeling diode, turn-off overvoltage, and EMI is gained. The operating principle of the new gate driver is described and based on derived control oriented models of the IGBT, a stability analysis of the closed-loop control is carried out for different IGBT modules. Finally, the proposed concept is experimentally verified for different IGBT modules and compared to a conventional resistive gate driver. | ||
650 | 4 | |a circuit stability | |
650 | 4 | |a inductive load switching | |
650 | 4 | |a Integrated circuits | |
650 | 4 | |a passive networks | |
650 | 4 | |a voltage control | |
650 | 4 | |a closed-loop di/dt IGBT gate driver | |
650 | 4 | |a dv CE /dt feedbacks | |
650 | 4 | |a switching behavior | |
650 | 4 | |a circuit optimisation | |
650 | 4 | |a analog PI-controller | |
650 | 4 | |a PI control | |
650 | 4 | |a passive di C /dt feedback | |
650 | 4 | |a bipolar transistors (IGBTs) | |
650 | 4 | |a insulated-gate bipolar transistors | |
650 | 4 | |a driver circuits | |
650 | 4 | |a switching delay times | |
650 | 4 | |a freewheeling diode | |
650 | 4 | |a turn-off overvoltage | |
650 | 4 | |a dv/dt IGBT gate driver | |
650 | 4 | |a Logic gates | |
650 | 4 | |a EMI | |
650 | 4 | |a switching losses | |
650 | 4 | |a IGBT switching transient control | |
650 | 4 | |a Switches | |
650 | 4 | |a resistive gate driver | |
650 | 4 | |a passive gate drivers | |
650 | 4 | |a insulated gate bipolar transistors | |
650 | 4 | |a Insulated gate | |
650 | 4 | |a Delays | |
650 | 4 | |a current control | |
650 | 4 | |a electromagnetic interference | |
650 | 4 | |a electric current control | |
650 | 4 | |a voltage slope control | |
650 | 4 | |a reverse recovery current | |
650 | 4 | |a circuit feedback | |
650 | 4 | |a closed-loop control stability analysis | |
650 | 4 | |a control oriented models | |
650 | 4 | |a closed loop systems | |
650 | 4 | |a Electrical currents | |
650 | 4 | |a Switching | |
650 | 4 | |a Transistors | |
650 | 4 | |a Analog | |
650 | 4 | |a Electromagnetism | |
650 | 4 | |a Energy use | |
650 | 4 | |a Research | |
650 | 4 | |a Electromagnetic interference | |
650 | 4 | |a Bipolar transistors | |
650 | 4 | |a Gates (Electronics) | |
700 | 1 | |a Kolar, Johann W |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on power electronics |d New York, NY : IEEE, 1986 |g 30(2015), 6, Seite 3402-3417 |w (DE-627)129383333 |w (DE-600)165902-9 |w (DE-576)014769980 |x 0885-8993 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2015 |g number:6 |g pages:3402-3417 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TPEL.2014.2332811 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6842694 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1648110966 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2061 | ||
936 | r | v | |a ZG 1100: |
936 | b | k | |a 53.35 |q AVZ |
951 | |a AR | ||
952 | |d 30 |j 2015 |e 6 |h 3402-3417 |
author_variant |
y l yl |
---|---|
matchkey_str |
article:08858993:2015----::lsdopdndib |
hierarchy_sort_str |
2015 |
bklnumber |
53.35 |
publishDate |
2015 |
allfields |
10.1109/TPEL.2014.2332811 doi PQ20160617 (DE-627)OLC1957410760 (DE-599)GBVOLC1957410760 (PRQ)g1386-1436e680e2bc2f6f22969632caa94c723f544ac9a0b6832ab3454c00351ce47c0 (KEY)0151676020150000030000603402closedloopddandddigbtgatedriver DE-627 ger DE-627 rakwb eng 620 DNB ZG 1100: AVZ rvk 53.35 bkl Lobsiger, Yanick verfasserin aut Closed-Loop d /d and d /d IGBT Gate Driver 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a new concept for attaining a defined switching behavior of insulated-gate bipolar transistors (IGBTs) at inductive load (hard) switching, which is a key prerequisite for optimizing the switching behavior in terms of switching losses and electromagnetic interference (EMI). First, state-of-theart gate driver concepts that enable a control of the IGBT's switching transients are reviewed. Thereafter, a highly dynamic closed-loop IGBT gate driver using simple passive di C /dt and dv CE /dt feedbacks and employing a single analog PI-controller is proposed. Contrary to conventional passive gate drivers, this concept enables an individual control of the current and voltage slopes largely independent of the specific parameters or nonlinearities of the IGBT. Accordingly, a means for optimizing the tradeoff between switching losses, switching delay times, reverse recovery current of the freewheeling diode, turn-off overvoltage, and EMI is gained. The operating principle of the new gate driver is described and based on derived control oriented models of the IGBT, a stability analysis of the closed-loop control is carried out for different IGBT modules. Finally, the proposed concept is experimentally verified for different IGBT modules and compared to a conventional resistive gate driver. circuit stability inductive load switching Integrated circuits passive networks voltage control closed-loop di/dt IGBT gate driver dv CE /dt feedbacks switching behavior circuit optimisation analog PI-controller PI control passive di C /dt feedback bipolar transistors (IGBTs) insulated-gate bipolar transistors driver circuits switching delay times freewheeling diode turn-off overvoltage dv/dt IGBT gate driver Logic gates EMI switching losses IGBT switching transient control Switches resistive gate driver passive gate drivers insulated gate bipolar transistors Insulated gate Delays current control electromagnetic interference electric current control voltage slope control reverse recovery current circuit feedback closed-loop control stability analysis control oriented models closed loop systems Electrical currents Switching Transistors Analog Electromagnetism Energy use Research Electromagnetic interference Bipolar transistors Gates (Electronics) Kolar, Johann W oth Enthalten in IEEE transactions on power electronics New York, NY : IEEE, 1986 30(2015), 6, Seite 3402-3417 (DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 0885-8993 nnns volume:30 year:2015 number:6 pages:3402-3417 http://dx.doi.org/10.1109/TPEL.2014.2332811 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6842694 http://search.proquest.com/docview/1648110966 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 ZG 1100: 53.35 AVZ AR 30 2015 6 3402-3417 |
spelling |
10.1109/TPEL.2014.2332811 doi PQ20160617 (DE-627)OLC1957410760 (DE-599)GBVOLC1957410760 (PRQ)g1386-1436e680e2bc2f6f22969632caa94c723f544ac9a0b6832ab3454c00351ce47c0 (KEY)0151676020150000030000603402closedloopddandddigbtgatedriver DE-627 ger DE-627 rakwb eng 620 DNB ZG 1100: AVZ rvk 53.35 bkl Lobsiger, Yanick verfasserin aut Closed-Loop d /d and d /d IGBT Gate Driver 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a new concept for attaining a defined switching behavior of insulated-gate bipolar transistors (IGBTs) at inductive load (hard) switching, which is a key prerequisite for optimizing the switching behavior in terms of switching losses and electromagnetic interference (EMI). First, state-of-theart gate driver concepts that enable a control of the IGBT's switching transients are reviewed. Thereafter, a highly dynamic closed-loop IGBT gate driver using simple passive di C /dt and dv CE /dt feedbacks and employing a single analog PI-controller is proposed. Contrary to conventional passive gate drivers, this concept enables an individual control of the current and voltage slopes largely independent of the specific parameters or nonlinearities of the IGBT. Accordingly, a means for optimizing the tradeoff between switching losses, switching delay times, reverse recovery current of the freewheeling diode, turn-off overvoltage, and EMI is gained. The operating principle of the new gate driver is described and based on derived control oriented models of the IGBT, a stability analysis of the closed-loop control is carried out for different IGBT modules. Finally, the proposed concept is experimentally verified for different IGBT modules and compared to a conventional resistive gate driver. circuit stability inductive load switching Integrated circuits passive networks voltage control closed-loop di/dt IGBT gate driver dv CE /dt feedbacks switching behavior circuit optimisation analog PI-controller PI control passive di C /dt feedback bipolar transistors (IGBTs) insulated-gate bipolar transistors driver circuits switching delay times freewheeling diode turn-off overvoltage dv/dt IGBT gate driver Logic gates EMI switching losses IGBT switching transient control Switches resistive gate driver passive gate drivers insulated gate bipolar transistors Insulated gate Delays current control electromagnetic interference electric current control voltage slope control reverse recovery current circuit feedback closed-loop control stability analysis control oriented models closed loop systems Electrical currents Switching Transistors Analog Electromagnetism Energy use Research Electromagnetic interference Bipolar transistors Gates (Electronics) Kolar, Johann W oth Enthalten in IEEE transactions on power electronics New York, NY : IEEE, 1986 30(2015), 6, Seite 3402-3417 (DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 0885-8993 nnns volume:30 year:2015 number:6 pages:3402-3417 http://dx.doi.org/10.1109/TPEL.2014.2332811 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6842694 http://search.proquest.com/docview/1648110966 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 ZG 1100: 53.35 AVZ AR 30 2015 6 3402-3417 |
allfields_unstemmed |
10.1109/TPEL.2014.2332811 doi PQ20160617 (DE-627)OLC1957410760 (DE-599)GBVOLC1957410760 (PRQ)g1386-1436e680e2bc2f6f22969632caa94c723f544ac9a0b6832ab3454c00351ce47c0 (KEY)0151676020150000030000603402closedloopddandddigbtgatedriver DE-627 ger DE-627 rakwb eng 620 DNB ZG 1100: AVZ rvk 53.35 bkl Lobsiger, Yanick verfasserin aut Closed-Loop d /d and d /d IGBT Gate Driver 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a new concept for attaining a defined switching behavior of insulated-gate bipolar transistors (IGBTs) at inductive load (hard) switching, which is a key prerequisite for optimizing the switching behavior in terms of switching losses and electromagnetic interference (EMI). First, state-of-theart gate driver concepts that enable a control of the IGBT's switching transients are reviewed. Thereafter, a highly dynamic closed-loop IGBT gate driver using simple passive di C /dt and dv CE /dt feedbacks and employing a single analog PI-controller is proposed. Contrary to conventional passive gate drivers, this concept enables an individual control of the current and voltage slopes largely independent of the specific parameters or nonlinearities of the IGBT. Accordingly, a means for optimizing the tradeoff between switching losses, switching delay times, reverse recovery current of the freewheeling diode, turn-off overvoltage, and EMI is gained. The operating principle of the new gate driver is described and based on derived control oriented models of the IGBT, a stability analysis of the closed-loop control is carried out for different IGBT modules. Finally, the proposed concept is experimentally verified for different IGBT modules and compared to a conventional resistive gate driver. circuit stability inductive load switching Integrated circuits passive networks voltage control closed-loop di/dt IGBT gate driver dv CE /dt feedbacks switching behavior circuit optimisation analog PI-controller PI control passive di C /dt feedback bipolar transistors (IGBTs) insulated-gate bipolar transistors driver circuits switching delay times freewheeling diode turn-off overvoltage dv/dt IGBT gate driver Logic gates EMI switching losses IGBT switching transient control Switches resistive gate driver passive gate drivers insulated gate bipolar transistors Insulated gate Delays current control electromagnetic interference electric current control voltage slope control reverse recovery current circuit feedback closed-loop control stability analysis control oriented models closed loop systems Electrical currents Switching Transistors Analog Electromagnetism Energy use Research Electromagnetic interference Bipolar transistors Gates (Electronics) Kolar, Johann W oth Enthalten in IEEE transactions on power electronics New York, NY : IEEE, 1986 30(2015), 6, Seite 3402-3417 (DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 0885-8993 nnns volume:30 year:2015 number:6 pages:3402-3417 http://dx.doi.org/10.1109/TPEL.2014.2332811 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6842694 http://search.proquest.com/docview/1648110966 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 ZG 1100: 53.35 AVZ AR 30 2015 6 3402-3417 |
allfieldsGer |
10.1109/TPEL.2014.2332811 doi PQ20160617 (DE-627)OLC1957410760 (DE-599)GBVOLC1957410760 (PRQ)g1386-1436e680e2bc2f6f22969632caa94c723f544ac9a0b6832ab3454c00351ce47c0 (KEY)0151676020150000030000603402closedloopddandddigbtgatedriver DE-627 ger DE-627 rakwb eng 620 DNB ZG 1100: AVZ rvk 53.35 bkl Lobsiger, Yanick verfasserin aut Closed-Loop d /d and d /d IGBT Gate Driver 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a new concept for attaining a defined switching behavior of insulated-gate bipolar transistors (IGBTs) at inductive load (hard) switching, which is a key prerequisite for optimizing the switching behavior in terms of switching losses and electromagnetic interference (EMI). First, state-of-theart gate driver concepts that enable a control of the IGBT's switching transients are reviewed. Thereafter, a highly dynamic closed-loop IGBT gate driver using simple passive di C /dt and dv CE /dt feedbacks and employing a single analog PI-controller is proposed. Contrary to conventional passive gate drivers, this concept enables an individual control of the current and voltage slopes largely independent of the specific parameters or nonlinearities of the IGBT. Accordingly, a means for optimizing the tradeoff between switching losses, switching delay times, reverse recovery current of the freewheeling diode, turn-off overvoltage, and EMI is gained. The operating principle of the new gate driver is described and based on derived control oriented models of the IGBT, a stability analysis of the closed-loop control is carried out for different IGBT modules. Finally, the proposed concept is experimentally verified for different IGBT modules and compared to a conventional resistive gate driver. circuit stability inductive load switching Integrated circuits passive networks voltage control closed-loop di/dt IGBT gate driver dv CE /dt feedbacks switching behavior circuit optimisation analog PI-controller PI control passive di C /dt feedback bipolar transistors (IGBTs) insulated-gate bipolar transistors driver circuits switching delay times freewheeling diode turn-off overvoltage dv/dt IGBT gate driver Logic gates EMI switching losses IGBT switching transient control Switches resistive gate driver passive gate drivers insulated gate bipolar transistors Insulated gate Delays current control electromagnetic interference electric current control voltage slope control reverse recovery current circuit feedback closed-loop control stability analysis control oriented models closed loop systems Electrical currents Switching Transistors Analog Electromagnetism Energy use Research Electromagnetic interference Bipolar transistors Gates (Electronics) Kolar, Johann W oth Enthalten in IEEE transactions on power electronics New York, NY : IEEE, 1986 30(2015), 6, Seite 3402-3417 (DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 0885-8993 nnns volume:30 year:2015 number:6 pages:3402-3417 http://dx.doi.org/10.1109/TPEL.2014.2332811 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6842694 http://search.proquest.com/docview/1648110966 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 ZG 1100: 53.35 AVZ AR 30 2015 6 3402-3417 |
allfieldsSound |
10.1109/TPEL.2014.2332811 doi PQ20160617 (DE-627)OLC1957410760 (DE-599)GBVOLC1957410760 (PRQ)g1386-1436e680e2bc2f6f22969632caa94c723f544ac9a0b6832ab3454c00351ce47c0 (KEY)0151676020150000030000603402closedloopddandddigbtgatedriver DE-627 ger DE-627 rakwb eng 620 DNB ZG 1100: AVZ rvk 53.35 bkl Lobsiger, Yanick verfasserin aut Closed-Loop d /d and d /d IGBT Gate Driver 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a new concept for attaining a defined switching behavior of insulated-gate bipolar transistors (IGBTs) at inductive load (hard) switching, which is a key prerequisite for optimizing the switching behavior in terms of switching losses and electromagnetic interference (EMI). First, state-of-theart gate driver concepts that enable a control of the IGBT's switching transients are reviewed. Thereafter, a highly dynamic closed-loop IGBT gate driver using simple passive di C /dt and dv CE /dt feedbacks and employing a single analog PI-controller is proposed. Contrary to conventional passive gate drivers, this concept enables an individual control of the current and voltage slopes largely independent of the specific parameters or nonlinearities of the IGBT. Accordingly, a means for optimizing the tradeoff between switching losses, switching delay times, reverse recovery current of the freewheeling diode, turn-off overvoltage, and EMI is gained. The operating principle of the new gate driver is described and based on derived control oriented models of the IGBT, a stability analysis of the closed-loop control is carried out for different IGBT modules. Finally, the proposed concept is experimentally verified for different IGBT modules and compared to a conventional resistive gate driver. circuit stability inductive load switching Integrated circuits passive networks voltage control closed-loop di/dt IGBT gate driver dv CE /dt feedbacks switching behavior circuit optimisation analog PI-controller PI control passive di C /dt feedback bipolar transistors (IGBTs) insulated-gate bipolar transistors driver circuits switching delay times freewheeling diode turn-off overvoltage dv/dt IGBT gate driver Logic gates EMI switching losses IGBT switching transient control Switches resistive gate driver passive gate drivers insulated gate bipolar transistors Insulated gate Delays current control electromagnetic interference electric current control voltage slope control reverse recovery current circuit feedback closed-loop control stability analysis control oriented models closed loop systems Electrical currents Switching Transistors Analog Electromagnetism Energy use Research Electromagnetic interference Bipolar transistors Gates (Electronics) Kolar, Johann W oth Enthalten in IEEE transactions on power electronics New York, NY : IEEE, 1986 30(2015), 6, Seite 3402-3417 (DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 0885-8993 nnns volume:30 year:2015 number:6 pages:3402-3417 http://dx.doi.org/10.1109/TPEL.2014.2332811 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6842694 http://search.proquest.com/docview/1648110966 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 ZG 1100: 53.35 AVZ AR 30 2015 6 3402-3417 |
language |
English |
source |
Enthalten in IEEE transactions on power electronics 30(2015), 6, Seite 3402-3417 volume:30 year:2015 number:6 pages:3402-3417 |
sourceStr |
Enthalten in IEEE transactions on power electronics 30(2015), 6, Seite 3402-3417 volume:30 year:2015 number:6 pages:3402-3417 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
circuit stability inductive load switching Integrated circuits passive networks voltage control closed-loop di/dt IGBT gate driver dv CE /dt feedbacks switching behavior circuit optimisation analog PI-controller PI control passive di C /dt feedback bipolar transistors (IGBTs) insulated-gate bipolar transistors driver circuits switching delay times freewheeling diode turn-off overvoltage dv/dt IGBT gate driver Logic gates EMI switching losses IGBT switching transient control Switches resistive gate driver passive gate drivers insulated gate bipolar transistors Insulated gate Delays current control electromagnetic interference electric current control voltage slope control reverse recovery current circuit feedback closed-loop control stability analysis control oriented models closed loop systems Electrical currents Switching Transistors Analog Electromagnetism Energy use Research Electromagnetic interference Bipolar transistors Gates (Electronics) |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on power electronics |
authorswithroles_txt_mv |
Lobsiger, Yanick @@aut@@ Kolar, Johann W @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129383333 |
dewey-sort |
3620 |
id |
OLC1957410760 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1957410760</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220214810.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPEL.2014.2332811</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1957410760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1957410760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)g1386-1436e680e2bc2f6f22969632caa94c723f544ac9a0b6832ab3454c00351ce47c0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0151676020150000030000603402closedloopddandddigbtgatedriver</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZG 1100:</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lobsiger, Yanick</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Closed-Loop d /d and d /d IGBT Gate Driver</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a new concept for attaining a defined switching behavior of insulated-gate bipolar transistors (IGBTs) at inductive load (hard) switching, which is a key prerequisite for optimizing the switching behavior in terms of switching losses and electromagnetic interference (EMI). First, state-of-theart gate driver concepts that enable a control of the IGBT's switching transients are reviewed. Thereafter, a highly dynamic closed-loop IGBT gate driver using simple passive di C /dt and dv CE /dt feedbacks and employing a single analog PI-controller is proposed. Contrary to conventional passive gate drivers, this concept enables an individual control of the current and voltage slopes largely independent of the specific parameters or nonlinearities of the IGBT. Accordingly, a means for optimizing the tradeoff between switching losses, switching delay times, reverse recovery current of the freewheeling diode, turn-off overvoltage, and EMI is gained. The operating principle of the new gate driver is described and based on derived control oriented models of the IGBT, a stability analysis of the closed-loop control is carried out for different IGBT modules. Finally, the proposed concept is experimentally verified for different IGBT modules and compared to a conventional resistive gate driver.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">circuit stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inductive load switching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">passive networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">voltage control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">closed-loop di/dt IGBT gate driver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dv CE /dt feedbacks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">switching behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">circuit optimisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analog PI-controller</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PI control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">passive di C /dt feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar transistors (IGBTs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">insulated-gate bipolar transistors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">driver circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">switching delay times</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">freewheeling diode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">turn-off overvoltage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dv/dt IGBT gate driver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic gates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EMI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">switching losses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IGBT switching transient control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switches</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resistive gate driver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">passive gate drivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">insulated gate bipolar transistors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Insulated gate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Delays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">current control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electromagnetic interference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electric current control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">voltage slope control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reverse recovery current</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">circuit feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">closed-loop control stability analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control oriented models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">closed loop systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical currents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transistors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analog</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy use</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic interference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipolar transistors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gates (Electronics)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kolar, Johann W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on power electronics</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">30(2015), 6, Seite 3402-3417</subfield><subfield code="w">(DE-627)129383333</subfield><subfield code="w">(DE-600)165902-9</subfield><subfield code="w">(DE-576)014769980</subfield><subfield code="x">0885-8993</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:3402-3417</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPEL.2014.2332811</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6842694</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1648110966</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">ZG 1100:</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.35</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2015</subfield><subfield code="e">6</subfield><subfield code="h">3402-3417</subfield></datafield></record></collection>
|
author |
Lobsiger, Yanick |
spellingShingle |
Lobsiger, Yanick ddc 620 rvk ZG 1100: bkl 53.35 misc circuit stability misc inductive load switching misc Integrated circuits misc passive networks misc voltage control misc closed-loop di/dt IGBT gate driver misc dv CE /dt feedbacks misc switching behavior misc circuit optimisation misc analog PI-controller misc PI control misc passive di C /dt feedback misc bipolar transistors (IGBTs) misc insulated-gate bipolar transistors misc driver circuits misc switching delay times misc freewheeling diode misc turn-off overvoltage misc dv/dt IGBT gate driver misc Logic gates misc EMI misc switching losses misc IGBT switching transient control misc Switches misc resistive gate driver misc passive gate drivers misc insulated gate bipolar transistors misc Insulated gate misc Delays misc current control misc electromagnetic interference misc electric current control misc voltage slope control misc reverse recovery current misc circuit feedback misc closed-loop control stability analysis misc control oriented models misc closed loop systems misc Electrical currents misc Switching misc Transistors misc Analog misc Electromagnetism misc Energy use misc Research misc Electromagnetic interference misc Bipolar transistors misc Gates (Electronics) Closed-Loop d /d and d /d IGBT Gate Driver |
authorStr |
Lobsiger, Yanick |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129383333 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0885-8993 |
topic_title |
620 DNB ZG 1100: AVZ rvk 53.35 bkl Closed-Loop d /d and d /d IGBT Gate Driver circuit stability inductive load switching Integrated circuits passive networks voltage control closed-loop di/dt IGBT gate driver dv CE /dt feedbacks switching behavior circuit optimisation analog PI-controller PI control passive di C /dt feedback bipolar transistors (IGBTs) insulated-gate bipolar transistors driver circuits switching delay times freewheeling diode turn-off overvoltage dv/dt IGBT gate driver Logic gates EMI switching losses IGBT switching transient control Switches resistive gate driver passive gate drivers insulated gate bipolar transistors Insulated gate Delays current control electromagnetic interference electric current control voltage slope control reverse recovery current circuit feedback closed-loop control stability analysis control oriented models closed loop systems Electrical currents Switching Transistors Analog Electromagnetism Energy use Research Electromagnetic interference Bipolar transistors Gates (Electronics) |
topic |
ddc 620 rvk ZG 1100: bkl 53.35 misc circuit stability misc inductive load switching misc Integrated circuits misc passive networks misc voltage control misc closed-loop di/dt IGBT gate driver misc dv CE /dt feedbacks misc switching behavior misc circuit optimisation misc analog PI-controller misc PI control misc passive di C /dt feedback misc bipolar transistors (IGBTs) misc insulated-gate bipolar transistors misc driver circuits misc switching delay times misc freewheeling diode misc turn-off overvoltage misc dv/dt IGBT gate driver misc Logic gates misc EMI misc switching losses misc IGBT switching transient control misc Switches misc resistive gate driver misc passive gate drivers misc insulated gate bipolar transistors misc Insulated gate misc Delays misc current control misc electromagnetic interference misc electric current control misc voltage slope control misc reverse recovery current misc circuit feedback misc closed-loop control stability analysis misc control oriented models misc closed loop systems misc Electrical currents misc Switching misc Transistors misc Analog misc Electromagnetism misc Energy use misc Research misc Electromagnetic interference misc Bipolar transistors misc Gates (Electronics) |
topic_unstemmed |
ddc 620 rvk ZG 1100: bkl 53.35 misc circuit stability misc inductive load switching misc Integrated circuits misc passive networks misc voltage control misc closed-loop di/dt IGBT gate driver misc dv CE /dt feedbacks misc switching behavior misc circuit optimisation misc analog PI-controller misc PI control misc passive di C /dt feedback misc bipolar transistors (IGBTs) misc insulated-gate bipolar transistors misc driver circuits misc switching delay times misc freewheeling diode misc turn-off overvoltage misc dv/dt IGBT gate driver misc Logic gates misc EMI misc switching losses misc IGBT switching transient control misc Switches misc resistive gate driver misc passive gate drivers misc insulated gate bipolar transistors misc Insulated gate misc Delays misc current control misc electromagnetic interference misc electric current control misc voltage slope control misc reverse recovery current misc circuit feedback misc closed-loop control stability analysis misc control oriented models misc closed loop systems misc Electrical currents misc Switching misc Transistors misc Analog misc Electromagnetism misc Energy use misc Research misc Electromagnetic interference misc Bipolar transistors misc Gates (Electronics) |
topic_browse |
ddc 620 rvk ZG 1100: bkl 53.35 misc circuit stability misc inductive load switching misc Integrated circuits misc passive networks misc voltage control misc closed-loop di/dt IGBT gate driver misc dv CE /dt feedbacks misc switching behavior misc circuit optimisation misc analog PI-controller misc PI control misc passive di C /dt feedback misc bipolar transistors (IGBTs) misc insulated-gate bipolar transistors misc driver circuits misc switching delay times misc freewheeling diode misc turn-off overvoltage misc dv/dt IGBT gate driver misc Logic gates misc EMI misc switching losses misc IGBT switching transient control misc Switches misc resistive gate driver misc passive gate drivers misc insulated gate bipolar transistors misc Insulated gate misc Delays misc current control misc electromagnetic interference misc electric current control misc voltage slope control misc reverse recovery current misc circuit feedback misc closed-loop control stability analysis misc control oriented models misc closed loop systems misc Electrical currents misc Switching misc Transistors misc Analog misc Electromagnetism misc Energy use misc Research misc Electromagnetic interference misc Bipolar transistors misc Gates (Electronics) |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j w k jw jwk |
hierarchy_parent_title |
IEEE transactions on power electronics |
hierarchy_parent_id |
129383333 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on power electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129383333 (DE-600)165902-9 (DE-576)014769980 |
title |
Closed-Loop d /d and d /d IGBT Gate Driver |
ctrlnum |
(DE-627)OLC1957410760 (DE-599)GBVOLC1957410760 (PRQ)g1386-1436e680e2bc2f6f22969632caa94c723f544ac9a0b6832ab3454c00351ce47c0 (KEY)0151676020150000030000603402closedloopddandddigbtgatedriver |
title_full |
Closed-Loop d /d and d /d IGBT Gate Driver |
author_sort |
Lobsiger, Yanick |
journal |
IEEE transactions on power electronics |
journalStr |
IEEE transactions on power electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
3402 |
author_browse |
Lobsiger, Yanick |
container_volume |
30 |
class |
620 DNB ZG 1100: AVZ rvk 53.35 bkl |
format_se |
Aufsätze |
author-letter |
Lobsiger, Yanick |
doi_str_mv |
10.1109/TPEL.2014.2332811 |
dewey-full |
620 |
title_sort |
closed-loop d /d and d /d igbt gate driver |
title_auth |
Closed-Loop d /d and d /d IGBT Gate Driver |
abstract |
This paper proposes a new concept for attaining a defined switching behavior of insulated-gate bipolar transistors (IGBTs) at inductive load (hard) switching, which is a key prerequisite for optimizing the switching behavior in terms of switching losses and electromagnetic interference (EMI). First, state-of-theart gate driver concepts that enable a control of the IGBT's switching transients are reviewed. Thereafter, a highly dynamic closed-loop IGBT gate driver using simple passive di C /dt and dv CE /dt feedbacks and employing a single analog PI-controller is proposed. Contrary to conventional passive gate drivers, this concept enables an individual control of the current and voltage slopes largely independent of the specific parameters or nonlinearities of the IGBT. Accordingly, a means for optimizing the tradeoff between switching losses, switching delay times, reverse recovery current of the freewheeling diode, turn-off overvoltage, and EMI is gained. The operating principle of the new gate driver is described and based on derived control oriented models of the IGBT, a stability analysis of the closed-loop control is carried out for different IGBT modules. Finally, the proposed concept is experimentally verified for different IGBT modules and compared to a conventional resistive gate driver. |
abstractGer |
This paper proposes a new concept for attaining a defined switching behavior of insulated-gate bipolar transistors (IGBTs) at inductive load (hard) switching, which is a key prerequisite for optimizing the switching behavior in terms of switching losses and electromagnetic interference (EMI). First, state-of-theart gate driver concepts that enable a control of the IGBT's switching transients are reviewed. Thereafter, a highly dynamic closed-loop IGBT gate driver using simple passive di C /dt and dv CE /dt feedbacks and employing a single analog PI-controller is proposed. Contrary to conventional passive gate drivers, this concept enables an individual control of the current and voltage slopes largely independent of the specific parameters or nonlinearities of the IGBT. Accordingly, a means for optimizing the tradeoff between switching losses, switching delay times, reverse recovery current of the freewheeling diode, turn-off overvoltage, and EMI is gained. The operating principle of the new gate driver is described and based on derived control oriented models of the IGBT, a stability analysis of the closed-loop control is carried out for different IGBT modules. Finally, the proposed concept is experimentally verified for different IGBT modules and compared to a conventional resistive gate driver. |
abstract_unstemmed |
This paper proposes a new concept for attaining a defined switching behavior of insulated-gate bipolar transistors (IGBTs) at inductive load (hard) switching, which is a key prerequisite for optimizing the switching behavior in terms of switching losses and electromagnetic interference (EMI). First, state-of-theart gate driver concepts that enable a control of the IGBT's switching transients are reviewed. Thereafter, a highly dynamic closed-loop IGBT gate driver using simple passive di C /dt and dv CE /dt feedbacks and employing a single analog PI-controller is proposed. Contrary to conventional passive gate drivers, this concept enables an individual control of the current and voltage slopes largely independent of the specific parameters or nonlinearities of the IGBT. Accordingly, a means for optimizing the tradeoff between switching losses, switching delay times, reverse recovery current of the freewheeling diode, turn-off overvoltage, and EMI is gained. The operating principle of the new gate driver is described and based on derived control oriented models of the IGBT, a stability analysis of the closed-loop control is carried out for different IGBT modules. Finally, the proposed concept is experimentally verified for different IGBT modules and compared to a conventional resistive gate driver. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 |
container_issue |
6 |
title_short |
Closed-Loop d /d and d /d IGBT Gate Driver |
url |
http://dx.doi.org/10.1109/TPEL.2014.2332811 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6842694 http://search.proquest.com/docview/1648110966 |
remote_bool |
false |
author2 |
Kolar, Johann W |
author2Str |
Kolar, Johann W |
ppnlink |
129383333 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/TPEL.2014.2332811 |
up_date |
2024-07-04T00:10:47.643Z |
_version_ |
1803605086197252096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1957410760</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220214810.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPEL.2014.2332811</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1957410760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1957410760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)g1386-1436e680e2bc2f6f22969632caa94c723f544ac9a0b6832ab3454c00351ce47c0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0151676020150000030000603402closedloopddandddigbtgatedriver</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZG 1100:</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lobsiger, Yanick</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Closed-Loop d /d and d /d IGBT Gate Driver</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a new concept for attaining a defined switching behavior of insulated-gate bipolar transistors (IGBTs) at inductive load (hard) switching, which is a key prerequisite for optimizing the switching behavior in terms of switching losses and electromagnetic interference (EMI). First, state-of-theart gate driver concepts that enable a control of the IGBT's switching transients are reviewed. Thereafter, a highly dynamic closed-loop IGBT gate driver using simple passive di C /dt and dv CE /dt feedbacks and employing a single analog PI-controller is proposed. Contrary to conventional passive gate drivers, this concept enables an individual control of the current and voltage slopes largely independent of the specific parameters or nonlinearities of the IGBT. Accordingly, a means for optimizing the tradeoff between switching losses, switching delay times, reverse recovery current of the freewheeling diode, turn-off overvoltage, and EMI is gained. The operating principle of the new gate driver is described and based on derived control oriented models of the IGBT, a stability analysis of the closed-loop control is carried out for different IGBT modules. Finally, the proposed concept is experimentally verified for different IGBT modules and compared to a conventional resistive gate driver.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">circuit stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inductive load switching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">passive networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">voltage control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">closed-loop di/dt IGBT gate driver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dv CE /dt feedbacks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">switching behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">circuit optimisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analog PI-controller</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PI control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">passive di C /dt feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar transistors (IGBTs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">insulated-gate bipolar transistors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">driver circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">switching delay times</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">freewheeling diode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">turn-off overvoltage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dv/dt IGBT gate driver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic gates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EMI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">switching losses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IGBT switching transient control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switches</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resistive gate driver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">passive gate drivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">insulated gate bipolar transistors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Insulated gate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Delays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">current control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electromagnetic interference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electric current control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">voltage slope control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reverse recovery current</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">circuit feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">closed-loop control stability analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control oriented models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">closed loop systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical currents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transistors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analog</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy use</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic interference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipolar transistors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gates (Electronics)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kolar, Johann W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on power electronics</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">30(2015), 6, Seite 3402-3417</subfield><subfield code="w">(DE-627)129383333</subfield><subfield code="w">(DE-600)165902-9</subfield><subfield code="w">(DE-576)014769980</subfield><subfield code="x">0885-8993</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:3402-3417</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPEL.2014.2332811</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6842694</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1648110966</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">ZG 1100:</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.35</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2015</subfield><subfield code="e">6</subfield><subfield code="h">3402-3417</subfield></datafield></record></collection>
|
score |
7.4017277 |