Semi-analytical mean-field model for predicting breathing in metal-organic frameworks
A new semi-analytical mean-field model is proposed to rationalise breathing of MIL-53 type materials. The model is applied on two case studies, the guest-induced breathing of MIL-53(Cr) with CO 2 and CH 4 , and the phase transformations for MIL-53(Al) upon xenon adsorption. Experimentally, MIL-53(Cr...
Ausführliche Beschreibung
Autor*in: |
Vanduyfhuys, L [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2015 Taylor & Francis 2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Molecular simulation - New York, NY [u.a.] : Gordon and Breach, 1987, 41(2015), 16, Seite 1311-1328 |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2015 ; number:16 ; pages:1311-1328 |
Links: |
---|
DOI / URN: |
10.1080/08927022.2015.1048512 |
---|
Katalog-ID: |
OLC1957832118 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1957832118 | ||
003 | DE-627 | ||
005 | 20230714143644.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/08927022.2015.1048512 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1957832118 | ||
035 | |a (DE-599)GBVOLC1957832118 | ||
035 | |a (PRQ)c1268-a979b4a848a587798e4be9ed99338046cadf60016f02a4cabb20a87886ac7550 | ||
035 | |a (KEY)0163460720150000041001601311semianalyticalmeanfieldmodelforpredictingbreathing | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 600 |q DNB |
100 | 1 | |a Vanduyfhuys, L |e verfasserin |4 aut | |
245 | 1 | 0 | |a Semi-analytical mean-field model for predicting breathing in metal-organic frameworks |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A new semi-analytical mean-field model is proposed to rationalise breathing of MIL-53 type materials. The model is applied on two case studies, the guest-induced breathing of MIL-53(Cr) with CO 2 and CH 4 , and the phase transformations for MIL-53(Al) upon xenon adsorption. Experimentally, MIL-53(Cr) breathes upon CO 2 adsorption, which was not observed for CH 4 . This result could be ascribed to the stronger interaction of carbon dioxide with the host matrix. For MIL-53(Al) a phase transition from the large pore phase could be enforced to an intermediate phase with volumes of about 1160-1300 Å 3 , which corresponds well to the phase observed experimentally upon xenon adsorption. Our thermodynamic model correlates nicely with the adsorption pressure model proposed by Coudert et al. Furthermore the model can predict breathing behaviour of other flexible materials, if the user can determine the free energy of the empty host, the interaction energy between a guest molecule and the host matrix and the pore volume accessible to the guest molecules. This will allow to generate the osmotic potential from which the equilibria can be deduced and the anticipated experimentally observed phase may be predicted. | ||
540 | |a Nutzungsrecht: © 2015 Taylor & Francis 2015 | ||
650 | 4 | |a osmotic ensemble | |
650 | 4 | |a metal-organic frameworks | |
650 | 4 | |a breathing | |
650 | 4 | |a flexible frameworks | |
650 | 4 | |a thermodynamic model | |
700 | 1 | |a Ghysels, A |4 oth | |
700 | 1 | |a Rogge, S.M.J |4 oth | |
700 | 1 | |a Demuynck, R |4 oth | |
700 | 1 | |a Van Speybroeck, V |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Molecular simulation |d New York, NY [u.a.] : Gordon and Breach, 1987 |g 41(2015), 16, Seite 1311-1328 |w (DE-627)165660120 |w (DE-600)636828-1 |w (DE-576)02291384X |x 0892-7022 |7 nnns |
773 | 1 | 8 | |g volume:41 |g year:2015 |g number:16 |g pages:1311-1328 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/08927022.2015.1048512 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/08927022.2015.1048512 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 41 |j 2015 |e 16 |h 1311-1328 |
author_variant |
l v lv |
---|---|
matchkey_str |
article:08927022:2015----::einltclenilmdlopeitnbetigne |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1080/08927022.2015.1048512 doi PQ20160617 (DE-627)OLC1957832118 (DE-599)GBVOLC1957832118 (PRQ)c1268-a979b4a848a587798e4be9ed99338046cadf60016f02a4cabb20a87886ac7550 (KEY)0163460720150000041001601311semianalyticalmeanfieldmodelforpredictingbreathing DE-627 ger DE-627 rakwb eng 530 600 DNB Vanduyfhuys, L verfasserin aut Semi-analytical mean-field model for predicting breathing in metal-organic frameworks 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A new semi-analytical mean-field model is proposed to rationalise breathing of MIL-53 type materials. The model is applied on two case studies, the guest-induced breathing of MIL-53(Cr) with CO 2 and CH 4 , and the phase transformations for MIL-53(Al) upon xenon adsorption. Experimentally, MIL-53(Cr) breathes upon CO 2 adsorption, which was not observed for CH 4 . This result could be ascribed to the stronger interaction of carbon dioxide with the host matrix. For MIL-53(Al) a phase transition from the large pore phase could be enforced to an intermediate phase with volumes of about 1160-1300 Å 3 , which corresponds well to the phase observed experimentally upon xenon adsorption. Our thermodynamic model correlates nicely with the adsorption pressure model proposed by Coudert et al. Furthermore the model can predict breathing behaviour of other flexible materials, if the user can determine the free energy of the empty host, the interaction energy between a guest molecule and the host matrix and the pore volume accessible to the guest molecules. This will allow to generate the osmotic potential from which the equilibria can be deduced and the anticipated experimentally observed phase may be predicted. Nutzungsrecht: © 2015 Taylor & Francis 2015 osmotic ensemble metal-organic frameworks breathing flexible frameworks thermodynamic model Ghysels, A oth Rogge, S.M.J oth Demuynck, R oth Van Speybroeck, V oth Enthalten in Molecular simulation New York, NY [u.a.] : Gordon and Breach, 1987 41(2015), 16, Seite 1311-1328 (DE-627)165660120 (DE-600)636828-1 (DE-576)02291384X 0892-7022 nnns volume:41 year:2015 number:16 pages:1311-1328 http://dx.doi.org/10.1080/08927022.2015.1048512 Volltext http://www.tandfonline.com/doi/abs/10.1080/08927022.2015.1048512 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 41 2015 16 1311-1328 |
spelling |
10.1080/08927022.2015.1048512 doi PQ20160617 (DE-627)OLC1957832118 (DE-599)GBVOLC1957832118 (PRQ)c1268-a979b4a848a587798e4be9ed99338046cadf60016f02a4cabb20a87886ac7550 (KEY)0163460720150000041001601311semianalyticalmeanfieldmodelforpredictingbreathing DE-627 ger DE-627 rakwb eng 530 600 DNB Vanduyfhuys, L verfasserin aut Semi-analytical mean-field model for predicting breathing in metal-organic frameworks 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A new semi-analytical mean-field model is proposed to rationalise breathing of MIL-53 type materials. The model is applied on two case studies, the guest-induced breathing of MIL-53(Cr) with CO 2 and CH 4 , and the phase transformations for MIL-53(Al) upon xenon adsorption. Experimentally, MIL-53(Cr) breathes upon CO 2 adsorption, which was not observed for CH 4 . This result could be ascribed to the stronger interaction of carbon dioxide with the host matrix. For MIL-53(Al) a phase transition from the large pore phase could be enforced to an intermediate phase with volumes of about 1160-1300 Å 3 , which corresponds well to the phase observed experimentally upon xenon adsorption. Our thermodynamic model correlates nicely with the adsorption pressure model proposed by Coudert et al. Furthermore the model can predict breathing behaviour of other flexible materials, if the user can determine the free energy of the empty host, the interaction energy between a guest molecule and the host matrix and the pore volume accessible to the guest molecules. This will allow to generate the osmotic potential from which the equilibria can be deduced and the anticipated experimentally observed phase may be predicted. Nutzungsrecht: © 2015 Taylor & Francis 2015 osmotic ensemble metal-organic frameworks breathing flexible frameworks thermodynamic model Ghysels, A oth Rogge, S.M.J oth Demuynck, R oth Van Speybroeck, V oth Enthalten in Molecular simulation New York, NY [u.a.] : Gordon and Breach, 1987 41(2015), 16, Seite 1311-1328 (DE-627)165660120 (DE-600)636828-1 (DE-576)02291384X 0892-7022 nnns volume:41 year:2015 number:16 pages:1311-1328 http://dx.doi.org/10.1080/08927022.2015.1048512 Volltext http://www.tandfonline.com/doi/abs/10.1080/08927022.2015.1048512 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 41 2015 16 1311-1328 |
allfields_unstemmed |
10.1080/08927022.2015.1048512 doi PQ20160617 (DE-627)OLC1957832118 (DE-599)GBVOLC1957832118 (PRQ)c1268-a979b4a848a587798e4be9ed99338046cadf60016f02a4cabb20a87886ac7550 (KEY)0163460720150000041001601311semianalyticalmeanfieldmodelforpredictingbreathing DE-627 ger DE-627 rakwb eng 530 600 DNB Vanduyfhuys, L verfasserin aut Semi-analytical mean-field model for predicting breathing in metal-organic frameworks 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A new semi-analytical mean-field model is proposed to rationalise breathing of MIL-53 type materials. The model is applied on two case studies, the guest-induced breathing of MIL-53(Cr) with CO 2 and CH 4 , and the phase transformations for MIL-53(Al) upon xenon adsorption. Experimentally, MIL-53(Cr) breathes upon CO 2 adsorption, which was not observed for CH 4 . This result could be ascribed to the stronger interaction of carbon dioxide with the host matrix. For MIL-53(Al) a phase transition from the large pore phase could be enforced to an intermediate phase with volumes of about 1160-1300 Å 3 , which corresponds well to the phase observed experimentally upon xenon adsorption. Our thermodynamic model correlates nicely with the adsorption pressure model proposed by Coudert et al. Furthermore the model can predict breathing behaviour of other flexible materials, if the user can determine the free energy of the empty host, the interaction energy between a guest molecule and the host matrix and the pore volume accessible to the guest molecules. This will allow to generate the osmotic potential from which the equilibria can be deduced and the anticipated experimentally observed phase may be predicted. Nutzungsrecht: © 2015 Taylor & Francis 2015 osmotic ensemble metal-organic frameworks breathing flexible frameworks thermodynamic model Ghysels, A oth Rogge, S.M.J oth Demuynck, R oth Van Speybroeck, V oth Enthalten in Molecular simulation New York, NY [u.a.] : Gordon and Breach, 1987 41(2015), 16, Seite 1311-1328 (DE-627)165660120 (DE-600)636828-1 (DE-576)02291384X 0892-7022 nnns volume:41 year:2015 number:16 pages:1311-1328 http://dx.doi.org/10.1080/08927022.2015.1048512 Volltext http://www.tandfonline.com/doi/abs/10.1080/08927022.2015.1048512 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 41 2015 16 1311-1328 |
allfieldsGer |
10.1080/08927022.2015.1048512 doi PQ20160617 (DE-627)OLC1957832118 (DE-599)GBVOLC1957832118 (PRQ)c1268-a979b4a848a587798e4be9ed99338046cadf60016f02a4cabb20a87886ac7550 (KEY)0163460720150000041001601311semianalyticalmeanfieldmodelforpredictingbreathing DE-627 ger DE-627 rakwb eng 530 600 DNB Vanduyfhuys, L verfasserin aut Semi-analytical mean-field model for predicting breathing in metal-organic frameworks 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A new semi-analytical mean-field model is proposed to rationalise breathing of MIL-53 type materials. The model is applied on two case studies, the guest-induced breathing of MIL-53(Cr) with CO 2 and CH 4 , and the phase transformations for MIL-53(Al) upon xenon adsorption. Experimentally, MIL-53(Cr) breathes upon CO 2 adsorption, which was not observed for CH 4 . This result could be ascribed to the stronger interaction of carbon dioxide with the host matrix. For MIL-53(Al) a phase transition from the large pore phase could be enforced to an intermediate phase with volumes of about 1160-1300 Å 3 , which corresponds well to the phase observed experimentally upon xenon adsorption. Our thermodynamic model correlates nicely with the adsorption pressure model proposed by Coudert et al. Furthermore the model can predict breathing behaviour of other flexible materials, if the user can determine the free energy of the empty host, the interaction energy between a guest molecule and the host matrix and the pore volume accessible to the guest molecules. This will allow to generate the osmotic potential from which the equilibria can be deduced and the anticipated experimentally observed phase may be predicted. Nutzungsrecht: © 2015 Taylor & Francis 2015 osmotic ensemble metal-organic frameworks breathing flexible frameworks thermodynamic model Ghysels, A oth Rogge, S.M.J oth Demuynck, R oth Van Speybroeck, V oth Enthalten in Molecular simulation New York, NY [u.a.] : Gordon and Breach, 1987 41(2015), 16, Seite 1311-1328 (DE-627)165660120 (DE-600)636828-1 (DE-576)02291384X 0892-7022 nnns volume:41 year:2015 number:16 pages:1311-1328 http://dx.doi.org/10.1080/08927022.2015.1048512 Volltext http://www.tandfonline.com/doi/abs/10.1080/08927022.2015.1048512 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 41 2015 16 1311-1328 |
allfieldsSound |
10.1080/08927022.2015.1048512 doi PQ20160617 (DE-627)OLC1957832118 (DE-599)GBVOLC1957832118 (PRQ)c1268-a979b4a848a587798e4be9ed99338046cadf60016f02a4cabb20a87886ac7550 (KEY)0163460720150000041001601311semianalyticalmeanfieldmodelforpredictingbreathing DE-627 ger DE-627 rakwb eng 530 600 DNB Vanduyfhuys, L verfasserin aut Semi-analytical mean-field model for predicting breathing in metal-organic frameworks 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A new semi-analytical mean-field model is proposed to rationalise breathing of MIL-53 type materials. The model is applied on two case studies, the guest-induced breathing of MIL-53(Cr) with CO 2 and CH 4 , and the phase transformations for MIL-53(Al) upon xenon adsorption. Experimentally, MIL-53(Cr) breathes upon CO 2 adsorption, which was not observed for CH 4 . This result could be ascribed to the stronger interaction of carbon dioxide with the host matrix. For MIL-53(Al) a phase transition from the large pore phase could be enforced to an intermediate phase with volumes of about 1160-1300 Å 3 , which corresponds well to the phase observed experimentally upon xenon adsorption. Our thermodynamic model correlates nicely with the adsorption pressure model proposed by Coudert et al. Furthermore the model can predict breathing behaviour of other flexible materials, if the user can determine the free energy of the empty host, the interaction energy between a guest molecule and the host matrix and the pore volume accessible to the guest molecules. This will allow to generate the osmotic potential from which the equilibria can be deduced and the anticipated experimentally observed phase may be predicted. Nutzungsrecht: © 2015 Taylor & Francis 2015 osmotic ensemble metal-organic frameworks breathing flexible frameworks thermodynamic model Ghysels, A oth Rogge, S.M.J oth Demuynck, R oth Van Speybroeck, V oth Enthalten in Molecular simulation New York, NY [u.a.] : Gordon and Breach, 1987 41(2015), 16, Seite 1311-1328 (DE-627)165660120 (DE-600)636828-1 (DE-576)02291384X 0892-7022 nnns volume:41 year:2015 number:16 pages:1311-1328 http://dx.doi.org/10.1080/08927022.2015.1048512 Volltext http://www.tandfonline.com/doi/abs/10.1080/08927022.2015.1048512 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 41 2015 16 1311-1328 |
language |
English |
source |
Enthalten in Molecular simulation 41(2015), 16, Seite 1311-1328 volume:41 year:2015 number:16 pages:1311-1328 |
sourceStr |
Enthalten in Molecular simulation 41(2015), 16, Seite 1311-1328 volume:41 year:2015 number:16 pages:1311-1328 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
osmotic ensemble metal-organic frameworks breathing flexible frameworks thermodynamic model |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Molecular simulation |
authorswithroles_txt_mv |
Vanduyfhuys, L @@aut@@ Ghysels, A @@oth@@ Rogge, S.M.J @@oth@@ Demuynck, R @@oth@@ Van Speybroeck, V @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
165660120 |
dewey-sort |
3530 |
id |
OLC1957832118 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1957832118</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714143644.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/08927022.2015.1048512</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1957832118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1957832118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1268-a979b4a848a587798e4be9ed99338046cadf60016f02a4cabb20a87886ac7550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0163460720150000041001601311semianalyticalmeanfieldmodelforpredictingbreathing</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vanduyfhuys, L</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Semi-analytical mean-field model for predicting breathing in metal-organic frameworks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A new semi-analytical mean-field model is proposed to rationalise breathing of MIL-53 type materials. The model is applied on two case studies, the guest-induced breathing of MIL-53(Cr) with CO 2 and CH 4 , and the phase transformations for MIL-53(Al) upon xenon adsorption. Experimentally, MIL-53(Cr) breathes upon CO 2 adsorption, which was not observed for CH 4 . This result could be ascribed to the stronger interaction of carbon dioxide with the host matrix. For MIL-53(Al) a phase transition from the large pore phase could be enforced to an intermediate phase with volumes of about 1160-1300 Å 3 , which corresponds well to the phase observed experimentally upon xenon adsorption. Our thermodynamic model correlates nicely with the adsorption pressure model proposed by Coudert et al. Furthermore the model can predict breathing behaviour of other flexible materials, if the user can determine the free energy of the empty host, the interaction energy between a guest molecule and the host matrix and the pore volume accessible to the guest molecules. This will allow to generate the osmotic potential from which the equilibria can be deduced and the anticipated experimentally observed phase may be predicted.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015 Taylor & Francis 2015</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">osmotic ensemble</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metal-organic frameworks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">breathing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flexible frameworks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermodynamic model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghysels, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rogge, S.M.J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Demuynck, R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Speybroeck, V</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Molecular simulation</subfield><subfield code="d">New York, NY [u.a.] : Gordon and Breach, 1987</subfield><subfield code="g">41(2015), 16, Seite 1311-1328</subfield><subfield code="w">(DE-627)165660120</subfield><subfield code="w">(DE-600)636828-1</subfield><subfield code="w">(DE-576)02291384X</subfield><subfield code="x">0892-7022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:16</subfield><subfield code="g">pages:1311-1328</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/08927022.2015.1048512</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/08927022.2015.1048512</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2015</subfield><subfield code="e">16</subfield><subfield code="h">1311-1328</subfield></datafield></record></collection>
|
author |
Vanduyfhuys, L |
spellingShingle |
Vanduyfhuys, L ddc 530 misc osmotic ensemble misc metal-organic frameworks misc breathing misc flexible frameworks misc thermodynamic model Semi-analytical mean-field model for predicting breathing in metal-organic frameworks |
authorStr |
Vanduyfhuys, L |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165660120 |
format |
Article |
dewey-ones |
530 - Physics 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0892-7022 |
topic_title |
530 600 DNB Semi-analytical mean-field model for predicting breathing in metal-organic frameworks osmotic ensemble metal-organic frameworks breathing flexible frameworks thermodynamic model |
topic |
ddc 530 misc osmotic ensemble misc metal-organic frameworks misc breathing misc flexible frameworks misc thermodynamic model |
topic_unstemmed |
ddc 530 misc osmotic ensemble misc metal-organic frameworks misc breathing misc flexible frameworks misc thermodynamic model |
topic_browse |
ddc 530 misc osmotic ensemble misc metal-organic frameworks misc breathing misc flexible frameworks misc thermodynamic model |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
a g ag s r sr r d rd s v v sv svv |
hierarchy_parent_title |
Molecular simulation |
hierarchy_parent_id |
165660120 |
dewey-tens |
530 - Physics 600 - Technology |
hierarchy_top_title |
Molecular simulation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165660120 (DE-600)636828-1 (DE-576)02291384X |
title |
Semi-analytical mean-field model for predicting breathing in metal-organic frameworks |
ctrlnum |
(DE-627)OLC1957832118 (DE-599)GBVOLC1957832118 (PRQ)c1268-a979b4a848a587798e4be9ed99338046cadf60016f02a4cabb20a87886ac7550 (KEY)0163460720150000041001601311semianalyticalmeanfieldmodelforpredictingbreathing |
title_full |
Semi-analytical mean-field model for predicting breathing in metal-organic frameworks |
author_sort |
Vanduyfhuys, L |
journal |
Molecular simulation |
journalStr |
Molecular simulation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1311 |
author_browse |
Vanduyfhuys, L |
container_volume |
41 |
class |
530 600 DNB |
format_se |
Aufsätze |
author-letter |
Vanduyfhuys, L |
doi_str_mv |
10.1080/08927022.2015.1048512 |
dewey-full |
530 600 |
title_sort |
semi-analytical mean-field model for predicting breathing in metal-organic frameworks |
title_auth |
Semi-analytical mean-field model for predicting breathing in metal-organic frameworks |
abstract |
A new semi-analytical mean-field model is proposed to rationalise breathing of MIL-53 type materials. The model is applied on two case studies, the guest-induced breathing of MIL-53(Cr) with CO 2 and CH 4 , and the phase transformations for MIL-53(Al) upon xenon adsorption. Experimentally, MIL-53(Cr) breathes upon CO 2 adsorption, which was not observed for CH 4 . This result could be ascribed to the stronger interaction of carbon dioxide with the host matrix. For MIL-53(Al) a phase transition from the large pore phase could be enforced to an intermediate phase with volumes of about 1160-1300 Å 3 , which corresponds well to the phase observed experimentally upon xenon adsorption. Our thermodynamic model correlates nicely with the adsorption pressure model proposed by Coudert et al. Furthermore the model can predict breathing behaviour of other flexible materials, if the user can determine the free energy of the empty host, the interaction energy between a guest molecule and the host matrix and the pore volume accessible to the guest molecules. This will allow to generate the osmotic potential from which the equilibria can be deduced and the anticipated experimentally observed phase may be predicted. |
abstractGer |
A new semi-analytical mean-field model is proposed to rationalise breathing of MIL-53 type materials. The model is applied on two case studies, the guest-induced breathing of MIL-53(Cr) with CO 2 and CH 4 , and the phase transformations for MIL-53(Al) upon xenon adsorption. Experimentally, MIL-53(Cr) breathes upon CO 2 adsorption, which was not observed for CH 4 . This result could be ascribed to the stronger interaction of carbon dioxide with the host matrix. For MIL-53(Al) a phase transition from the large pore phase could be enforced to an intermediate phase with volumes of about 1160-1300 Å 3 , which corresponds well to the phase observed experimentally upon xenon adsorption. Our thermodynamic model correlates nicely with the adsorption pressure model proposed by Coudert et al. Furthermore the model can predict breathing behaviour of other flexible materials, if the user can determine the free energy of the empty host, the interaction energy between a guest molecule and the host matrix and the pore volume accessible to the guest molecules. This will allow to generate the osmotic potential from which the equilibria can be deduced and the anticipated experimentally observed phase may be predicted. |
abstract_unstemmed |
A new semi-analytical mean-field model is proposed to rationalise breathing of MIL-53 type materials. The model is applied on two case studies, the guest-induced breathing of MIL-53(Cr) with CO 2 and CH 4 , and the phase transformations for MIL-53(Al) upon xenon adsorption. Experimentally, MIL-53(Cr) breathes upon CO 2 adsorption, which was not observed for CH 4 . This result could be ascribed to the stronger interaction of carbon dioxide with the host matrix. For MIL-53(Al) a phase transition from the large pore phase could be enforced to an intermediate phase with volumes of about 1160-1300 Å 3 , which corresponds well to the phase observed experimentally upon xenon adsorption. Our thermodynamic model correlates nicely with the adsorption pressure model proposed by Coudert et al. Furthermore the model can predict breathing behaviour of other flexible materials, if the user can determine the free energy of the empty host, the interaction energy between a guest molecule and the host matrix and the pore volume accessible to the guest molecules. This will allow to generate the osmotic potential from which the equilibria can be deduced and the anticipated experimentally observed phase may be predicted. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
16 |
title_short |
Semi-analytical mean-field model for predicting breathing in metal-organic frameworks |
url |
http://dx.doi.org/10.1080/08927022.2015.1048512 http://www.tandfonline.com/doi/abs/10.1080/08927022.2015.1048512 |
remote_bool |
false |
author2 |
Ghysels, A Rogge, S.M.J Demuynck, R Van Speybroeck, V |
author2Str |
Ghysels, A Rogge, S.M.J Demuynck, R Van Speybroeck, V |
ppnlink |
165660120 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1080/08927022.2015.1048512 |
up_date |
2024-07-04T01:29:54.855Z |
_version_ |
1803610064012967936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1957832118</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714143644.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/08927022.2015.1048512</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1957832118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1957832118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1268-a979b4a848a587798e4be9ed99338046cadf60016f02a4cabb20a87886ac7550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0163460720150000041001601311semianalyticalmeanfieldmodelforpredictingbreathing</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vanduyfhuys, L</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Semi-analytical mean-field model for predicting breathing in metal-organic frameworks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A new semi-analytical mean-field model is proposed to rationalise breathing of MIL-53 type materials. The model is applied on two case studies, the guest-induced breathing of MIL-53(Cr) with CO 2 and CH 4 , and the phase transformations for MIL-53(Al) upon xenon adsorption. Experimentally, MIL-53(Cr) breathes upon CO 2 adsorption, which was not observed for CH 4 . This result could be ascribed to the stronger interaction of carbon dioxide with the host matrix. For MIL-53(Al) a phase transition from the large pore phase could be enforced to an intermediate phase with volumes of about 1160-1300 Å 3 , which corresponds well to the phase observed experimentally upon xenon adsorption. Our thermodynamic model correlates nicely with the adsorption pressure model proposed by Coudert et al. Furthermore the model can predict breathing behaviour of other flexible materials, if the user can determine the free energy of the empty host, the interaction energy between a guest molecule and the host matrix and the pore volume accessible to the guest molecules. This will allow to generate the osmotic potential from which the equilibria can be deduced and the anticipated experimentally observed phase may be predicted.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015 Taylor & Francis 2015</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">osmotic ensemble</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metal-organic frameworks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">breathing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flexible frameworks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermodynamic model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghysels, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rogge, S.M.J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Demuynck, R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Speybroeck, V</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Molecular simulation</subfield><subfield code="d">New York, NY [u.a.] : Gordon and Breach, 1987</subfield><subfield code="g">41(2015), 16, Seite 1311-1328</subfield><subfield code="w">(DE-627)165660120</subfield><subfield code="w">(DE-600)636828-1</subfield><subfield code="w">(DE-576)02291384X</subfield><subfield code="x">0892-7022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:16</subfield><subfield code="g">pages:1311-1328</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/08927022.2015.1048512</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/08927022.2015.1048512</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2015</subfield><subfield code="e">16</subfield><subfield code="h">1311-1328</subfield></datafield></record></collection>
|
score |
7.399967 |