Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model
Phase contrast imaging (PCI) is a new physical and biochemical technique. Practical biomedical applications combine PCI with computer tomography (CT), Phase contrast CT (PC-CT) can reconstruct 3D images of samples. How to reconstruct high quality image at a low radiation dose level is a hot topic fo...
Ausführliche Beschreibung
Autor*in: |
Ji, Dongjiang [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of x-ray science and technology - Duluth, Minn. : Academic Press, 1989, 23(2015), 3, Seite 311 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2015 ; number:3 ; pages:311 |
Links: |
---|
Katalog-ID: |
OLC1958069973 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1958069973 | ||
003 | DE-627 | ||
005 | 20230714144019.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1958069973 | ||
035 | |a (DE-599)GBVOLC1958069973 | ||
035 | |a (PRQ)p833-b2bd252d42e93316f09fa781269f95eed2686ff6ecff5d6b236ba5eb1f542ff00 | ||
035 | |a (KEY)0169687420150000023000300311imagereconstructionalgorithmforinlinephasecontrast | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q DNB |
100 | 1 | |a Ji, Dongjiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Phase contrast imaging (PCI) is a new physical and biochemical technique. Practical biomedical applications combine PCI with computer tomography (CT), Phase contrast CT (PC-CT) can reconstruct 3D images of samples. How to reconstruct high quality image at a low radiation dose level is a hot topic for PC-CT. In order to reduce radiation dose, a strategy is to collect incomplete projection data by few-view projection data. This work presents a reconstruction method for incomplete data PC-CT. It is based on an algebraic iteration reconstruction algorithm and combined with an anisotropic diffusion model to reduce aliasing distortions.To validate the availability of this method, the research carried out a computer-simulated and real experimental synchrotron data. The computer-simulated and real data results demonstrate that the presented method can improve the convergence speed of image reconstruction and reduce the aliasing distortions by incomplete projection data for PC-CT. However, there is no proof that this is true for all kinds of structures. | ||
700 | 1 | |a Hu, Chunhong |4 oth | |
700 | 1 | |a Yang, Hao |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of x-ray science and technology |d Duluth, Minn. : Academic Press, 1989 |g 23(2015), 3, Seite 311 |w (DE-627)182387127 |w (DE-600)1203221-9 |w (DE-576)09450377X |x 0895-3996 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2015 |g number:3 |g pages:311 |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/26410465 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
951 | |a AR | ||
952 | |d 23 |j 2015 |e 3 |h 311 |
author_variant |
d j dj |
---|---|
matchkey_str |
article:08953996:2015----::mgrcntutoagrtmoilnpaeotatmgncmuetmgahwtaip |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
PQ20160617 (DE-627)OLC1958069973 (DE-599)GBVOLC1958069973 (PRQ)p833-b2bd252d42e93316f09fa781269f95eed2686ff6ecff5d6b236ba5eb1f542ff00 (KEY)0169687420150000023000300311imagereconstructionalgorithmforinlinephasecontrast DE-627 ger DE-627 rakwb eng 610 DNB Ji, Dongjiang verfasserin aut Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Phase contrast imaging (PCI) is a new physical and biochemical technique. Practical biomedical applications combine PCI with computer tomography (CT), Phase contrast CT (PC-CT) can reconstruct 3D images of samples. How to reconstruct high quality image at a low radiation dose level is a hot topic for PC-CT. In order to reduce radiation dose, a strategy is to collect incomplete projection data by few-view projection data. This work presents a reconstruction method for incomplete data PC-CT. It is based on an algebraic iteration reconstruction algorithm and combined with an anisotropic diffusion model to reduce aliasing distortions.To validate the availability of this method, the research carried out a computer-simulated and real experimental synchrotron data. The computer-simulated and real data results demonstrate that the presented method can improve the convergence speed of image reconstruction and reduce the aliasing distortions by incomplete projection data for PC-CT. However, there is no proof that this is true for all kinds of structures. Hu, Chunhong oth Yang, Hao oth Enthalten in Journal of x-ray science and technology Duluth, Minn. : Academic Press, 1989 23(2015), 3, Seite 311 (DE-627)182387127 (DE-600)1203221-9 (DE-576)09450377X 0895-3996 nnns volume:23 year:2015 number:3 pages:311 http://www.ncbi.nlm.nih.gov/pubmed/26410465 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_170 AR 23 2015 3 311 |
spelling |
PQ20160617 (DE-627)OLC1958069973 (DE-599)GBVOLC1958069973 (PRQ)p833-b2bd252d42e93316f09fa781269f95eed2686ff6ecff5d6b236ba5eb1f542ff00 (KEY)0169687420150000023000300311imagereconstructionalgorithmforinlinephasecontrast DE-627 ger DE-627 rakwb eng 610 DNB Ji, Dongjiang verfasserin aut Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Phase contrast imaging (PCI) is a new physical and biochemical technique. Practical biomedical applications combine PCI with computer tomography (CT), Phase contrast CT (PC-CT) can reconstruct 3D images of samples. How to reconstruct high quality image at a low radiation dose level is a hot topic for PC-CT. In order to reduce radiation dose, a strategy is to collect incomplete projection data by few-view projection data. This work presents a reconstruction method for incomplete data PC-CT. It is based on an algebraic iteration reconstruction algorithm and combined with an anisotropic diffusion model to reduce aliasing distortions.To validate the availability of this method, the research carried out a computer-simulated and real experimental synchrotron data. The computer-simulated and real data results demonstrate that the presented method can improve the convergence speed of image reconstruction and reduce the aliasing distortions by incomplete projection data for PC-CT. However, there is no proof that this is true for all kinds of structures. Hu, Chunhong oth Yang, Hao oth Enthalten in Journal of x-ray science and technology Duluth, Minn. : Academic Press, 1989 23(2015), 3, Seite 311 (DE-627)182387127 (DE-600)1203221-9 (DE-576)09450377X 0895-3996 nnns volume:23 year:2015 number:3 pages:311 http://www.ncbi.nlm.nih.gov/pubmed/26410465 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_170 AR 23 2015 3 311 |
allfields_unstemmed |
PQ20160617 (DE-627)OLC1958069973 (DE-599)GBVOLC1958069973 (PRQ)p833-b2bd252d42e93316f09fa781269f95eed2686ff6ecff5d6b236ba5eb1f542ff00 (KEY)0169687420150000023000300311imagereconstructionalgorithmforinlinephasecontrast DE-627 ger DE-627 rakwb eng 610 DNB Ji, Dongjiang verfasserin aut Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Phase contrast imaging (PCI) is a new physical and biochemical technique. Practical biomedical applications combine PCI with computer tomography (CT), Phase contrast CT (PC-CT) can reconstruct 3D images of samples. How to reconstruct high quality image at a low radiation dose level is a hot topic for PC-CT. In order to reduce radiation dose, a strategy is to collect incomplete projection data by few-view projection data. This work presents a reconstruction method for incomplete data PC-CT. It is based on an algebraic iteration reconstruction algorithm and combined with an anisotropic diffusion model to reduce aliasing distortions.To validate the availability of this method, the research carried out a computer-simulated and real experimental synchrotron data. The computer-simulated and real data results demonstrate that the presented method can improve the convergence speed of image reconstruction and reduce the aliasing distortions by incomplete projection data for PC-CT. However, there is no proof that this is true for all kinds of structures. Hu, Chunhong oth Yang, Hao oth Enthalten in Journal of x-ray science and technology Duluth, Minn. : Academic Press, 1989 23(2015), 3, Seite 311 (DE-627)182387127 (DE-600)1203221-9 (DE-576)09450377X 0895-3996 nnns volume:23 year:2015 number:3 pages:311 http://www.ncbi.nlm.nih.gov/pubmed/26410465 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_170 AR 23 2015 3 311 |
allfieldsGer |
PQ20160617 (DE-627)OLC1958069973 (DE-599)GBVOLC1958069973 (PRQ)p833-b2bd252d42e93316f09fa781269f95eed2686ff6ecff5d6b236ba5eb1f542ff00 (KEY)0169687420150000023000300311imagereconstructionalgorithmforinlinephasecontrast DE-627 ger DE-627 rakwb eng 610 DNB Ji, Dongjiang verfasserin aut Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Phase contrast imaging (PCI) is a new physical and biochemical technique. Practical biomedical applications combine PCI with computer tomography (CT), Phase contrast CT (PC-CT) can reconstruct 3D images of samples. How to reconstruct high quality image at a low radiation dose level is a hot topic for PC-CT. In order to reduce radiation dose, a strategy is to collect incomplete projection data by few-view projection data. This work presents a reconstruction method for incomplete data PC-CT. It is based on an algebraic iteration reconstruction algorithm and combined with an anisotropic diffusion model to reduce aliasing distortions.To validate the availability of this method, the research carried out a computer-simulated and real experimental synchrotron data. The computer-simulated and real data results demonstrate that the presented method can improve the convergence speed of image reconstruction and reduce the aliasing distortions by incomplete projection data for PC-CT. However, there is no proof that this is true for all kinds of structures. Hu, Chunhong oth Yang, Hao oth Enthalten in Journal of x-ray science and technology Duluth, Minn. : Academic Press, 1989 23(2015), 3, Seite 311 (DE-627)182387127 (DE-600)1203221-9 (DE-576)09450377X 0895-3996 nnns volume:23 year:2015 number:3 pages:311 http://www.ncbi.nlm.nih.gov/pubmed/26410465 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_170 AR 23 2015 3 311 |
allfieldsSound |
PQ20160617 (DE-627)OLC1958069973 (DE-599)GBVOLC1958069973 (PRQ)p833-b2bd252d42e93316f09fa781269f95eed2686ff6ecff5d6b236ba5eb1f542ff00 (KEY)0169687420150000023000300311imagereconstructionalgorithmforinlinephasecontrast DE-627 ger DE-627 rakwb eng 610 DNB Ji, Dongjiang verfasserin aut Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Phase contrast imaging (PCI) is a new physical and biochemical technique. Practical biomedical applications combine PCI with computer tomography (CT), Phase contrast CT (PC-CT) can reconstruct 3D images of samples. How to reconstruct high quality image at a low radiation dose level is a hot topic for PC-CT. In order to reduce radiation dose, a strategy is to collect incomplete projection data by few-view projection data. This work presents a reconstruction method for incomplete data PC-CT. It is based on an algebraic iteration reconstruction algorithm and combined with an anisotropic diffusion model to reduce aliasing distortions.To validate the availability of this method, the research carried out a computer-simulated and real experimental synchrotron data. The computer-simulated and real data results demonstrate that the presented method can improve the convergence speed of image reconstruction and reduce the aliasing distortions by incomplete projection data for PC-CT. However, there is no proof that this is true for all kinds of structures. Hu, Chunhong oth Yang, Hao oth Enthalten in Journal of x-ray science and technology Duluth, Minn. : Academic Press, 1989 23(2015), 3, Seite 311 (DE-627)182387127 (DE-600)1203221-9 (DE-576)09450377X 0895-3996 nnns volume:23 year:2015 number:3 pages:311 http://www.ncbi.nlm.nih.gov/pubmed/26410465 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_170 AR 23 2015 3 311 |
language |
English |
source |
Enthalten in Journal of x-ray science and technology 23(2015), 3, Seite 311 volume:23 year:2015 number:3 pages:311 |
sourceStr |
Enthalten in Journal of x-ray science and technology 23(2015), 3, Seite 311 volume:23 year:2015 number:3 pages:311 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Journal of x-ray science and technology |
authorswithroles_txt_mv |
Ji, Dongjiang @@aut@@ Hu, Chunhong @@oth@@ Yang, Hao @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
182387127 |
dewey-sort |
3610 |
id |
OLC1958069973 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1958069973</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714144019.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1958069973</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1958069973</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p833-b2bd252d42e93316f09fa781269f95eed2686ff6ecff5d6b236ba5eb1f542ff00</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0169687420150000023000300311imagereconstructionalgorithmforinlinephasecontrast</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ji, Dongjiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Phase contrast imaging (PCI) is a new physical and biochemical technique. Practical biomedical applications combine PCI with computer tomography (CT), Phase contrast CT (PC-CT) can reconstruct 3D images of samples. How to reconstruct high quality image at a low radiation dose level is a hot topic for PC-CT. In order to reduce radiation dose, a strategy is to collect incomplete projection data by few-view projection data. This work presents a reconstruction method for incomplete data PC-CT. It is based on an algebraic iteration reconstruction algorithm and combined with an anisotropic diffusion model to reduce aliasing distortions.To validate the availability of this method, the research carried out a computer-simulated and real experimental synchrotron data. The computer-simulated and real data results demonstrate that the presented method can improve the convergence speed of image reconstruction and reduce the aliasing distortions by incomplete projection data for PC-CT. However, there is no proof that this is true for all kinds of structures.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Chunhong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Hao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of x-ray science and technology</subfield><subfield code="d">Duluth, Minn. : Academic Press, 1989</subfield><subfield code="g">23(2015), 3, Seite 311</subfield><subfield code="w">(DE-627)182387127</subfield><subfield code="w">(DE-600)1203221-9</subfield><subfield code="w">(DE-576)09450377X</subfield><subfield code="x">0895-3996</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:311</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/26410465</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">311</subfield></datafield></record></collection>
|
author |
Ji, Dongjiang |
spellingShingle |
Ji, Dongjiang ddc 610 Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model |
authorStr |
Ji, Dongjiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)182387127 |
format |
Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0895-3996 |
topic_title |
610 DNB Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model |
topic |
ddc 610 |
topic_unstemmed |
ddc 610 |
topic_browse |
ddc 610 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
c h ch h y hy |
hierarchy_parent_title |
Journal of x-ray science and technology |
hierarchy_parent_id |
182387127 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Journal of x-ray science and technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)182387127 (DE-600)1203221-9 (DE-576)09450377X |
title |
Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model |
ctrlnum |
(DE-627)OLC1958069973 (DE-599)GBVOLC1958069973 (PRQ)p833-b2bd252d42e93316f09fa781269f95eed2686ff6ecff5d6b236ba5eb1f542ff00 (KEY)0169687420150000023000300311imagereconstructionalgorithmforinlinephasecontrast |
title_full |
Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model |
author_sort |
Ji, Dongjiang |
journal |
Journal of x-ray science and technology |
journalStr |
Journal of x-ray science and technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
311 |
author_browse |
Ji, Dongjiang |
container_volume |
23 |
class |
610 DNB |
format_se |
Aufsätze |
author-letter |
Ji, Dongjiang |
dewey-full |
610 |
title_sort |
image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model |
title_auth |
Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model |
abstract |
Phase contrast imaging (PCI) is a new physical and biochemical technique. Practical biomedical applications combine PCI with computer tomography (CT), Phase contrast CT (PC-CT) can reconstruct 3D images of samples. How to reconstruct high quality image at a low radiation dose level is a hot topic for PC-CT. In order to reduce radiation dose, a strategy is to collect incomplete projection data by few-view projection data. This work presents a reconstruction method for incomplete data PC-CT. It is based on an algebraic iteration reconstruction algorithm and combined with an anisotropic diffusion model to reduce aliasing distortions.To validate the availability of this method, the research carried out a computer-simulated and real experimental synchrotron data. The computer-simulated and real data results demonstrate that the presented method can improve the convergence speed of image reconstruction and reduce the aliasing distortions by incomplete projection data for PC-CT. However, there is no proof that this is true for all kinds of structures. |
abstractGer |
Phase contrast imaging (PCI) is a new physical and biochemical technique. Practical biomedical applications combine PCI with computer tomography (CT), Phase contrast CT (PC-CT) can reconstruct 3D images of samples. How to reconstruct high quality image at a low radiation dose level is a hot topic for PC-CT. In order to reduce radiation dose, a strategy is to collect incomplete projection data by few-view projection data. This work presents a reconstruction method for incomplete data PC-CT. It is based on an algebraic iteration reconstruction algorithm and combined with an anisotropic diffusion model to reduce aliasing distortions.To validate the availability of this method, the research carried out a computer-simulated and real experimental synchrotron data. The computer-simulated and real data results demonstrate that the presented method can improve the convergence speed of image reconstruction and reduce the aliasing distortions by incomplete projection data for PC-CT. However, there is no proof that this is true for all kinds of structures. |
abstract_unstemmed |
Phase contrast imaging (PCI) is a new physical and biochemical technique. Practical biomedical applications combine PCI with computer tomography (CT), Phase contrast CT (PC-CT) can reconstruct 3D images of samples. How to reconstruct high quality image at a low radiation dose level is a hot topic for PC-CT. In order to reduce radiation dose, a strategy is to collect incomplete projection data by few-view projection data. This work presents a reconstruction method for incomplete data PC-CT. It is based on an algebraic iteration reconstruction algorithm and combined with an anisotropic diffusion model to reduce aliasing distortions.To validate the availability of this method, the research carried out a computer-simulated and real experimental synchrotron data. The computer-simulated and real data results demonstrate that the presented method can improve the convergence speed of image reconstruction and reduce the aliasing distortions by incomplete projection data for PC-CT. However, there is no proof that this is true for all kinds of structures. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_170 |
container_issue |
3 |
title_short |
Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model |
url |
http://www.ncbi.nlm.nih.gov/pubmed/26410465 |
remote_bool |
false |
author2 |
Hu, Chunhong Yang, Hao |
author2Str |
Hu, Chunhong Yang, Hao |
ppnlink |
182387127 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
up_date |
2024-07-04T02:04:40.478Z |
_version_ |
1803612250941947904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1958069973</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714144019.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1958069973</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1958069973</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p833-b2bd252d42e93316f09fa781269f95eed2686ff6ecff5d6b236ba5eb1f542ff00</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0169687420150000023000300311imagereconstructionalgorithmforinlinephasecontrast</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ji, Dongjiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Phase contrast imaging (PCI) is a new physical and biochemical technique. Practical biomedical applications combine PCI with computer tomography (CT), Phase contrast CT (PC-CT) can reconstruct 3D images of samples. How to reconstruct high quality image at a low radiation dose level is a hot topic for PC-CT. In order to reduce radiation dose, a strategy is to collect incomplete projection data by few-view projection data. This work presents a reconstruction method for incomplete data PC-CT. It is based on an algebraic iteration reconstruction algorithm and combined with an anisotropic diffusion model to reduce aliasing distortions.To validate the availability of this method, the research carried out a computer-simulated and real experimental synchrotron data. The computer-simulated and real data results demonstrate that the presented method can improve the convergence speed of image reconstruction and reduce the aliasing distortions by incomplete projection data for PC-CT. However, there is no proof that this is true for all kinds of structures.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Chunhong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Hao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of x-ray science and technology</subfield><subfield code="d">Duluth, Minn. : Academic Press, 1989</subfield><subfield code="g">23(2015), 3, Seite 311</subfield><subfield code="w">(DE-627)182387127</subfield><subfield code="w">(DE-600)1203221-9</subfield><subfield code="w">(DE-576)09450377X</subfield><subfield code="x">0895-3996</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:311</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/26410465</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">311</subfield></datafield></record></collection>
|
score |
7.400483 |