TASC:Topic-Adaptive Sentiment Classification on Dynamic Tweets

Sentiment classification is a topic-sensitive task, i.e., a classifier trained from one topic will perform worse on another. This is especially a problem for the tweets sentiment analysis. Since the topics in Twitter are very diverse, it is impossible to train a universal classifier for all topics....
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Shenghua Liu [verfasserIn]

Xueqi Cheng

Fuxin Li

Fangtao Li

Format:

Artikel

Sprache:

Englisch

Erschienen:

2015

Schlagwörter:

learning (artificial intelligence)

Adaptation models

collaborative selection

semisupervised learning methods

F-score

sparse text

tweets sentiment analysis

Support vector machines

adaptive feature

sentiment labels

topic-adaptive features

timeline visualization

TASC learning algorithm

Data visualization

topic-related sentiment words

TASC model

semisupervised topic-adaptive sentiment classification

sentiment connections

multiclass SVM

feature extraction

Sentiment analysis

pattern classification

social networking (online)

TASC-t

ensemble classifiers

topic-sensitive task

color gradation intensity

supervised classifiers

universal classifier

dynamic tweets

text analysis

mixed labeled data

nontext features extraction

cross-domain

Google

river graph

topic-adaptive

unlabeled data

sentiment classification

Twitter

Product reviews

Systematik:

Übergeordnetes Werk:

Enthalten in: IEEE transactions on knowledge and data engineering - New York, NY : IEEE, 1989, 27(2015), 6, Seite 1696-1709

Übergeordnetes Werk:

volume:27 ; year:2015 ; number:6 ; pages:1696-1709

Links:

Volltext
Link aufrufen
Link aufrufen

DOI / URN:

10.1109/TKDE.2014.2382600

Katalog-ID:

OLC1958213837

Nicht das Richtige dabei?

Schreiben Sie uns!