Robust stabilization of MIMO systems in finite/fixed time
The control design problem for finite‐time and fixed‐time stabilizations of linear multi‐input system with nonlinear uncertainties and disturbances is considered. The control design algorithm based on block decomposition and implicit Lyapunov function technique is developed. The robustness propertie...
Ausführliche Beschreibung
Autor*in: |
Polyakov, A [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of robust and nonlinear control - Chichester : Wiley, 1991, 26(2016), 1, Seite 69-90 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2016 ; number:1 ; pages:69-90 |
Links: |
---|
DOI / URN: |
10.1002/rnc.3297 |
---|
Katalog-ID: |
OLC195890077X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC195890077X | ||
003 | DE-627 | ||
005 | 20220216165652.0 | ||
007 | tu | ||
008 | 160206s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/rnc.3297 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC195890077X | ||
035 | |a (DE-599)GBVOLC195890077X | ||
035 | |a (PRQ)c1527-1fc32f0571e603e35b796c82d3f27eca2d854ff19243da8e72e1f950c52953183 | ||
035 | |a (KEY)0202774720160000026000100069robuststabilizationofmimosystemsinfinitefixedtime | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ZDB |
084 | |a 53.00 |2 bkl | ||
100 | 1 | |a Polyakov, A |e verfasserin |4 aut | |
245 | 1 | 0 | |a Robust stabilization of MIMO systems in finite/fixed time |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The control design problem for finite‐time and fixed‐time stabilizations of linear multi‐input system with nonlinear uncertainties and disturbances is considered. The control design algorithm based on block decomposition and implicit Lyapunov function technique is developed. The robustness properties of the obtained control laws with respect to matched and unmatched uncertainties and disturbances are studied. Procedures for tuning of control parameters are presented in the form of linear matrix inequalities. Aspects of practical implementation of developed algorithms are discussed. Theoretical results are supported by numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd. | ||
540 | |a Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. | ||
650 | 4 | |a nonasymptotic stabilization | |
650 | 4 | |a implicit Lyapunov function | |
650 | 4 | |a homogeneity | |
700 | 1 | |a Efimov, D |4 oth | |
700 | 1 | |a Perruquetti, W |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International journal of robust and nonlinear control |d Chichester : Wiley, 1991 |g 26(2016), 1, Seite 69-90 |w (DE-627)13098311X |w (DE-600)1076540-2 |w (DE-576)027065731 |x 1049-8923 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2016 |g number:1 |g pages:69-90 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/rnc.3297 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/rnc.3297/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1757648163 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 53.00 |q AVZ |
951 | |a AR | ||
952 | |d 26 |j 2016 |e 1 |h 69-90 |
author_variant |
a p ap |
---|---|
matchkey_str |
article:10498923:2016----::outtblztoommssesni |
hierarchy_sort_str |
2016 |
bklnumber |
53.00 |
publishDate |
2016 |
allfields |
10.1002/rnc.3297 doi PQ20160617 (DE-627)OLC195890077X (DE-599)GBVOLC195890077X (PRQ)c1527-1fc32f0571e603e35b796c82d3f27eca2d854ff19243da8e72e1f950c52953183 (KEY)0202774720160000026000100069robuststabilizationofmimosystemsinfinitefixedtime DE-627 ger DE-627 rakwb eng 510 ZDB 53.00 bkl Polyakov, A verfasserin aut Robust stabilization of MIMO systems in finite/fixed time 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The control design problem for finite‐time and fixed‐time stabilizations of linear multi‐input system with nonlinear uncertainties and disturbances is considered. The control design algorithm based on block decomposition and implicit Lyapunov function technique is developed. The robustness properties of the obtained control laws with respect to matched and unmatched uncertainties and disturbances are studied. Procedures for tuning of control parameters are presented in the form of linear matrix inequalities. Aspects of practical implementation of developed algorithms are discussed. Theoretical results are supported by numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. nonasymptotic stabilization implicit Lyapunov function homogeneity Efimov, D oth Perruquetti, W oth Enthalten in International journal of robust and nonlinear control Chichester : Wiley, 1991 26(2016), 1, Seite 69-90 (DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 1049-8923 nnns volume:26 year:2016 number:1 pages:69-90 http://dx.doi.org/10.1002/rnc.3297 Volltext http://onlinelibrary.wiley.com/doi/10.1002/rnc.3297/abstract http://search.proquest.com/docview/1757648163 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 53.00 AVZ AR 26 2016 1 69-90 |
spelling |
10.1002/rnc.3297 doi PQ20160617 (DE-627)OLC195890077X (DE-599)GBVOLC195890077X (PRQ)c1527-1fc32f0571e603e35b796c82d3f27eca2d854ff19243da8e72e1f950c52953183 (KEY)0202774720160000026000100069robuststabilizationofmimosystemsinfinitefixedtime DE-627 ger DE-627 rakwb eng 510 ZDB 53.00 bkl Polyakov, A verfasserin aut Robust stabilization of MIMO systems in finite/fixed time 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The control design problem for finite‐time and fixed‐time stabilizations of linear multi‐input system with nonlinear uncertainties and disturbances is considered. The control design algorithm based on block decomposition and implicit Lyapunov function technique is developed. The robustness properties of the obtained control laws with respect to matched and unmatched uncertainties and disturbances are studied. Procedures for tuning of control parameters are presented in the form of linear matrix inequalities. Aspects of practical implementation of developed algorithms are discussed. Theoretical results are supported by numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. nonasymptotic stabilization implicit Lyapunov function homogeneity Efimov, D oth Perruquetti, W oth Enthalten in International journal of robust and nonlinear control Chichester : Wiley, 1991 26(2016), 1, Seite 69-90 (DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 1049-8923 nnns volume:26 year:2016 number:1 pages:69-90 http://dx.doi.org/10.1002/rnc.3297 Volltext http://onlinelibrary.wiley.com/doi/10.1002/rnc.3297/abstract http://search.proquest.com/docview/1757648163 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 53.00 AVZ AR 26 2016 1 69-90 |
allfields_unstemmed |
10.1002/rnc.3297 doi PQ20160617 (DE-627)OLC195890077X (DE-599)GBVOLC195890077X (PRQ)c1527-1fc32f0571e603e35b796c82d3f27eca2d854ff19243da8e72e1f950c52953183 (KEY)0202774720160000026000100069robuststabilizationofmimosystemsinfinitefixedtime DE-627 ger DE-627 rakwb eng 510 ZDB 53.00 bkl Polyakov, A verfasserin aut Robust stabilization of MIMO systems in finite/fixed time 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The control design problem for finite‐time and fixed‐time stabilizations of linear multi‐input system with nonlinear uncertainties and disturbances is considered. The control design algorithm based on block decomposition and implicit Lyapunov function technique is developed. The robustness properties of the obtained control laws with respect to matched and unmatched uncertainties and disturbances are studied. Procedures for tuning of control parameters are presented in the form of linear matrix inequalities. Aspects of practical implementation of developed algorithms are discussed. Theoretical results are supported by numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. nonasymptotic stabilization implicit Lyapunov function homogeneity Efimov, D oth Perruquetti, W oth Enthalten in International journal of robust and nonlinear control Chichester : Wiley, 1991 26(2016), 1, Seite 69-90 (DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 1049-8923 nnns volume:26 year:2016 number:1 pages:69-90 http://dx.doi.org/10.1002/rnc.3297 Volltext http://onlinelibrary.wiley.com/doi/10.1002/rnc.3297/abstract http://search.proquest.com/docview/1757648163 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 53.00 AVZ AR 26 2016 1 69-90 |
allfieldsGer |
10.1002/rnc.3297 doi PQ20160617 (DE-627)OLC195890077X (DE-599)GBVOLC195890077X (PRQ)c1527-1fc32f0571e603e35b796c82d3f27eca2d854ff19243da8e72e1f950c52953183 (KEY)0202774720160000026000100069robuststabilizationofmimosystemsinfinitefixedtime DE-627 ger DE-627 rakwb eng 510 ZDB 53.00 bkl Polyakov, A verfasserin aut Robust stabilization of MIMO systems in finite/fixed time 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The control design problem for finite‐time and fixed‐time stabilizations of linear multi‐input system with nonlinear uncertainties and disturbances is considered. The control design algorithm based on block decomposition and implicit Lyapunov function technique is developed. The robustness properties of the obtained control laws with respect to matched and unmatched uncertainties and disturbances are studied. Procedures for tuning of control parameters are presented in the form of linear matrix inequalities. Aspects of practical implementation of developed algorithms are discussed. Theoretical results are supported by numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. nonasymptotic stabilization implicit Lyapunov function homogeneity Efimov, D oth Perruquetti, W oth Enthalten in International journal of robust and nonlinear control Chichester : Wiley, 1991 26(2016), 1, Seite 69-90 (DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 1049-8923 nnns volume:26 year:2016 number:1 pages:69-90 http://dx.doi.org/10.1002/rnc.3297 Volltext http://onlinelibrary.wiley.com/doi/10.1002/rnc.3297/abstract http://search.proquest.com/docview/1757648163 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 53.00 AVZ AR 26 2016 1 69-90 |
allfieldsSound |
10.1002/rnc.3297 doi PQ20160617 (DE-627)OLC195890077X (DE-599)GBVOLC195890077X (PRQ)c1527-1fc32f0571e603e35b796c82d3f27eca2d854ff19243da8e72e1f950c52953183 (KEY)0202774720160000026000100069robuststabilizationofmimosystemsinfinitefixedtime DE-627 ger DE-627 rakwb eng 510 ZDB 53.00 bkl Polyakov, A verfasserin aut Robust stabilization of MIMO systems in finite/fixed time 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The control design problem for finite‐time and fixed‐time stabilizations of linear multi‐input system with nonlinear uncertainties and disturbances is considered. The control design algorithm based on block decomposition and implicit Lyapunov function technique is developed. The robustness properties of the obtained control laws with respect to matched and unmatched uncertainties and disturbances are studied. Procedures for tuning of control parameters are presented in the form of linear matrix inequalities. Aspects of practical implementation of developed algorithms are discussed. Theoretical results are supported by numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. nonasymptotic stabilization implicit Lyapunov function homogeneity Efimov, D oth Perruquetti, W oth Enthalten in International journal of robust and nonlinear control Chichester : Wiley, 1991 26(2016), 1, Seite 69-90 (DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 1049-8923 nnns volume:26 year:2016 number:1 pages:69-90 http://dx.doi.org/10.1002/rnc.3297 Volltext http://onlinelibrary.wiley.com/doi/10.1002/rnc.3297/abstract http://search.proquest.com/docview/1757648163 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 53.00 AVZ AR 26 2016 1 69-90 |
language |
English |
source |
Enthalten in International journal of robust and nonlinear control 26(2016), 1, Seite 69-90 volume:26 year:2016 number:1 pages:69-90 |
sourceStr |
Enthalten in International journal of robust and nonlinear control 26(2016), 1, Seite 69-90 volume:26 year:2016 number:1 pages:69-90 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
nonasymptotic stabilization implicit Lyapunov function homogeneity |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
International journal of robust and nonlinear control |
authorswithroles_txt_mv |
Polyakov, A @@aut@@ Efimov, D @@oth@@ Perruquetti, W @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
13098311X |
dewey-sort |
3510 |
id |
OLC195890077X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC195890077X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216165652.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/rnc.3297</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC195890077X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC195890077X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1527-1fc32f0571e603e35b796c82d3f27eca2d854ff19243da8e72e1f950c52953183</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0202774720160000026000100069robuststabilizationofmimosystemsinfinitefixedtime</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Polyakov, A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust stabilization of MIMO systems in finite/fixed time</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The control design problem for finite‐time and fixed‐time stabilizations of linear multi‐input system with nonlinear uncertainties and disturbances is considered. The control design algorithm based on block decomposition and implicit Lyapunov function technique is developed. The robustness properties of the obtained control laws with respect to matched and unmatched uncertainties and disturbances are studied. Procedures for tuning of control parameters are presented in the form of linear matrix inequalities. Aspects of practical implementation of developed algorithms are discussed. Theoretical results are supported by numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonasymptotic stabilization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">implicit Lyapunov function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">homogeneity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Efimov, D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Perruquetti, W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of robust and nonlinear control</subfield><subfield code="d">Chichester : Wiley, 1991</subfield><subfield code="g">26(2016), 1, Seite 69-90</subfield><subfield code="w">(DE-627)13098311X</subfield><subfield code="w">(DE-600)1076540-2</subfield><subfield code="w">(DE-576)027065731</subfield><subfield code="x">1049-8923</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:69-90</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/rnc.3297</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/rnc.3297/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1757648163</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">69-90</subfield></datafield></record></collection>
|
author |
Polyakov, A |
spellingShingle |
Polyakov, A ddc 510 bkl 53.00 misc nonasymptotic stabilization misc implicit Lyapunov function misc homogeneity Robust stabilization of MIMO systems in finite/fixed time |
authorStr |
Polyakov, A |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)13098311X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1049-8923 |
topic_title |
510 ZDB 53.00 bkl Robust stabilization of MIMO systems in finite/fixed time nonasymptotic stabilization implicit Lyapunov function homogeneity |
topic |
ddc 510 bkl 53.00 misc nonasymptotic stabilization misc implicit Lyapunov function misc homogeneity |
topic_unstemmed |
ddc 510 bkl 53.00 misc nonasymptotic stabilization misc implicit Lyapunov function misc homogeneity |
topic_browse |
ddc 510 bkl 53.00 misc nonasymptotic stabilization misc implicit Lyapunov function misc homogeneity |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
d e de w p wp |
hierarchy_parent_title |
International journal of robust and nonlinear control |
hierarchy_parent_id |
13098311X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
International journal of robust and nonlinear control |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 |
title |
Robust stabilization of MIMO systems in finite/fixed time |
ctrlnum |
(DE-627)OLC195890077X (DE-599)GBVOLC195890077X (PRQ)c1527-1fc32f0571e603e35b796c82d3f27eca2d854ff19243da8e72e1f950c52953183 (KEY)0202774720160000026000100069robuststabilizationofmimosystemsinfinitefixedtime |
title_full |
Robust stabilization of MIMO systems in finite/fixed time |
author_sort |
Polyakov, A |
journal |
International journal of robust and nonlinear control |
journalStr |
International journal of robust and nonlinear control |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
69 |
author_browse |
Polyakov, A |
container_volume |
26 |
class |
510 ZDB 53.00 bkl |
format_se |
Aufsätze |
author-letter |
Polyakov, A |
doi_str_mv |
10.1002/rnc.3297 |
dewey-full |
510 |
title_sort |
robust stabilization of mimo systems in finite/fixed time |
title_auth |
Robust stabilization of MIMO systems in finite/fixed time |
abstract |
The control design problem for finite‐time and fixed‐time stabilizations of linear multi‐input system with nonlinear uncertainties and disturbances is considered. The control design algorithm based on block decomposition and implicit Lyapunov function technique is developed. The robustness properties of the obtained control laws with respect to matched and unmatched uncertainties and disturbances are studied. Procedures for tuning of control parameters are presented in the form of linear matrix inequalities. Aspects of practical implementation of developed algorithms are discussed. Theoretical results are supported by numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd. |
abstractGer |
The control design problem for finite‐time and fixed‐time stabilizations of linear multi‐input system with nonlinear uncertainties and disturbances is considered. The control design algorithm based on block decomposition and implicit Lyapunov function technique is developed. The robustness properties of the obtained control laws with respect to matched and unmatched uncertainties and disturbances are studied. Procedures for tuning of control parameters are presented in the form of linear matrix inequalities. Aspects of practical implementation of developed algorithms are discussed. Theoretical results are supported by numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd. |
abstract_unstemmed |
The control design problem for finite‐time and fixed‐time stabilizations of linear multi‐input system with nonlinear uncertainties and disturbances is considered. The control design algorithm based on block decomposition and implicit Lyapunov function technique is developed. The robustness properties of the obtained control laws with respect to matched and unmatched uncertainties and disturbances are studied. Procedures for tuning of control parameters are presented in the form of linear matrix inequalities. Aspects of practical implementation of developed algorithms are discussed. Theoretical results are supported by numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
1 |
title_short |
Robust stabilization of MIMO systems in finite/fixed time |
url |
http://dx.doi.org/10.1002/rnc.3297 http://onlinelibrary.wiley.com/doi/10.1002/rnc.3297/abstract http://search.proquest.com/docview/1757648163 |
remote_bool |
false |
author2 |
Efimov, D Perruquetti, W |
author2Str |
Efimov, D Perruquetti, W |
ppnlink |
13098311X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1002/rnc.3297 |
up_date |
2024-07-03T14:55:50.767Z |
_version_ |
1803570171890106368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC195890077X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216165652.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/rnc.3297</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC195890077X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC195890077X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1527-1fc32f0571e603e35b796c82d3f27eca2d854ff19243da8e72e1f950c52953183</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0202774720160000026000100069robuststabilizationofmimosystemsinfinitefixedtime</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Polyakov, A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust stabilization of MIMO systems in finite/fixed time</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The control design problem for finite‐time and fixed‐time stabilizations of linear multi‐input system with nonlinear uncertainties and disturbances is considered. The control design algorithm based on block decomposition and implicit Lyapunov function technique is developed. The robustness properties of the obtained control laws with respect to matched and unmatched uncertainties and disturbances are studied. Procedures for tuning of control parameters are presented in the form of linear matrix inequalities. Aspects of practical implementation of developed algorithms are discussed. Theoretical results are supported by numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonasymptotic stabilization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">implicit Lyapunov function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">homogeneity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Efimov, D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Perruquetti, W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of robust and nonlinear control</subfield><subfield code="d">Chichester : Wiley, 1991</subfield><subfield code="g">26(2016), 1, Seite 69-90</subfield><subfield code="w">(DE-627)13098311X</subfield><subfield code="w">(DE-600)1076540-2</subfield><subfield code="w">(DE-576)027065731</subfield><subfield code="x">1049-8923</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:69-90</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/rnc.3297</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/rnc.3297/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1757648163</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">69-90</subfield></datafield></record></collection>
|
score |
7.4029303 |