Simultaneous robust normalization and delay‐dependent robust H∞ stabilization for singular time‐delay systems with uncertainties in the derivative matrices
This paper investigates the problem of simultaneous robust normalization and delay‐dependent H ∞ control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties....
Ausführliche Beschreibung
Autor*in: |
Ren, Junchao [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of robust and nonlinear control - Chichester : Wiley, 1991, 25(2015), 18, Seite 3528-3545 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2015 ; number:18 ; pages:3528-3545 |
Links: |
---|
DOI / URN: |
10.1002/rnc.3278 |
---|
Katalog-ID: |
OLC1958902330 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1958902330 | ||
003 | DE-627 | ||
005 | 20220216165651.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/rnc.3278 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1958902330 | ||
035 | |a (DE-599)GBVOLC1958902330 | ||
035 | |a (PRQ)p958-2465bcc9ee4d330964620f280f57300359ef651a8df1aa2431c7d42e6bf9639d3 | ||
035 | |a (KEY)0202774720150000025001803528simultaneousrobustnormalizationanddelaydependentro | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ZDB |
084 | |a 53.00 |2 bkl | ||
100 | 1 | |a Ren, Junchao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Simultaneous robust normalization and delay‐dependent robust H∞ stabilization for singular time‐delay systems with uncertainties in the derivative matrices |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This paper investigates the problem of simultaneous robust normalization and delay‐dependent H ∞ control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties. New sufficient conditions for the existence of a proportional plus derivative state feedback H ∞ controller are derived as LMIs such that the closed‐loop singular system is normal, stable, and guarantee a specific level of performance. Specially, a static state feedback H ∞ controller alone or a state‐derivative feedback H ∞ controller alone can unite to be dealt with by applying our proposed method. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach in this paper. Copyright © 2014 John Wiley & Sons, Ltd. | ||
540 | |a Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. | ||
650 | 4 | |a control | |
650 | 4 | |a proportional plus derivative state feedback | |
650 | 4 | |a descriptor systems | |
650 | 4 | |a state derivative feedback | |
650 | 4 | |a singular systems | |
700 | 1 | |a Zhang, Qingling |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International journal of robust and nonlinear control |d Chichester : Wiley, 1991 |g 25(2015), 18, Seite 3528-3545 |w (DE-627)13098311X |w (DE-600)1076540-2 |w (DE-576)027065731 |x 1049-8923 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2015 |g number:18 |g pages:3528-3545 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/rnc.3278 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/rnc.3278/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1757648143 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 53.00 |q AVZ |
951 | |a AR | ||
952 | |d 25 |j 2015 |e 18 |h 3528-3545 |
author_variant |
j r jr |
---|---|
matchkey_str |
article:10498923:2015----::iutnosoutomlztoadeadpnetoutsaiiainosnuatmdlyytmwt |
hierarchy_sort_str |
2015 |
bklnumber |
53.00 |
publishDate |
2015 |
allfields |
10.1002/rnc.3278 doi PQ20160617 (DE-627)OLC1958902330 (DE-599)GBVOLC1958902330 (PRQ)p958-2465bcc9ee4d330964620f280f57300359ef651a8df1aa2431c7d42e6bf9639d3 (KEY)0202774720150000025001803528simultaneousrobustnormalizationanddelaydependentro DE-627 ger DE-627 rakwb eng 510 ZDB 53.00 bkl Ren, Junchao verfasserin aut Simultaneous robust normalization and delay‐dependent robust H∞ stabilization for singular time‐delay systems with uncertainties in the derivative matrices 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper investigates the problem of simultaneous robust normalization and delay‐dependent H ∞ control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties. New sufficient conditions for the existence of a proportional plus derivative state feedback H ∞ controller are derived as LMIs such that the closed‐loop singular system is normal, stable, and guarantee a specific level of performance. Specially, a static state feedback H ∞ controller alone or a state‐derivative feedback H ∞ controller alone can unite to be dealt with by applying our proposed method. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach in this paper. Copyright © 2014 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. control proportional plus derivative state feedback descriptor systems state derivative feedback singular systems Zhang, Qingling oth Enthalten in International journal of robust and nonlinear control Chichester : Wiley, 1991 25(2015), 18, Seite 3528-3545 (DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 1049-8923 nnns volume:25 year:2015 number:18 pages:3528-3545 http://dx.doi.org/10.1002/rnc.3278 Volltext http://onlinelibrary.wiley.com/doi/10.1002/rnc.3278/abstract http://search.proquest.com/docview/1757648143 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 53.00 AVZ AR 25 2015 18 3528-3545 |
spelling |
10.1002/rnc.3278 doi PQ20160617 (DE-627)OLC1958902330 (DE-599)GBVOLC1958902330 (PRQ)p958-2465bcc9ee4d330964620f280f57300359ef651a8df1aa2431c7d42e6bf9639d3 (KEY)0202774720150000025001803528simultaneousrobustnormalizationanddelaydependentro DE-627 ger DE-627 rakwb eng 510 ZDB 53.00 bkl Ren, Junchao verfasserin aut Simultaneous robust normalization and delay‐dependent robust H∞ stabilization for singular time‐delay systems with uncertainties in the derivative matrices 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper investigates the problem of simultaneous robust normalization and delay‐dependent H ∞ control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties. New sufficient conditions for the existence of a proportional plus derivative state feedback H ∞ controller are derived as LMIs such that the closed‐loop singular system is normal, stable, and guarantee a specific level of performance. Specially, a static state feedback H ∞ controller alone or a state‐derivative feedback H ∞ controller alone can unite to be dealt with by applying our proposed method. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach in this paper. Copyright © 2014 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. control proportional plus derivative state feedback descriptor systems state derivative feedback singular systems Zhang, Qingling oth Enthalten in International journal of robust and nonlinear control Chichester : Wiley, 1991 25(2015), 18, Seite 3528-3545 (DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 1049-8923 nnns volume:25 year:2015 number:18 pages:3528-3545 http://dx.doi.org/10.1002/rnc.3278 Volltext http://onlinelibrary.wiley.com/doi/10.1002/rnc.3278/abstract http://search.proquest.com/docview/1757648143 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 53.00 AVZ AR 25 2015 18 3528-3545 |
allfields_unstemmed |
10.1002/rnc.3278 doi PQ20160617 (DE-627)OLC1958902330 (DE-599)GBVOLC1958902330 (PRQ)p958-2465bcc9ee4d330964620f280f57300359ef651a8df1aa2431c7d42e6bf9639d3 (KEY)0202774720150000025001803528simultaneousrobustnormalizationanddelaydependentro DE-627 ger DE-627 rakwb eng 510 ZDB 53.00 bkl Ren, Junchao verfasserin aut Simultaneous robust normalization and delay‐dependent robust H∞ stabilization for singular time‐delay systems with uncertainties in the derivative matrices 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper investigates the problem of simultaneous robust normalization and delay‐dependent H ∞ control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties. New sufficient conditions for the existence of a proportional plus derivative state feedback H ∞ controller are derived as LMIs such that the closed‐loop singular system is normal, stable, and guarantee a specific level of performance. Specially, a static state feedback H ∞ controller alone or a state‐derivative feedback H ∞ controller alone can unite to be dealt with by applying our proposed method. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach in this paper. Copyright © 2014 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. control proportional plus derivative state feedback descriptor systems state derivative feedback singular systems Zhang, Qingling oth Enthalten in International journal of robust and nonlinear control Chichester : Wiley, 1991 25(2015), 18, Seite 3528-3545 (DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 1049-8923 nnns volume:25 year:2015 number:18 pages:3528-3545 http://dx.doi.org/10.1002/rnc.3278 Volltext http://onlinelibrary.wiley.com/doi/10.1002/rnc.3278/abstract http://search.proquest.com/docview/1757648143 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 53.00 AVZ AR 25 2015 18 3528-3545 |
allfieldsGer |
10.1002/rnc.3278 doi PQ20160617 (DE-627)OLC1958902330 (DE-599)GBVOLC1958902330 (PRQ)p958-2465bcc9ee4d330964620f280f57300359ef651a8df1aa2431c7d42e6bf9639d3 (KEY)0202774720150000025001803528simultaneousrobustnormalizationanddelaydependentro DE-627 ger DE-627 rakwb eng 510 ZDB 53.00 bkl Ren, Junchao verfasserin aut Simultaneous robust normalization and delay‐dependent robust H∞ stabilization for singular time‐delay systems with uncertainties in the derivative matrices 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper investigates the problem of simultaneous robust normalization and delay‐dependent H ∞ control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties. New sufficient conditions for the existence of a proportional plus derivative state feedback H ∞ controller are derived as LMIs such that the closed‐loop singular system is normal, stable, and guarantee a specific level of performance. Specially, a static state feedback H ∞ controller alone or a state‐derivative feedback H ∞ controller alone can unite to be dealt with by applying our proposed method. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach in this paper. Copyright © 2014 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. control proportional plus derivative state feedback descriptor systems state derivative feedback singular systems Zhang, Qingling oth Enthalten in International journal of robust and nonlinear control Chichester : Wiley, 1991 25(2015), 18, Seite 3528-3545 (DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 1049-8923 nnns volume:25 year:2015 number:18 pages:3528-3545 http://dx.doi.org/10.1002/rnc.3278 Volltext http://onlinelibrary.wiley.com/doi/10.1002/rnc.3278/abstract http://search.proquest.com/docview/1757648143 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 53.00 AVZ AR 25 2015 18 3528-3545 |
allfieldsSound |
10.1002/rnc.3278 doi PQ20160617 (DE-627)OLC1958902330 (DE-599)GBVOLC1958902330 (PRQ)p958-2465bcc9ee4d330964620f280f57300359ef651a8df1aa2431c7d42e6bf9639d3 (KEY)0202774720150000025001803528simultaneousrobustnormalizationanddelaydependentro DE-627 ger DE-627 rakwb eng 510 ZDB 53.00 bkl Ren, Junchao verfasserin aut Simultaneous robust normalization and delay‐dependent robust H∞ stabilization for singular time‐delay systems with uncertainties in the derivative matrices 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper investigates the problem of simultaneous robust normalization and delay‐dependent H ∞ control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties. New sufficient conditions for the existence of a proportional plus derivative state feedback H ∞ controller are derived as LMIs such that the closed‐loop singular system is normal, stable, and guarantee a specific level of performance. Specially, a static state feedback H ∞ controller alone or a state‐derivative feedback H ∞ controller alone can unite to be dealt with by applying our proposed method. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach in this paper. Copyright © 2014 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. control proportional plus derivative state feedback descriptor systems state derivative feedback singular systems Zhang, Qingling oth Enthalten in International journal of robust and nonlinear control Chichester : Wiley, 1991 25(2015), 18, Seite 3528-3545 (DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 1049-8923 nnns volume:25 year:2015 number:18 pages:3528-3545 http://dx.doi.org/10.1002/rnc.3278 Volltext http://onlinelibrary.wiley.com/doi/10.1002/rnc.3278/abstract http://search.proquest.com/docview/1757648143 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 53.00 AVZ AR 25 2015 18 3528-3545 |
language |
English |
source |
Enthalten in International journal of robust and nonlinear control 25(2015), 18, Seite 3528-3545 volume:25 year:2015 number:18 pages:3528-3545 |
sourceStr |
Enthalten in International journal of robust and nonlinear control 25(2015), 18, Seite 3528-3545 volume:25 year:2015 number:18 pages:3528-3545 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
control proportional plus derivative state feedback descriptor systems state derivative feedback singular systems |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
International journal of robust and nonlinear control |
authorswithroles_txt_mv |
Ren, Junchao @@aut@@ Zhang, Qingling @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
13098311X |
dewey-sort |
3510 |
id |
OLC1958902330 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1958902330</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216165651.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/rnc.3278</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1958902330</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1958902330</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p958-2465bcc9ee4d330964620f280f57300359ef651a8df1aa2431c7d42e6bf9639d3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0202774720150000025001803528simultaneousrobustnormalizationanddelaydependentro</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ren, Junchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simultaneous robust normalization and delay‐dependent robust H∞ stabilization for singular time‐delay systems with uncertainties in the derivative matrices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the problem of simultaneous robust normalization and delay‐dependent H ∞ control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties. New sufficient conditions for the existence of a proportional plus derivative state feedback H ∞ controller are derived as LMIs such that the closed‐loop singular system is normal, stable, and guarantee a specific level of performance. Specially, a static state feedback H ∞ controller alone or a state‐derivative feedback H ∞ controller alone can unite to be dealt with by applying our proposed method. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach in this paper. Copyright © 2014 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proportional plus derivative state feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">descriptor systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">state derivative feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">singular systems</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Qingling</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of robust and nonlinear control</subfield><subfield code="d">Chichester : Wiley, 1991</subfield><subfield code="g">25(2015), 18, Seite 3528-3545</subfield><subfield code="w">(DE-627)13098311X</subfield><subfield code="w">(DE-600)1076540-2</subfield><subfield code="w">(DE-576)027065731</subfield><subfield code="x">1049-8923</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:18</subfield><subfield code="g">pages:3528-3545</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/rnc.3278</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/rnc.3278/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1757648143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2015</subfield><subfield code="e">18</subfield><subfield code="h">3528-3545</subfield></datafield></record></collection>
|
author |
Ren, Junchao |
spellingShingle |
Ren, Junchao ddc 510 bkl 53.00 misc control misc proportional plus derivative state feedback misc descriptor systems misc state derivative feedback misc singular systems Simultaneous robust normalization and delay‐dependent robust H∞ stabilization for singular time‐delay systems with uncertainties in the derivative matrices |
authorStr |
Ren, Junchao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)13098311X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1049-8923 |
topic_title |
510 ZDB 53.00 bkl Simultaneous robust normalization and delay‐dependent robust H∞ stabilization for singular time‐delay systems with uncertainties in the derivative matrices control proportional plus derivative state feedback descriptor systems state derivative feedback singular systems |
topic |
ddc 510 bkl 53.00 misc control misc proportional plus derivative state feedback misc descriptor systems misc state derivative feedback misc singular systems |
topic_unstemmed |
ddc 510 bkl 53.00 misc control misc proportional plus derivative state feedback misc descriptor systems misc state derivative feedback misc singular systems |
topic_browse |
ddc 510 bkl 53.00 misc control misc proportional plus derivative state feedback misc descriptor systems misc state derivative feedback misc singular systems |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
q z qz |
hierarchy_parent_title |
International journal of robust and nonlinear control |
hierarchy_parent_id |
13098311X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
International journal of robust and nonlinear control |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)13098311X (DE-600)1076540-2 (DE-576)027065731 |
title |
Simultaneous robust normalization and delay‐dependent robust H∞ stabilization for singular time‐delay systems with uncertainties in the derivative matrices |
ctrlnum |
(DE-627)OLC1958902330 (DE-599)GBVOLC1958902330 (PRQ)p958-2465bcc9ee4d330964620f280f57300359ef651a8df1aa2431c7d42e6bf9639d3 (KEY)0202774720150000025001803528simultaneousrobustnormalizationanddelaydependentro |
title_full |
Simultaneous robust normalization and delay‐dependent robust H∞ stabilization for singular time‐delay systems with uncertainties in the derivative matrices |
author_sort |
Ren, Junchao |
journal |
International journal of robust and nonlinear control |
journalStr |
International journal of robust and nonlinear control |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
3528 |
author_browse |
Ren, Junchao |
container_volume |
25 |
class |
510 ZDB 53.00 bkl |
format_se |
Aufsätze |
author-letter |
Ren, Junchao |
doi_str_mv |
10.1002/rnc.3278 |
dewey-full |
510 |
title_sort |
simultaneous robust normalization and delay‐dependent robust h∞ stabilization for singular time‐delay systems with uncertainties in the derivative matrices |
title_auth |
Simultaneous robust normalization and delay‐dependent robust H∞ stabilization for singular time‐delay systems with uncertainties in the derivative matrices |
abstract |
This paper investigates the problem of simultaneous robust normalization and delay‐dependent H ∞ control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties. New sufficient conditions for the existence of a proportional plus derivative state feedback H ∞ controller are derived as LMIs such that the closed‐loop singular system is normal, stable, and guarantee a specific level of performance. Specially, a static state feedback H ∞ controller alone or a state‐derivative feedback H ∞ controller alone can unite to be dealt with by applying our proposed method. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach in this paper. Copyright © 2014 John Wiley & Sons, Ltd. |
abstractGer |
This paper investigates the problem of simultaneous robust normalization and delay‐dependent H ∞ control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties. New sufficient conditions for the existence of a proportional plus derivative state feedback H ∞ controller are derived as LMIs such that the closed‐loop singular system is normal, stable, and guarantee a specific level of performance. Specially, a static state feedback H ∞ controller alone or a state‐derivative feedback H ∞ controller alone can unite to be dealt with by applying our proposed method. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach in this paper. Copyright © 2014 John Wiley & Sons, Ltd. |
abstract_unstemmed |
This paper investigates the problem of simultaneous robust normalization and delay‐dependent H ∞ control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties. New sufficient conditions for the existence of a proportional plus derivative state feedback H ∞ controller are derived as LMIs such that the closed‐loop singular system is normal, stable, and guarantee a specific level of performance. Specially, a static state feedback H ∞ controller alone or a state‐derivative feedback H ∞ controller alone can unite to be dealt with by applying our proposed method. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach in this paper. Copyright © 2014 John Wiley & Sons, Ltd. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
18 |
title_short |
Simultaneous robust normalization and delay‐dependent robust H∞ stabilization for singular time‐delay systems with uncertainties in the derivative matrices |
url |
http://dx.doi.org/10.1002/rnc.3278 http://onlinelibrary.wiley.com/doi/10.1002/rnc.3278/abstract http://search.proquest.com/docview/1757648143 |
remote_bool |
false |
author2 |
Zhang, Qingling |
author2Str |
Zhang, Qingling |
ppnlink |
13098311X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1002/rnc.3278 |
up_date |
2024-07-03T14:56:19.097Z |
_version_ |
1803570201595215873 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1958902330</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216165651.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/rnc.3278</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1958902330</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1958902330</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p958-2465bcc9ee4d330964620f280f57300359ef651a8df1aa2431c7d42e6bf9639d3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0202774720150000025001803528simultaneousrobustnormalizationanddelaydependentro</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ren, Junchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simultaneous robust normalization and delay‐dependent robust H∞ stabilization for singular time‐delay systems with uncertainties in the derivative matrices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the problem of simultaneous robust normalization and delay‐dependent H ∞ control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties. New sufficient conditions for the existence of a proportional plus derivative state feedback H ∞ controller are derived as LMIs such that the closed‐loop singular system is normal, stable, and guarantee a specific level of performance. Specially, a static state feedback H ∞ controller alone or a state‐derivative feedback H ∞ controller alone can unite to be dealt with by applying our proposed method. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach in this paper. Copyright © 2014 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proportional plus derivative state feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">descriptor systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">state derivative feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">singular systems</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Qingling</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of robust and nonlinear control</subfield><subfield code="d">Chichester : Wiley, 1991</subfield><subfield code="g">25(2015), 18, Seite 3528-3545</subfield><subfield code="w">(DE-627)13098311X</subfield><subfield code="w">(DE-600)1076540-2</subfield><subfield code="w">(DE-576)027065731</subfield><subfield code="x">1049-8923</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:18</subfield><subfield code="g">pages:3528-3545</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/rnc.3278</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/rnc.3278/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1757648143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2015</subfield><subfield code="e">18</subfield><subfield code="h">3528-3545</subfield></datafield></record></collection>
|
score |
7.3990183 |