Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program
We report the progress of an R&D project of fundamental technologies for cryocooler-cooled accelerator magnets using coated conductors funded by the Japan Science and Technology Agency under its S-Innovation Program. Its target applications include carbon cancer therapy and accelerator-driven su...
Ausführliche Beschreibung
Autor*in: |
Amemiya, Naoyuki [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
coated conductor magnetization high-temperature superconductors accelerator-driven subcritical reactor |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on applied superconductivity - New York, NY : Inst., 1991, 25(2015), 3, Seite 1-5 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2015 ; number:3 ; pages:1-5 |
Links: |
---|
DOI / URN: |
10.1109/TASC.2015.2392253 |
---|
Katalog-ID: |
OLC1958929522 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1958929522 | ||
003 | DE-627 | ||
005 | 20230714145933.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TASC.2015.2392253 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1958929522 | ||
035 | |a (DE-599)GBVOLC1958929522 | ||
035 | |a (PRQ)c1378-f5b05663e179b71d806783a61e13ee5b9442c14148eec97473ffcf6214d373570 | ||
035 | |a (KEY)0203240620150000025000300001progressoffundamentaltechnologyrdtowardaccelerator | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DNB |
100 | 1 | |a Amemiya, Naoyuki |e verfasserin |4 aut | |
245 | 1 | 0 | |a Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We report the progress of an R&D project of fundamental technologies for cryocooler-cooled accelerator magnets using coated conductors funded by the Japan Science and Technology Agency under its S-Innovation Program. Its target applications include carbon cancer therapy and accelerator-driven subcritical reactor. We have been carrying out design studies of HTS magnets for spiral sector fixed-field alternating gradient accelerators to show their feasibility for the target applications and to clarify the requirements of winding technologies. A three-dimensional winding machine has been developed to fabricate a model magnet in which winding technologies required for the designed magnet are implemented. With respect to the large magnetization of coated conductors, which is one of the big concerns on their uses in accelerator magnets, the magnetic field measurements using rotating pick-up coils have been made to clarify its influence on the multipole components of the magnetic field. A method for numerical electromagnetic field analyses of coils with three-dimensional shapes has been developed to predict the influence of magnetization on the field quality of magnets. | ||
650 | 4 | |a winding technology | |
650 | 4 | |a machine windings | |
650 | 4 | |a coated conductor magnetization | |
650 | 4 | |a 3D winding machine | |
650 | 4 | |a magnetic field measurements | |
650 | 4 | |a accelerator magnets | |
650 | 4 | |a multipole components | |
650 | 4 | |a 3D shapes | |
650 | 4 | |a S-innovation program | |
650 | 4 | |a Coils | |
650 | 4 | |a high-temperature superconductors | |
650 | 4 | |a Accelerator magnet | |
650 | 4 | |a coated conductor | |
650 | 4 | |a HTS magnets | |
650 | 4 | |a Windings | |
650 | 4 | |a magnetic field measurement | |
650 | 4 | |a accelerator-driven subcritical reactor | |
650 | 4 | |a numerical electromagnetic field analyses | |
650 | 4 | |a Magnetic fields | |
650 | 4 | |a Magnetization | |
650 | 4 | |a magnetisation | |
650 | 4 | |a carbon cancer therapy | |
650 | 4 | |a Conductors | |
650 | 4 | |a Superconducting magnets | |
650 | 4 | |a rotating pick-up coils | |
650 | 4 | |a superconducting coils | |
700 | 0 | |a Zheming Zhang |4 oth | |
700 | 1 | |a Sano, Takuya |4 oth | |
700 | 1 | |a Sogabe, Yusuke |4 oth | |
700 | 1 | |a Ogitsu, Toru |4 oth | |
700 | 1 | |a Koyanagi, Kei |4 oth | |
700 | 1 | |a Kurusu, Tsutomu |4 oth | |
700 | 1 | |a Mori, Yoshiharu |4 oth | |
700 | 1 | |a Iwata, Yoshiyuki |4 oth | |
700 | 1 | |a Noda, Koji |4 oth | |
700 | 1 | |a Yoshimoto, Masahiro |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on applied superconductivity |d New York, NY : Inst., 1991 |g 25(2015), 3, Seite 1-5 |w (DE-627)130969559 |w (DE-600)1070182-5 |w (DE-576)025189840 |x 1051-8223 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2015 |g number:3 |g pages:1-5 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TASC.2015.2392253 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7017463 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
951 | |a AR | ||
952 | |d 25 |j 2015 |e 3 |h 1-5 |
author_variant |
n a na |
---|---|
matchkey_str |
article:10518223:2015----::rgesfudmnatcnlgrtwraclrtrantuigotdod |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1109/TASC.2015.2392253 doi PQ20160617 (DE-627)OLC1958929522 (DE-599)GBVOLC1958929522 (PRQ)c1378-f5b05663e179b71d806783a61e13ee5b9442c14148eec97473ffcf6214d373570 (KEY)0203240620150000025000300001progressoffundamentaltechnologyrdtowardaccelerator DE-627 ger DE-627 rakwb eng 530 620 DNB Amemiya, Naoyuki verfasserin aut Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We report the progress of an R&D project of fundamental technologies for cryocooler-cooled accelerator magnets using coated conductors funded by the Japan Science and Technology Agency under its S-Innovation Program. Its target applications include carbon cancer therapy and accelerator-driven subcritical reactor. We have been carrying out design studies of HTS magnets for spiral sector fixed-field alternating gradient accelerators to show their feasibility for the target applications and to clarify the requirements of winding technologies. A three-dimensional winding machine has been developed to fabricate a model magnet in which winding technologies required for the designed magnet are implemented. With respect to the large magnetization of coated conductors, which is one of the big concerns on their uses in accelerator magnets, the magnetic field measurements using rotating pick-up coils have been made to clarify its influence on the multipole components of the magnetic field. A method for numerical electromagnetic field analyses of coils with three-dimensional shapes has been developed to predict the influence of magnetization on the field quality of magnets. winding technology machine windings coated conductor magnetization 3D winding machine magnetic field measurements accelerator magnets multipole components 3D shapes S-innovation program Coils high-temperature superconductors Accelerator magnet coated conductor HTS magnets Windings magnetic field measurement accelerator-driven subcritical reactor numerical electromagnetic field analyses Magnetic fields Magnetization magnetisation carbon cancer therapy Conductors Superconducting magnets rotating pick-up coils superconducting coils Zheming Zhang oth Sano, Takuya oth Sogabe, Yusuke oth Ogitsu, Toru oth Koyanagi, Kei oth Kurusu, Tsutomu oth Mori, Yoshiharu oth Iwata, Yoshiyuki oth Noda, Koji oth Yoshimoto, Masahiro oth Enthalten in IEEE transactions on applied superconductivity New York, NY : Inst., 1991 25(2015), 3, Seite 1-5 (DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 1051-8223 nnns volume:25 year:2015 number:3 pages:1-5 http://dx.doi.org/10.1109/TASC.2015.2392253 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7017463 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 AR 25 2015 3 1-5 |
spelling |
10.1109/TASC.2015.2392253 doi PQ20160617 (DE-627)OLC1958929522 (DE-599)GBVOLC1958929522 (PRQ)c1378-f5b05663e179b71d806783a61e13ee5b9442c14148eec97473ffcf6214d373570 (KEY)0203240620150000025000300001progressoffundamentaltechnologyrdtowardaccelerator DE-627 ger DE-627 rakwb eng 530 620 DNB Amemiya, Naoyuki verfasserin aut Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We report the progress of an R&D project of fundamental technologies for cryocooler-cooled accelerator magnets using coated conductors funded by the Japan Science and Technology Agency under its S-Innovation Program. Its target applications include carbon cancer therapy and accelerator-driven subcritical reactor. We have been carrying out design studies of HTS magnets for spiral sector fixed-field alternating gradient accelerators to show their feasibility for the target applications and to clarify the requirements of winding technologies. A three-dimensional winding machine has been developed to fabricate a model magnet in which winding technologies required for the designed magnet are implemented. With respect to the large magnetization of coated conductors, which is one of the big concerns on their uses in accelerator magnets, the magnetic field measurements using rotating pick-up coils have been made to clarify its influence on the multipole components of the magnetic field. A method for numerical electromagnetic field analyses of coils with three-dimensional shapes has been developed to predict the influence of magnetization on the field quality of magnets. winding technology machine windings coated conductor magnetization 3D winding machine magnetic field measurements accelerator magnets multipole components 3D shapes S-innovation program Coils high-temperature superconductors Accelerator magnet coated conductor HTS magnets Windings magnetic field measurement accelerator-driven subcritical reactor numerical electromagnetic field analyses Magnetic fields Magnetization magnetisation carbon cancer therapy Conductors Superconducting magnets rotating pick-up coils superconducting coils Zheming Zhang oth Sano, Takuya oth Sogabe, Yusuke oth Ogitsu, Toru oth Koyanagi, Kei oth Kurusu, Tsutomu oth Mori, Yoshiharu oth Iwata, Yoshiyuki oth Noda, Koji oth Yoshimoto, Masahiro oth Enthalten in IEEE transactions on applied superconductivity New York, NY : Inst., 1991 25(2015), 3, Seite 1-5 (DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 1051-8223 nnns volume:25 year:2015 number:3 pages:1-5 http://dx.doi.org/10.1109/TASC.2015.2392253 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7017463 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 AR 25 2015 3 1-5 |
allfields_unstemmed |
10.1109/TASC.2015.2392253 doi PQ20160617 (DE-627)OLC1958929522 (DE-599)GBVOLC1958929522 (PRQ)c1378-f5b05663e179b71d806783a61e13ee5b9442c14148eec97473ffcf6214d373570 (KEY)0203240620150000025000300001progressoffundamentaltechnologyrdtowardaccelerator DE-627 ger DE-627 rakwb eng 530 620 DNB Amemiya, Naoyuki verfasserin aut Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We report the progress of an R&D project of fundamental technologies for cryocooler-cooled accelerator magnets using coated conductors funded by the Japan Science and Technology Agency under its S-Innovation Program. Its target applications include carbon cancer therapy and accelerator-driven subcritical reactor. We have been carrying out design studies of HTS magnets for spiral sector fixed-field alternating gradient accelerators to show their feasibility for the target applications and to clarify the requirements of winding technologies. A three-dimensional winding machine has been developed to fabricate a model magnet in which winding technologies required for the designed magnet are implemented. With respect to the large magnetization of coated conductors, which is one of the big concerns on their uses in accelerator magnets, the magnetic field measurements using rotating pick-up coils have been made to clarify its influence on the multipole components of the magnetic field. A method for numerical electromagnetic field analyses of coils with three-dimensional shapes has been developed to predict the influence of magnetization on the field quality of magnets. winding technology machine windings coated conductor magnetization 3D winding machine magnetic field measurements accelerator magnets multipole components 3D shapes S-innovation program Coils high-temperature superconductors Accelerator magnet coated conductor HTS magnets Windings magnetic field measurement accelerator-driven subcritical reactor numerical electromagnetic field analyses Magnetic fields Magnetization magnetisation carbon cancer therapy Conductors Superconducting magnets rotating pick-up coils superconducting coils Zheming Zhang oth Sano, Takuya oth Sogabe, Yusuke oth Ogitsu, Toru oth Koyanagi, Kei oth Kurusu, Tsutomu oth Mori, Yoshiharu oth Iwata, Yoshiyuki oth Noda, Koji oth Yoshimoto, Masahiro oth Enthalten in IEEE transactions on applied superconductivity New York, NY : Inst., 1991 25(2015), 3, Seite 1-5 (DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 1051-8223 nnns volume:25 year:2015 number:3 pages:1-5 http://dx.doi.org/10.1109/TASC.2015.2392253 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7017463 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 AR 25 2015 3 1-5 |
allfieldsGer |
10.1109/TASC.2015.2392253 doi PQ20160617 (DE-627)OLC1958929522 (DE-599)GBVOLC1958929522 (PRQ)c1378-f5b05663e179b71d806783a61e13ee5b9442c14148eec97473ffcf6214d373570 (KEY)0203240620150000025000300001progressoffundamentaltechnologyrdtowardaccelerator DE-627 ger DE-627 rakwb eng 530 620 DNB Amemiya, Naoyuki verfasserin aut Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We report the progress of an R&D project of fundamental technologies for cryocooler-cooled accelerator magnets using coated conductors funded by the Japan Science and Technology Agency under its S-Innovation Program. Its target applications include carbon cancer therapy and accelerator-driven subcritical reactor. We have been carrying out design studies of HTS magnets for spiral sector fixed-field alternating gradient accelerators to show their feasibility for the target applications and to clarify the requirements of winding technologies. A three-dimensional winding machine has been developed to fabricate a model magnet in which winding technologies required for the designed magnet are implemented. With respect to the large magnetization of coated conductors, which is one of the big concerns on their uses in accelerator magnets, the magnetic field measurements using rotating pick-up coils have been made to clarify its influence on the multipole components of the magnetic field. A method for numerical electromagnetic field analyses of coils with three-dimensional shapes has been developed to predict the influence of magnetization on the field quality of magnets. winding technology machine windings coated conductor magnetization 3D winding machine magnetic field measurements accelerator magnets multipole components 3D shapes S-innovation program Coils high-temperature superconductors Accelerator magnet coated conductor HTS magnets Windings magnetic field measurement accelerator-driven subcritical reactor numerical electromagnetic field analyses Magnetic fields Magnetization magnetisation carbon cancer therapy Conductors Superconducting magnets rotating pick-up coils superconducting coils Zheming Zhang oth Sano, Takuya oth Sogabe, Yusuke oth Ogitsu, Toru oth Koyanagi, Kei oth Kurusu, Tsutomu oth Mori, Yoshiharu oth Iwata, Yoshiyuki oth Noda, Koji oth Yoshimoto, Masahiro oth Enthalten in IEEE transactions on applied superconductivity New York, NY : Inst., 1991 25(2015), 3, Seite 1-5 (DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 1051-8223 nnns volume:25 year:2015 number:3 pages:1-5 http://dx.doi.org/10.1109/TASC.2015.2392253 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7017463 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 AR 25 2015 3 1-5 |
allfieldsSound |
10.1109/TASC.2015.2392253 doi PQ20160617 (DE-627)OLC1958929522 (DE-599)GBVOLC1958929522 (PRQ)c1378-f5b05663e179b71d806783a61e13ee5b9442c14148eec97473ffcf6214d373570 (KEY)0203240620150000025000300001progressoffundamentaltechnologyrdtowardaccelerator DE-627 ger DE-627 rakwb eng 530 620 DNB Amemiya, Naoyuki verfasserin aut Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We report the progress of an R&D project of fundamental technologies for cryocooler-cooled accelerator magnets using coated conductors funded by the Japan Science and Technology Agency under its S-Innovation Program. Its target applications include carbon cancer therapy and accelerator-driven subcritical reactor. We have been carrying out design studies of HTS magnets for spiral sector fixed-field alternating gradient accelerators to show their feasibility for the target applications and to clarify the requirements of winding technologies. A three-dimensional winding machine has been developed to fabricate a model magnet in which winding technologies required for the designed magnet are implemented. With respect to the large magnetization of coated conductors, which is one of the big concerns on their uses in accelerator magnets, the magnetic field measurements using rotating pick-up coils have been made to clarify its influence on the multipole components of the magnetic field. A method for numerical electromagnetic field analyses of coils with three-dimensional shapes has been developed to predict the influence of magnetization on the field quality of magnets. winding technology machine windings coated conductor magnetization 3D winding machine magnetic field measurements accelerator magnets multipole components 3D shapes S-innovation program Coils high-temperature superconductors Accelerator magnet coated conductor HTS magnets Windings magnetic field measurement accelerator-driven subcritical reactor numerical electromagnetic field analyses Magnetic fields Magnetization magnetisation carbon cancer therapy Conductors Superconducting magnets rotating pick-up coils superconducting coils Zheming Zhang oth Sano, Takuya oth Sogabe, Yusuke oth Ogitsu, Toru oth Koyanagi, Kei oth Kurusu, Tsutomu oth Mori, Yoshiharu oth Iwata, Yoshiyuki oth Noda, Koji oth Yoshimoto, Masahiro oth Enthalten in IEEE transactions on applied superconductivity New York, NY : Inst., 1991 25(2015), 3, Seite 1-5 (DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 1051-8223 nnns volume:25 year:2015 number:3 pages:1-5 http://dx.doi.org/10.1109/TASC.2015.2392253 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7017463 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 AR 25 2015 3 1-5 |
language |
English |
source |
Enthalten in IEEE transactions on applied superconductivity 25(2015), 3, Seite 1-5 volume:25 year:2015 number:3 pages:1-5 |
sourceStr |
Enthalten in IEEE transactions on applied superconductivity 25(2015), 3, Seite 1-5 volume:25 year:2015 number:3 pages:1-5 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
winding technology machine windings coated conductor magnetization 3D winding machine magnetic field measurements accelerator magnets multipole components 3D shapes S-innovation program Coils high-temperature superconductors Accelerator magnet coated conductor HTS magnets Windings magnetic field measurement accelerator-driven subcritical reactor numerical electromagnetic field analyses Magnetic fields Magnetization magnetisation carbon cancer therapy Conductors Superconducting magnets rotating pick-up coils superconducting coils |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on applied superconductivity |
authorswithroles_txt_mv |
Amemiya, Naoyuki @@aut@@ Zheming Zhang @@oth@@ Sano, Takuya @@oth@@ Sogabe, Yusuke @@oth@@ Ogitsu, Toru @@oth@@ Koyanagi, Kei @@oth@@ Kurusu, Tsutomu @@oth@@ Mori, Yoshiharu @@oth@@ Iwata, Yoshiyuki @@oth@@ Noda, Koji @@oth@@ Yoshimoto, Masahiro @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
130969559 |
dewey-sort |
3530 |
id |
OLC1958929522 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1958929522</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714145933.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TASC.2015.2392253</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1958929522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1958929522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1378-f5b05663e179b71d806783a61e13ee5b9442c14148eec97473ffcf6214d373570</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0203240620150000025000300001progressoffundamentaltechnologyrdtowardaccelerator</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Amemiya, Naoyuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We report the progress of an R&D project of fundamental technologies for cryocooler-cooled accelerator magnets using coated conductors funded by the Japan Science and Technology Agency under its S-Innovation Program. Its target applications include carbon cancer therapy and accelerator-driven subcritical reactor. We have been carrying out design studies of HTS magnets for spiral sector fixed-field alternating gradient accelerators to show their feasibility for the target applications and to clarify the requirements of winding technologies. A three-dimensional winding machine has been developed to fabricate a model magnet in which winding technologies required for the designed magnet are implemented. With respect to the large magnetization of coated conductors, which is one of the big concerns on their uses in accelerator magnets, the magnetic field measurements using rotating pick-up coils have been made to clarify its influence on the multipole components of the magnetic field. A method for numerical electromagnetic field analyses of coils with three-dimensional shapes has been developed to predict the influence of magnetization on the field quality of magnets.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">winding technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine windings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coated conductor magnetization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D winding machine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic field measurements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">accelerator magnets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multipole components</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D shapes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">S-innovation program</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coils</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-temperature superconductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accelerator magnet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coated conductor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HTS magnets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Windings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic field measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">accelerator-driven subcritical reactor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical electromagnetic field analyses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon cancer therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconducting magnets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rotating pick-up coils</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">superconducting coils</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zheming Zhang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sano, Takuya</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sogabe, Yusuke</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ogitsu, Toru</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koyanagi, Kei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kurusu, Tsutomu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mori, Yoshiharu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iwata, Yoshiyuki</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Noda, Koji</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshimoto, Masahiro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on applied superconductivity</subfield><subfield code="d">New York, NY : Inst., 1991</subfield><subfield code="g">25(2015), 3, Seite 1-5</subfield><subfield code="w">(DE-627)130969559</subfield><subfield code="w">(DE-600)1070182-5</subfield><subfield code="w">(DE-576)025189840</subfield><subfield code="x">1051-8223</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1-5</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TASC.2015.2392253</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7017463</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">1-5</subfield></datafield></record></collection>
|
author |
Amemiya, Naoyuki |
spellingShingle |
Amemiya, Naoyuki ddc 530 misc winding technology misc machine windings misc coated conductor magnetization misc 3D winding machine misc magnetic field measurements misc accelerator magnets misc multipole components misc 3D shapes misc S-innovation program misc Coils misc high-temperature superconductors misc Accelerator magnet misc coated conductor misc HTS magnets misc Windings misc magnetic field measurement misc accelerator-driven subcritical reactor misc numerical electromagnetic field analyses misc Magnetic fields misc Magnetization misc magnetisation misc carbon cancer therapy misc Conductors misc Superconducting magnets misc rotating pick-up coils misc superconducting coils Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program |
authorStr |
Amemiya, Naoyuki |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130969559 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1051-8223 |
topic_title |
530 620 DNB Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program winding technology machine windings coated conductor magnetization 3D winding machine magnetic field measurements accelerator magnets multipole components 3D shapes S-innovation program Coils high-temperature superconductors Accelerator magnet coated conductor HTS magnets Windings magnetic field measurement accelerator-driven subcritical reactor numerical electromagnetic field analyses Magnetic fields Magnetization magnetisation carbon cancer therapy Conductors Superconducting magnets rotating pick-up coils superconducting coils |
topic |
ddc 530 misc winding technology misc machine windings misc coated conductor magnetization misc 3D winding machine misc magnetic field measurements misc accelerator magnets misc multipole components misc 3D shapes misc S-innovation program misc Coils misc high-temperature superconductors misc Accelerator magnet misc coated conductor misc HTS magnets misc Windings misc magnetic field measurement misc accelerator-driven subcritical reactor misc numerical electromagnetic field analyses misc Magnetic fields misc Magnetization misc magnetisation misc carbon cancer therapy misc Conductors misc Superconducting magnets misc rotating pick-up coils misc superconducting coils |
topic_unstemmed |
ddc 530 misc winding technology misc machine windings misc coated conductor magnetization misc 3D winding machine misc magnetic field measurements misc accelerator magnets misc multipole components misc 3D shapes misc S-innovation program misc Coils misc high-temperature superconductors misc Accelerator magnet misc coated conductor misc HTS magnets misc Windings misc magnetic field measurement misc accelerator-driven subcritical reactor misc numerical electromagnetic field analyses misc Magnetic fields misc Magnetization misc magnetisation misc carbon cancer therapy misc Conductors misc Superconducting magnets misc rotating pick-up coils misc superconducting coils |
topic_browse |
ddc 530 misc winding technology misc machine windings misc coated conductor magnetization misc 3D winding machine misc magnetic field measurements misc accelerator magnets misc multipole components misc 3D shapes misc S-innovation program misc Coils misc high-temperature superconductors misc Accelerator magnet misc coated conductor misc HTS magnets misc Windings misc magnetic field measurement misc accelerator-driven subcritical reactor misc numerical electromagnetic field analyses misc Magnetic fields misc Magnetization misc magnetisation misc carbon cancer therapy misc Conductors misc Superconducting magnets misc rotating pick-up coils misc superconducting coils |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
z z zz t s ts y s ys t o to k k kk t k tk y m ym y i yi k n kn m y my |
hierarchy_parent_title |
IEEE transactions on applied superconductivity |
hierarchy_parent_id |
130969559 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
IEEE transactions on applied superconductivity |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 |
title |
Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program |
ctrlnum |
(DE-627)OLC1958929522 (DE-599)GBVOLC1958929522 (PRQ)c1378-f5b05663e179b71d806783a61e13ee5b9442c14148eec97473ffcf6214d373570 (KEY)0203240620150000025000300001progressoffundamentaltechnologyrdtowardaccelerator |
title_full |
Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program |
author_sort |
Amemiya, Naoyuki |
journal |
IEEE transactions on applied superconductivity |
journalStr |
IEEE transactions on applied superconductivity |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Amemiya, Naoyuki |
container_volume |
25 |
class |
530 620 DNB |
format_se |
Aufsätze |
author-letter |
Amemiya, Naoyuki |
doi_str_mv |
10.1109/TASC.2015.2392253 |
dewey-full |
530 620 |
title_sort |
progress of fundamental technology r&d toward accelerator magnets using coated conductors in s-innovation program |
title_auth |
Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program |
abstract |
We report the progress of an R&D project of fundamental technologies for cryocooler-cooled accelerator magnets using coated conductors funded by the Japan Science and Technology Agency under its S-Innovation Program. Its target applications include carbon cancer therapy and accelerator-driven subcritical reactor. We have been carrying out design studies of HTS magnets for spiral sector fixed-field alternating gradient accelerators to show their feasibility for the target applications and to clarify the requirements of winding technologies. A three-dimensional winding machine has been developed to fabricate a model magnet in which winding technologies required for the designed magnet are implemented. With respect to the large magnetization of coated conductors, which is one of the big concerns on their uses in accelerator magnets, the magnetic field measurements using rotating pick-up coils have been made to clarify its influence on the multipole components of the magnetic field. A method for numerical electromagnetic field analyses of coils with three-dimensional shapes has been developed to predict the influence of magnetization on the field quality of magnets. |
abstractGer |
We report the progress of an R&D project of fundamental technologies for cryocooler-cooled accelerator magnets using coated conductors funded by the Japan Science and Technology Agency under its S-Innovation Program. Its target applications include carbon cancer therapy and accelerator-driven subcritical reactor. We have been carrying out design studies of HTS magnets for spiral sector fixed-field alternating gradient accelerators to show their feasibility for the target applications and to clarify the requirements of winding technologies. A three-dimensional winding machine has been developed to fabricate a model magnet in which winding technologies required for the designed magnet are implemented. With respect to the large magnetization of coated conductors, which is one of the big concerns on their uses in accelerator magnets, the magnetic field measurements using rotating pick-up coils have been made to clarify its influence on the multipole components of the magnetic field. A method for numerical electromagnetic field analyses of coils with three-dimensional shapes has been developed to predict the influence of magnetization on the field quality of magnets. |
abstract_unstemmed |
We report the progress of an R&D project of fundamental technologies for cryocooler-cooled accelerator magnets using coated conductors funded by the Japan Science and Technology Agency under its S-Innovation Program. Its target applications include carbon cancer therapy and accelerator-driven subcritical reactor. We have been carrying out design studies of HTS magnets for spiral sector fixed-field alternating gradient accelerators to show their feasibility for the target applications and to clarify the requirements of winding technologies. A three-dimensional winding machine has been developed to fabricate a model magnet in which winding technologies required for the designed magnet are implemented. With respect to the large magnetization of coated conductors, which is one of the big concerns on their uses in accelerator magnets, the magnetic field measurements using rotating pick-up coils have been made to clarify its influence on the multipole components of the magnetic field. A method for numerical electromagnetic field analyses of coils with three-dimensional shapes has been developed to predict the influence of magnetization on the field quality of magnets. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 |
container_issue |
3 |
title_short |
Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program |
url |
http://dx.doi.org/10.1109/TASC.2015.2392253 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7017463 |
remote_bool |
false |
author2 |
Zheming Zhang Sano, Takuya Sogabe, Yusuke Ogitsu, Toru Koyanagi, Kei Kurusu, Tsutomu Mori, Yoshiharu Iwata, Yoshiyuki Noda, Koji Yoshimoto, Masahiro |
author2Str |
Zheming Zhang Sano, Takuya Sogabe, Yusuke Ogitsu, Toru Koyanagi, Kei Kurusu, Tsutomu Mori, Yoshiharu Iwata, Yoshiyuki Noda, Koji Yoshimoto, Masahiro |
ppnlink |
130969559 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1109/TASC.2015.2392253 |
up_date |
2024-07-03T15:05:41.951Z |
_version_ |
1803570791788314624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1958929522</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714145933.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TASC.2015.2392253</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1958929522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1958929522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1378-f5b05663e179b71d806783a61e13ee5b9442c14148eec97473ffcf6214d373570</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0203240620150000025000300001progressoffundamentaltechnologyrdtowardaccelerator</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Amemiya, Naoyuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We report the progress of an R&D project of fundamental technologies for cryocooler-cooled accelerator magnets using coated conductors funded by the Japan Science and Technology Agency under its S-Innovation Program. Its target applications include carbon cancer therapy and accelerator-driven subcritical reactor. We have been carrying out design studies of HTS magnets for spiral sector fixed-field alternating gradient accelerators to show their feasibility for the target applications and to clarify the requirements of winding technologies. A three-dimensional winding machine has been developed to fabricate a model magnet in which winding technologies required for the designed magnet are implemented. With respect to the large magnetization of coated conductors, which is one of the big concerns on their uses in accelerator magnets, the magnetic field measurements using rotating pick-up coils have been made to clarify its influence on the multipole components of the magnetic field. A method for numerical electromagnetic field analyses of coils with three-dimensional shapes has been developed to predict the influence of magnetization on the field quality of magnets.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">winding technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine windings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coated conductor magnetization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D winding machine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic field measurements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">accelerator magnets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multipole components</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D shapes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">S-innovation program</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coils</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-temperature superconductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accelerator magnet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coated conductor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HTS magnets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Windings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic field measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">accelerator-driven subcritical reactor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical electromagnetic field analyses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon cancer therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconducting magnets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rotating pick-up coils</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">superconducting coils</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zheming Zhang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sano, Takuya</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sogabe, Yusuke</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ogitsu, Toru</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koyanagi, Kei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kurusu, Tsutomu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mori, Yoshiharu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iwata, Yoshiyuki</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Noda, Koji</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshimoto, Masahiro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on applied superconductivity</subfield><subfield code="d">New York, NY : Inst., 1991</subfield><subfield code="g">25(2015), 3, Seite 1-5</subfield><subfield code="w">(DE-627)130969559</subfield><subfield code="w">(DE-600)1070182-5</subfield><subfield code="w">(DE-576)025189840</subfield><subfield code="x">1051-8223</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1-5</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TASC.2015.2392253</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7017463</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">1-5</subfield></datafield></record></collection>
|
score |
7.4008837 |