Random Forest Construction With Robust Semisupervised Node Splitting

Random forest (RF) is a very important classifier with applications in various machine learning tasks, but its promising performance heavily relies on the size of labeled training data. In this paper, we investigate constructing of RFs with a small size of labeled data and find that the performance...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Xiao Liu [verfasserIn]

Mingli Song

Dacheng Tao

Zicheng Liu

Luming Zhang

Chun Chen

Jiajun Bu

Format:

Artikel

Sprache:

Englisch

Erschienen:

2015

Schlagwörter:

low-dimensional subspace

learning (artificial intelligence)

Covariance matrices

semi-supervised splitting

local maxima

Estimation

semi-supervised learning

random forest

random forest construction

hyperplane separation

kernel-based density estimation

robust semisupervised node splitting

labeled training data

Training data

unified optimization framework

Kernel

data points

asymptotic mean integrated squared error criterion

image classification

Bandwidth

computer vision

Training

supervised algorithms

high-dimensional feature space

Radio frequency

subspace learning

machine learning tasks

quality measure

margin maximization-based semisupervised methods

node splitting

optimisation

Feature extraction

Face - anatomy & histology

Image Processing, Computer-Assisted - methods

Pattern Recognition, Automated - methods

Übergeordnetes Werk:

Enthalten in: IEEE transactions on image processing - New York, NY : Inst., 1992, 24(2015), 1, Seite 471-483

Übergeordnetes Werk:

volume:24 ; year:2015 ; number:1 ; pages:471-483

Links:

Volltext
Link aufrufen
Link aufrufen
Link aufrufen

DOI / URN:

10.1109/TIP.2014.2378017

Katalog-ID:

OLC1959239910

Nicht das Richtige dabei?

Schreiben Sie uns!