Enhancement of Textural Differences Based on Morphological Component Analysis
This paper proposes a new texture enhancement method which uses an image decomposition that allows different visual characteristics of textures to be represented by separate components in contrast with previous methods which either enhance texture indirectly or represent all texture information usin...
Ausführliche Beschreibung
Autor*in: |
Jianning Chi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
comparator enhancement methods texture-based image segmentation algorithms multidimensional feature space texture-based segmentation methods |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on image processing - New York, NY : Inst., 1992, 24(2015), 9, Seite 2671-2684 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2015 ; number:9 ; pages:2671-2684 |
Links: |
---|
DOI / URN: |
10.1109/TIP.2015.2427514 |
---|
Katalog-ID: |
OLC1959241443 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1959241443 | ||
003 | DE-627 | ||
005 | 20230714150849.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TIP.2015.2427514 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1959241443 | ||
035 | |a (DE-599)GBVOLC1959241443 | ||
035 | |a (PRQ)c1533-b9f16eec4a9502001ff9959f679fd1feeeb95dfba1f2fee7691d060b1f24aecf0 | ||
035 | |a (KEY)0213811520150000024000902671enhancementoftexturaldifferencesbasedonmorphologic | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 620 |q DNB |
084 | |a 54.00 |2 bkl | ||
100 | 0 | |a Jianning Chi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhancement of Textural Differences Based on Morphological Component Analysis |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This paper proposes a new texture enhancement method which uses an image decomposition that allows different visual characteristics of textures to be represented by separate components in contrast with previous methods which either enhance texture indirectly or represent all texture information using a single image component. Our method is intended to be used as a preprocessing step prior to the use of texture-based image segmentation algorithms. Our method uses a modification of morphological component analysis (MCA) which allows texture to be separated into multiple morphological components each representing a different visual characteristic of texture. We select four such texture characteristics and propose new dictionaries to extract these components using MCA. We then propose procedures for modifying each texture component and recombining them to produce a texture-enhanced image. We applied our method as a preprocessing step prior to a number of texture-based segmentation methods and compared the accuracy of the results, finding that our method produced results superior to comparator methods for all segmentation algorithms tested. We also demonstrate by example the main mechanism by which our method produces superior results, namely that it causes the clusters of local texture features of each distinct image texture to mutually diverge within the multidimensional feature space to a vastly superior degree versus the comparator enhancement methods. | ||
650 | 4 | |a comparator enhancement methods | |
650 | 4 | |a segmentation | |
650 | 4 | |a texture-based image segmentation algorithms | |
650 | 4 | |a image texture | |
650 | 4 | |a image component | |
650 | 4 | |a texture features | |
650 | 4 | |a multidimensional feature space | |
650 | 4 | |a Image edge detection | |
650 | 4 | |a Dictionaries | |
650 | 4 | |a texture-enhanced image | |
650 | 4 | |a image decomposition | |
650 | 4 | |a image segmentation | |
650 | 4 | |a texture-based segmentation methods | |
650 | 4 | |a Optimized production technology | |
650 | 4 | |a texture | |
650 | 4 | |a texture enhancement method | |
650 | 4 | |a Visualization | |
650 | 4 | |a enhancement | |
650 | 4 | |a mathematical morphology | |
650 | 4 | |a textural differences | |
650 | 4 | |a texture information | |
650 | 4 | |a Noise | |
650 | 4 | |a non-linear transform | |
650 | 4 | |a Wavelet transforms | |
650 | 4 | |a texture component | |
650 | 4 | |a image enhancement | |
650 | 4 | |a morphological component analysis | |
700 | 1 | |a Eramian, Mark |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on image processing |d New York, NY : Inst., 1992 |g 24(2015), 9, Seite 2671-2684 |w (DE-627)131074458 |w (DE-600)1111265-7 |w (DE-576)029165008 |x 1057-7149 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2015 |g number:9 |g pages:2671-2684 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TIP.2015.2427514 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7097044 |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25935032 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_4318 | ||
936 | b | k | |a 54.00 |q AVZ |
951 | |a AR | ||
952 | |d 24 |j 2015 |e 9 |h 2671-2684 |
author_variant |
j c jc |
---|---|
matchkey_str |
article:10577149:2015----::nacmnotxuadfeecsaeomrhlgc |
hierarchy_sort_str |
2015 |
bklnumber |
54.00 |
publishDate |
2015 |
allfields |
10.1109/TIP.2015.2427514 doi PQ20160617 (DE-627)OLC1959241443 (DE-599)GBVOLC1959241443 (PRQ)c1533-b9f16eec4a9502001ff9959f679fd1feeeb95dfba1f2fee7691d060b1f24aecf0 (KEY)0213811520150000024000902671enhancementoftexturaldifferencesbasedonmorphologic DE-627 ger DE-627 rakwb eng 004 620 DNB 54.00 bkl Jianning Chi verfasserin aut Enhancement of Textural Differences Based on Morphological Component Analysis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a new texture enhancement method which uses an image decomposition that allows different visual characteristics of textures to be represented by separate components in contrast with previous methods which either enhance texture indirectly or represent all texture information using a single image component. Our method is intended to be used as a preprocessing step prior to the use of texture-based image segmentation algorithms. Our method uses a modification of morphological component analysis (MCA) which allows texture to be separated into multiple morphological components each representing a different visual characteristic of texture. We select four such texture characteristics and propose new dictionaries to extract these components using MCA. We then propose procedures for modifying each texture component and recombining them to produce a texture-enhanced image. We applied our method as a preprocessing step prior to a number of texture-based segmentation methods and compared the accuracy of the results, finding that our method produced results superior to comparator methods for all segmentation algorithms tested. We also demonstrate by example the main mechanism by which our method produces superior results, namely that it causes the clusters of local texture features of each distinct image texture to mutually diverge within the multidimensional feature space to a vastly superior degree versus the comparator enhancement methods. comparator enhancement methods segmentation texture-based image segmentation algorithms image texture image component texture features multidimensional feature space Image edge detection Dictionaries texture-enhanced image image decomposition image segmentation texture-based segmentation methods Optimized production technology texture texture enhancement method Visualization enhancement mathematical morphology textural differences texture information Noise non-linear transform Wavelet transforms texture component image enhancement morphological component analysis Eramian, Mark oth Enthalten in IEEE transactions on image processing New York, NY : Inst., 1992 24(2015), 9, Seite 2671-2684 (DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 1057-7149 nnns volume:24 year:2015 number:9 pages:2671-2684 http://dx.doi.org/10.1109/TIP.2015.2427514 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7097044 http://www.ncbi.nlm.nih.gov/pubmed/25935032 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4318 54.00 AVZ AR 24 2015 9 2671-2684 |
spelling |
10.1109/TIP.2015.2427514 doi PQ20160617 (DE-627)OLC1959241443 (DE-599)GBVOLC1959241443 (PRQ)c1533-b9f16eec4a9502001ff9959f679fd1feeeb95dfba1f2fee7691d060b1f24aecf0 (KEY)0213811520150000024000902671enhancementoftexturaldifferencesbasedonmorphologic DE-627 ger DE-627 rakwb eng 004 620 DNB 54.00 bkl Jianning Chi verfasserin aut Enhancement of Textural Differences Based on Morphological Component Analysis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a new texture enhancement method which uses an image decomposition that allows different visual characteristics of textures to be represented by separate components in contrast with previous methods which either enhance texture indirectly or represent all texture information using a single image component. Our method is intended to be used as a preprocessing step prior to the use of texture-based image segmentation algorithms. Our method uses a modification of morphological component analysis (MCA) which allows texture to be separated into multiple morphological components each representing a different visual characteristic of texture. We select four such texture characteristics and propose new dictionaries to extract these components using MCA. We then propose procedures for modifying each texture component and recombining them to produce a texture-enhanced image. We applied our method as a preprocessing step prior to a number of texture-based segmentation methods and compared the accuracy of the results, finding that our method produced results superior to comparator methods for all segmentation algorithms tested. We also demonstrate by example the main mechanism by which our method produces superior results, namely that it causes the clusters of local texture features of each distinct image texture to mutually diverge within the multidimensional feature space to a vastly superior degree versus the comparator enhancement methods. comparator enhancement methods segmentation texture-based image segmentation algorithms image texture image component texture features multidimensional feature space Image edge detection Dictionaries texture-enhanced image image decomposition image segmentation texture-based segmentation methods Optimized production technology texture texture enhancement method Visualization enhancement mathematical morphology textural differences texture information Noise non-linear transform Wavelet transforms texture component image enhancement morphological component analysis Eramian, Mark oth Enthalten in IEEE transactions on image processing New York, NY : Inst., 1992 24(2015), 9, Seite 2671-2684 (DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 1057-7149 nnns volume:24 year:2015 number:9 pages:2671-2684 http://dx.doi.org/10.1109/TIP.2015.2427514 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7097044 http://www.ncbi.nlm.nih.gov/pubmed/25935032 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4318 54.00 AVZ AR 24 2015 9 2671-2684 |
allfields_unstemmed |
10.1109/TIP.2015.2427514 doi PQ20160617 (DE-627)OLC1959241443 (DE-599)GBVOLC1959241443 (PRQ)c1533-b9f16eec4a9502001ff9959f679fd1feeeb95dfba1f2fee7691d060b1f24aecf0 (KEY)0213811520150000024000902671enhancementoftexturaldifferencesbasedonmorphologic DE-627 ger DE-627 rakwb eng 004 620 DNB 54.00 bkl Jianning Chi verfasserin aut Enhancement of Textural Differences Based on Morphological Component Analysis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a new texture enhancement method which uses an image decomposition that allows different visual characteristics of textures to be represented by separate components in contrast with previous methods which either enhance texture indirectly or represent all texture information using a single image component. Our method is intended to be used as a preprocessing step prior to the use of texture-based image segmentation algorithms. Our method uses a modification of morphological component analysis (MCA) which allows texture to be separated into multiple morphological components each representing a different visual characteristic of texture. We select four such texture characteristics and propose new dictionaries to extract these components using MCA. We then propose procedures for modifying each texture component and recombining them to produce a texture-enhanced image. We applied our method as a preprocessing step prior to a number of texture-based segmentation methods and compared the accuracy of the results, finding that our method produced results superior to comparator methods for all segmentation algorithms tested. We also demonstrate by example the main mechanism by which our method produces superior results, namely that it causes the clusters of local texture features of each distinct image texture to mutually diverge within the multidimensional feature space to a vastly superior degree versus the comparator enhancement methods. comparator enhancement methods segmentation texture-based image segmentation algorithms image texture image component texture features multidimensional feature space Image edge detection Dictionaries texture-enhanced image image decomposition image segmentation texture-based segmentation methods Optimized production technology texture texture enhancement method Visualization enhancement mathematical morphology textural differences texture information Noise non-linear transform Wavelet transforms texture component image enhancement morphological component analysis Eramian, Mark oth Enthalten in IEEE transactions on image processing New York, NY : Inst., 1992 24(2015), 9, Seite 2671-2684 (DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 1057-7149 nnns volume:24 year:2015 number:9 pages:2671-2684 http://dx.doi.org/10.1109/TIP.2015.2427514 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7097044 http://www.ncbi.nlm.nih.gov/pubmed/25935032 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4318 54.00 AVZ AR 24 2015 9 2671-2684 |
allfieldsGer |
10.1109/TIP.2015.2427514 doi PQ20160617 (DE-627)OLC1959241443 (DE-599)GBVOLC1959241443 (PRQ)c1533-b9f16eec4a9502001ff9959f679fd1feeeb95dfba1f2fee7691d060b1f24aecf0 (KEY)0213811520150000024000902671enhancementoftexturaldifferencesbasedonmorphologic DE-627 ger DE-627 rakwb eng 004 620 DNB 54.00 bkl Jianning Chi verfasserin aut Enhancement of Textural Differences Based on Morphological Component Analysis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a new texture enhancement method which uses an image decomposition that allows different visual characteristics of textures to be represented by separate components in contrast with previous methods which either enhance texture indirectly or represent all texture information using a single image component. Our method is intended to be used as a preprocessing step prior to the use of texture-based image segmentation algorithms. Our method uses a modification of morphological component analysis (MCA) which allows texture to be separated into multiple morphological components each representing a different visual characteristic of texture. We select four such texture characteristics and propose new dictionaries to extract these components using MCA. We then propose procedures for modifying each texture component and recombining them to produce a texture-enhanced image. We applied our method as a preprocessing step prior to a number of texture-based segmentation methods and compared the accuracy of the results, finding that our method produced results superior to comparator methods for all segmentation algorithms tested. We also demonstrate by example the main mechanism by which our method produces superior results, namely that it causes the clusters of local texture features of each distinct image texture to mutually diverge within the multidimensional feature space to a vastly superior degree versus the comparator enhancement methods. comparator enhancement methods segmentation texture-based image segmentation algorithms image texture image component texture features multidimensional feature space Image edge detection Dictionaries texture-enhanced image image decomposition image segmentation texture-based segmentation methods Optimized production technology texture texture enhancement method Visualization enhancement mathematical morphology textural differences texture information Noise non-linear transform Wavelet transforms texture component image enhancement morphological component analysis Eramian, Mark oth Enthalten in IEEE transactions on image processing New York, NY : Inst., 1992 24(2015), 9, Seite 2671-2684 (DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 1057-7149 nnns volume:24 year:2015 number:9 pages:2671-2684 http://dx.doi.org/10.1109/TIP.2015.2427514 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7097044 http://www.ncbi.nlm.nih.gov/pubmed/25935032 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4318 54.00 AVZ AR 24 2015 9 2671-2684 |
allfieldsSound |
10.1109/TIP.2015.2427514 doi PQ20160617 (DE-627)OLC1959241443 (DE-599)GBVOLC1959241443 (PRQ)c1533-b9f16eec4a9502001ff9959f679fd1feeeb95dfba1f2fee7691d060b1f24aecf0 (KEY)0213811520150000024000902671enhancementoftexturaldifferencesbasedonmorphologic DE-627 ger DE-627 rakwb eng 004 620 DNB 54.00 bkl Jianning Chi verfasserin aut Enhancement of Textural Differences Based on Morphological Component Analysis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a new texture enhancement method which uses an image decomposition that allows different visual characteristics of textures to be represented by separate components in contrast with previous methods which either enhance texture indirectly or represent all texture information using a single image component. Our method is intended to be used as a preprocessing step prior to the use of texture-based image segmentation algorithms. Our method uses a modification of morphological component analysis (MCA) which allows texture to be separated into multiple morphological components each representing a different visual characteristic of texture. We select four such texture characteristics and propose new dictionaries to extract these components using MCA. We then propose procedures for modifying each texture component and recombining them to produce a texture-enhanced image. We applied our method as a preprocessing step prior to a number of texture-based segmentation methods and compared the accuracy of the results, finding that our method produced results superior to comparator methods for all segmentation algorithms tested. We also demonstrate by example the main mechanism by which our method produces superior results, namely that it causes the clusters of local texture features of each distinct image texture to mutually diverge within the multidimensional feature space to a vastly superior degree versus the comparator enhancement methods. comparator enhancement methods segmentation texture-based image segmentation algorithms image texture image component texture features multidimensional feature space Image edge detection Dictionaries texture-enhanced image image decomposition image segmentation texture-based segmentation methods Optimized production technology texture texture enhancement method Visualization enhancement mathematical morphology textural differences texture information Noise non-linear transform Wavelet transforms texture component image enhancement morphological component analysis Eramian, Mark oth Enthalten in IEEE transactions on image processing New York, NY : Inst., 1992 24(2015), 9, Seite 2671-2684 (DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 1057-7149 nnns volume:24 year:2015 number:9 pages:2671-2684 http://dx.doi.org/10.1109/TIP.2015.2427514 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7097044 http://www.ncbi.nlm.nih.gov/pubmed/25935032 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4318 54.00 AVZ AR 24 2015 9 2671-2684 |
language |
English |
source |
Enthalten in IEEE transactions on image processing 24(2015), 9, Seite 2671-2684 volume:24 year:2015 number:9 pages:2671-2684 |
sourceStr |
Enthalten in IEEE transactions on image processing 24(2015), 9, Seite 2671-2684 volume:24 year:2015 number:9 pages:2671-2684 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
comparator enhancement methods segmentation texture-based image segmentation algorithms image texture image component texture features multidimensional feature space Image edge detection Dictionaries texture-enhanced image image decomposition image segmentation texture-based segmentation methods Optimized production technology texture texture enhancement method Visualization enhancement mathematical morphology textural differences texture information Noise non-linear transform Wavelet transforms texture component image enhancement morphological component analysis |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on image processing |
authorswithroles_txt_mv |
Jianning Chi @@aut@@ Eramian, Mark @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
131074458 |
dewey-sort |
14 |
id |
OLC1959241443 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1959241443</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714150849.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIP.2015.2427514</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1959241443</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1959241443</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1533-b9f16eec4a9502001ff9959f679fd1feeeb95dfba1f2fee7691d060b1f24aecf0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0213811520150000024000902671enhancementoftexturaldifferencesbasedonmorphologic</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianning Chi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancement of Textural Differences Based on Morphological Component Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a new texture enhancement method which uses an image decomposition that allows different visual characteristics of textures to be represented by separate components in contrast with previous methods which either enhance texture indirectly or represent all texture information using a single image component. Our method is intended to be used as a preprocessing step prior to the use of texture-based image segmentation algorithms. Our method uses a modification of morphological component analysis (MCA) which allows texture to be separated into multiple morphological components each representing a different visual characteristic of texture. We select four such texture characteristics and propose new dictionaries to extract these components using MCA. We then propose procedures for modifying each texture component and recombining them to produce a texture-enhanced image. We applied our method as a preprocessing step prior to a number of texture-based segmentation methods and compared the accuracy of the results, finding that our method produced results superior to comparator methods for all segmentation algorithms tested. We also demonstrate by example the main mechanism by which our method produces superior results, namely that it causes the clusters of local texture features of each distinct image texture to mutually diverge within the multidimensional feature space to a vastly superior degree versus the comparator enhancement methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">comparator enhancement methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture-based image segmentation algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image texture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image component</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture features</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multidimensional feature space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image edge detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dictionaries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture-enhanced image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture-based segmentation methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimized production technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture enhancement method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mathematical morphology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">textural differences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-linear transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wavelet transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture component</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">morphological component analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eramian, Mark</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on image processing</subfield><subfield code="d">New York, NY : Inst., 1992</subfield><subfield code="g">24(2015), 9, Seite 2671-2684</subfield><subfield code="w">(DE-627)131074458</subfield><subfield code="w">(DE-600)1111265-7</subfield><subfield code="w">(DE-576)029165008</subfield><subfield code="x">1057-7149</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:2671-2684</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIP.2015.2427514</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7097044</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25935032</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2015</subfield><subfield code="e">9</subfield><subfield code="h">2671-2684</subfield></datafield></record></collection>
|
author |
Jianning Chi |
spellingShingle |
Jianning Chi ddc 004 bkl 54.00 misc comparator enhancement methods misc segmentation misc texture-based image segmentation algorithms misc image texture misc image component misc texture features misc multidimensional feature space misc Image edge detection misc Dictionaries misc texture-enhanced image misc image decomposition misc image segmentation misc texture-based segmentation methods misc Optimized production technology misc texture misc texture enhancement method misc Visualization misc enhancement misc mathematical morphology misc textural differences misc texture information misc Noise misc non-linear transform misc Wavelet transforms misc texture component misc image enhancement misc morphological component analysis Enhancement of Textural Differences Based on Morphological Component Analysis |
authorStr |
Jianning Chi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131074458 |
format |
Article |
dewey-ones |
004 - Data processing & computer science 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1057-7149 |
topic_title |
004 620 DNB 54.00 bkl Enhancement of Textural Differences Based on Morphological Component Analysis comparator enhancement methods segmentation texture-based image segmentation algorithms image texture image component texture features multidimensional feature space Image edge detection Dictionaries texture-enhanced image image decomposition image segmentation texture-based segmentation methods Optimized production technology texture texture enhancement method Visualization enhancement mathematical morphology textural differences texture information Noise non-linear transform Wavelet transforms texture component image enhancement morphological component analysis |
topic |
ddc 004 bkl 54.00 misc comparator enhancement methods misc segmentation misc texture-based image segmentation algorithms misc image texture misc image component misc texture features misc multidimensional feature space misc Image edge detection misc Dictionaries misc texture-enhanced image misc image decomposition misc image segmentation misc texture-based segmentation methods misc Optimized production technology misc texture misc texture enhancement method misc Visualization misc enhancement misc mathematical morphology misc textural differences misc texture information misc Noise misc non-linear transform misc Wavelet transforms misc texture component misc image enhancement misc morphological component analysis |
topic_unstemmed |
ddc 004 bkl 54.00 misc comparator enhancement methods misc segmentation misc texture-based image segmentation algorithms misc image texture misc image component misc texture features misc multidimensional feature space misc Image edge detection misc Dictionaries misc texture-enhanced image misc image decomposition misc image segmentation misc texture-based segmentation methods misc Optimized production technology misc texture misc texture enhancement method misc Visualization misc enhancement misc mathematical morphology misc textural differences misc texture information misc Noise misc non-linear transform misc Wavelet transforms misc texture component misc image enhancement misc morphological component analysis |
topic_browse |
ddc 004 bkl 54.00 misc comparator enhancement methods misc segmentation misc texture-based image segmentation algorithms misc image texture misc image component misc texture features misc multidimensional feature space misc Image edge detection misc Dictionaries misc texture-enhanced image misc image decomposition misc image segmentation misc texture-based segmentation methods misc Optimized production technology misc texture misc texture enhancement method misc Visualization misc enhancement misc mathematical morphology misc textural differences misc texture information misc Noise misc non-linear transform misc Wavelet transforms misc texture component misc image enhancement misc morphological component analysis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m e me |
hierarchy_parent_title |
IEEE transactions on image processing |
hierarchy_parent_id |
131074458 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
IEEE transactions on image processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 |
title |
Enhancement of Textural Differences Based on Morphological Component Analysis |
ctrlnum |
(DE-627)OLC1959241443 (DE-599)GBVOLC1959241443 (PRQ)c1533-b9f16eec4a9502001ff9959f679fd1feeeb95dfba1f2fee7691d060b1f24aecf0 (KEY)0213811520150000024000902671enhancementoftexturaldifferencesbasedonmorphologic |
title_full |
Enhancement of Textural Differences Based on Morphological Component Analysis |
author_sort |
Jianning Chi |
journal |
IEEE transactions on image processing |
journalStr |
IEEE transactions on image processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
2671 |
author_browse |
Jianning Chi |
container_volume |
24 |
class |
004 620 DNB 54.00 bkl |
format_se |
Aufsätze |
author-letter |
Jianning Chi |
doi_str_mv |
10.1109/TIP.2015.2427514 |
dewey-full |
004 620 |
title_sort |
enhancement of textural differences based on morphological component analysis |
title_auth |
Enhancement of Textural Differences Based on Morphological Component Analysis |
abstract |
This paper proposes a new texture enhancement method which uses an image decomposition that allows different visual characteristics of textures to be represented by separate components in contrast with previous methods which either enhance texture indirectly or represent all texture information using a single image component. Our method is intended to be used as a preprocessing step prior to the use of texture-based image segmentation algorithms. Our method uses a modification of morphological component analysis (MCA) which allows texture to be separated into multiple morphological components each representing a different visual characteristic of texture. We select four such texture characteristics and propose new dictionaries to extract these components using MCA. We then propose procedures for modifying each texture component and recombining them to produce a texture-enhanced image. We applied our method as a preprocessing step prior to a number of texture-based segmentation methods and compared the accuracy of the results, finding that our method produced results superior to comparator methods for all segmentation algorithms tested. We also demonstrate by example the main mechanism by which our method produces superior results, namely that it causes the clusters of local texture features of each distinct image texture to mutually diverge within the multidimensional feature space to a vastly superior degree versus the comparator enhancement methods. |
abstractGer |
This paper proposes a new texture enhancement method which uses an image decomposition that allows different visual characteristics of textures to be represented by separate components in contrast with previous methods which either enhance texture indirectly or represent all texture information using a single image component. Our method is intended to be used as a preprocessing step prior to the use of texture-based image segmentation algorithms. Our method uses a modification of morphological component analysis (MCA) which allows texture to be separated into multiple morphological components each representing a different visual characteristic of texture. We select four such texture characteristics and propose new dictionaries to extract these components using MCA. We then propose procedures for modifying each texture component and recombining them to produce a texture-enhanced image. We applied our method as a preprocessing step prior to a number of texture-based segmentation methods and compared the accuracy of the results, finding that our method produced results superior to comparator methods for all segmentation algorithms tested. We also demonstrate by example the main mechanism by which our method produces superior results, namely that it causes the clusters of local texture features of each distinct image texture to mutually diverge within the multidimensional feature space to a vastly superior degree versus the comparator enhancement methods. |
abstract_unstemmed |
This paper proposes a new texture enhancement method which uses an image decomposition that allows different visual characteristics of textures to be represented by separate components in contrast with previous methods which either enhance texture indirectly or represent all texture information using a single image component. Our method is intended to be used as a preprocessing step prior to the use of texture-based image segmentation algorithms. Our method uses a modification of morphological component analysis (MCA) which allows texture to be separated into multiple morphological components each representing a different visual characteristic of texture. We select four such texture characteristics and propose new dictionaries to extract these components using MCA. We then propose procedures for modifying each texture component and recombining them to produce a texture-enhanced image. We applied our method as a preprocessing step prior to a number of texture-based segmentation methods and compared the accuracy of the results, finding that our method produced results superior to comparator methods for all segmentation algorithms tested. We also demonstrate by example the main mechanism by which our method produces superior results, namely that it causes the clusters of local texture features of each distinct image texture to mutually diverge within the multidimensional feature space to a vastly superior degree versus the comparator enhancement methods. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4318 |
container_issue |
9 |
title_short |
Enhancement of Textural Differences Based on Morphological Component Analysis |
url |
http://dx.doi.org/10.1109/TIP.2015.2427514 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7097044 http://www.ncbi.nlm.nih.gov/pubmed/25935032 |
remote_bool |
false |
author2 |
Eramian, Mark |
author2Str |
Eramian, Mark |
ppnlink |
131074458 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/TIP.2015.2427514 |
up_date |
2024-07-03T16:26:11.635Z |
_version_ |
1803575856083238912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1959241443</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714150849.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIP.2015.2427514</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1959241443</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1959241443</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1533-b9f16eec4a9502001ff9959f679fd1feeeb95dfba1f2fee7691d060b1f24aecf0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0213811520150000024000902671enhancementoftexturaldifferencesbasedonmorphologic</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianning Chi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancement of Textural Differences Based on Morphological Component Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a new texture enhancement method which uses an image decomposition that allows different visual characteristics of textures to be represented by separate components in contrast with previous methods which either enhance texture indirectly or represent all texture information using a single image component. Our method is intended to be used as a preprocessing step prior to the use of texture-based image segmentation algorithms. Our method uses a modification of morphological component analysis (MCA) which allows texture to be separated into multiple morphological components each representing a different visual characteristic of texture. We select four such texture characteristics and propose new dictionaries to extract these components using MCA. We then propose procedures for modifying each texture component and recombining them to produce a texture-enhanced image. We applied our method as a preprocessing step prior to a number of texture-based segmentation methods and compared the accuracy of the results, finding that our method produced results superior to comparator methods for all segmentation algorithms tested. We also demonstrate by example the main mechanism by which our method produces superior results, namely that it causes the clusters of local texture features of each distinct image texture to mutually diverge within the multidimensional feature space to a vastly superior degree versus the comparator enhancement methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">comparator enhancement methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture-based image segmentation algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image texture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image component</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture features</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multidimensional feature space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image edge detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dictionaries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture-enhanced image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture-based segmentation methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimized production technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture enhancement method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mathematical morphology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">textural differences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-linear transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wavelet transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture component</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">morphological component analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eramian, Mark</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on image processing</subfield><subfield code="d">New York, NY : Inst., 1992</subfield><subfield code="g">24(2015), 9, Seite 2671-2684</subfield><subfield code="w">(DE-627)131074458</subfield><subfield code="w">(DE-600)1111265-7</subfield><subfield code="w">(DE-576)029165008</subfield><subfield code="x">1057-7149</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:2671-2684</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIP.2015.2427514</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7097044</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25935032</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2015</subfield><subfield code="e">9</subfield><subfield code="h">2671-2684</subfield></datafield></record></collection>
|
score |
7.399147 |