Perceptual Quality Assessment of Screen Content Images
Research on screen content images (SCIs) becomes important as they are increasingly used in multi-device communication applications. In this paper, we present a study on perceptual quality assessment of distorted SCIs subjectively and objectively. We construct a large-scale screen image quality asse...
Ausführliche Beschreibung
Autor*in: |
Yang, Huan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on image processing - New York, NY : Inst., 1992, 24(2015), 11, Seite 4408-4421 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2015 ; number:11 ; pages:4408-4421 |
Links: |
---|
DOI / URN: |
10.1109/TIP.2015.2465145 |
---|
Katalog-ID: |
OLC1959241729 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1959241729 | ||
003 | DE-627 | ||
005 | 20230714150850.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TIP.2015.2465145 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1959241729 | ||
035 | |a (DE-599)GBVOLC1959241729 | ||
035 | |a (PRQ)c1533-33acee5cbadbb1e2bf800c1b39c59d5352042c6988fc37b6f2f0834dc07a27d40 | ||
035 | |a (KEY)0213811520150000024001104408perceptualqualityassessmentofscreencontentimages | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 620 |q DNB |
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Yang, Huan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Perceptual Quality Assessment of Screen Content Images |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Research on screen content images (SCIs) becomes important as they are increasingly used in multi-device communication applications. In this paper, we present a study on perceptual quality assessment of distorted SCIs subjectively and objectively. We construct a large-scale screen image quality assessment database (SIQAD) consisting of 20 source and 980 distorted SCIs. In order to get the subjective quality scores and investigate, which part (text or picture) contributes more to the overall visual quality, the single stimulus methodology with 11 point numerical scale is employed to obtain three kinds of subjective scores corresponding to the entire, textual, and pictorial regions, respectively. According to the analysis of subjective data, we propose a weighting strategy to account for the correlation among these three kinds of subjective scores. Furthermore, we design an objective metric to measure the visual quality of distorted SCIs by considering the visual difference of textual and pictorial regions. The experimental results demonstrate that the proposed SCI perceptual quality assessment scheme, consisting of the objective metric and the weighting strategy, can achieve better performance than 11 state-of-the-art IQA methods. To the best of our knowledge, the SIQAD is the first large-scale database published for quality evaluation of SCIs, and this research is the first attempt to explore the perceptual quality assessment of distorted SCIs. | ||
650 | 4 | |a Image coding | |
650 | 4 | |a Databases | |
650 | 4 | |a Measurement | |
650 | 4 | |a Quality assessment | |
650 | 4 | |a subjective quality assessment | |
650 | 4 | |a Transform coding | |
650 | 4 | |a objective quality assessment | |
650 | 4 | |a Screen content image | |
650 | 4 | |a Visualization | |
650 | 4 | |a Image quality | |
700 | 1 | |a Fang, Yuming |4 oth | |
700 | 1 | |a Lin, Weisi |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on image processing |d New York, NY : Inst., 1992 |g 24(2015), 11, Seite 4408-4421 |w (DE-627)131074458 |w (DE-600)1111265-7 |w (DE-576)029165008 |x 1057-7149 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2015 |g number:11 |g pages:4408-4421 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TIP.2015.2465145 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7180347 |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/26259078 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_4318 | ||
936 | b | k | |a 54.00 |q AVZ |
951 | |a AR | ||
952 | |d 24 |j 2015 |e 11 |h 4408-4421 |
author_variant |
h y hy |
---|---|
matchkey_str |
article:10577149:2015----::ecpulultassmnosrec |
hierarchy_sort_str |
2015 |
bklnumber |
54.00 |
publishDate |
2015 |
allfields |
10.1109/TIP.2015.2465145 doi PQ20160617 (DE-627)OLC1959241729 (DE-599)GBVOLC1959241729 (PRQ)c1533-33acee5cbadbb1e2bf800c1b39c59d5352042c6988fc37b6f2f0834dc07a27d40 (KEY)0213811520150000024001104408perceptualqualityassessmentofscreencontentimages DE-627 ger DE-627 rakwb eng 004 620 DNB 54.00 bkl Yang, Huan verfasserin aut Perceptual Quality Assessment of Screen Content Images 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Research on screen content images (SCIs) becomes important as they are increasingly used in multi-device communication applications. In this paper, we present a study on perceptual quality assessment of distorted SCIs subjectively and objectively. We construct a large-scale screen image quality assessment database (SIQAD) consisting of 20 source and 980 distorted SCIs. In order to get the subjective quality scores and investigate, which part (text or picture) contributes more to the overall visual quality, the single stimulus methodology with 11 point numerical scale is employed to obtain three kinds of subjective scores corresponding to the entire, textual, and pictorial regions, respectively. According to the analysis of subjective data, we propose a weighting strategy to account for the correlation among these three kinds of subjective scores. Furthermore, we design an objective metric to measure the visual quality of distorted SCIs by considering the visual difference of textual and pictorial regions. The experimental results demonstrate that the proposed SCI perceptual quality assessment scheme, consisting of the objective metric and the weighting strategy, can achieve better performance than 11 state-of-the-art IQA methods. To the best of our knowledge, the SIQAD is the first large-scale database published for quality evaluation of SCIs, and this research is the first attempt to explore the perceptual quality assessment of distorted SCIs. Image coding Databases Measurement Quality assessment subjective quality assessment Transform coding objective quality assessment Screen content image Visualization Image quality Fang, Yuming oth Lin, Weisi oth Enthalten in IEEE transactions on image processing New York, NY : Inst., 1992 24(2015), 11, Seite 4408-4421 (DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 1057-7149 nnns volume:24 year:2015 number:11 pages:4408-4421 http://dx.doi.org/10.1109/TIP.2015.2465145 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7180347 http://www.ncbi.nlm.nih.gov/pubmed/26259078 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4318 54.00 AVZ AR 24 2015 11 4408-4421 |
spelling |
10.1109/TIP.2015.2465145 doi PQ20160617 (DE-627)OLC1959241729 (DE-599)GBVOLC1959241729 (PRQ)c1533-33acee5cbadbb1e2bf800c1b39c59d5352042c6988fc37b6f2f0834dc07a27d40 (KEY)0213811520150000024001104408perceptualqualityassessmentofscreencontentimages DE-627 ger DE-627 rakwb eng 004 620 DNB 54.00 bkl Yang, Huan verfasserin aut Perceptual Quality Assessment of Screen Content Images 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Research on screen content images (SCIs) becomes important as they are increasingly used in multi-device communication applications. In this paper, we present a study on perceptual quality assessment of distorted SCIs subjectively and objectively. We construct a large-scale screen image quality assessment database (SIQAD) consisting of 20 source and 980 distorted SCIs. In order to get the subjective quality scores and investigate, which part (text or picture) contributes more to the overall visual quality, the single stimulus methodology with 11 point numerical scale is employed to obtain three kinds of subjective scores corresponding to the entire, textual, and pictorial regions, respectively. According to the analysis of subjective data, we propose a weighting strategy to account for the correlation among these three kinds of subjective scores. Furthermore, we design an objective metric to measure the visual quality of distorted SCIs by considering the visual difference of textual and pictorial regions. The experimental results demonstrate that the proposed SCI perceptual quality assessment scheme, consisting of the objective metric and the weighting strategy, can achieve better performance than 11 state-of-the-art IQA methods. To the best of our knowledge, the SIQAD is the first large-scale database published for quality evaluation of SCIs, and this research is the first attempt to explore the perceptual quality assessment of distorted SCIs. Image coding Databases Measurement Quality assessment subjective quality assessment Transform coding objective quality assessment Screen content image Visualization Image quality Fang, Yuming oth Lin, Weisi oth Enthalten in IEEE transactions on image processing New York, NY : Inst., 1992 24(2015), 11, Seite 4408-4421 (DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 1057-7149 nnns volume:24 year:2015 number:11 pages:4408-4421 http://dx.doi.org/10.1109/TIP.2015.2465145 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7180347 http://www.ncbi.nlm.nih.gov/pubmed/26259078 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4318 54.00 AVZ AR 24 2015 11 4408-4421 |
allfields_unstemmed |
10.1109/TIP.2015.2465145 doi PQ20160617 (DE-627)OLC1959241729 (DE-599)GBVOLC1959241729 (PRQ)c1533-33acee5cbadbb1e2bf800c1b39c59d5352042c6988fc37b6f2f0834dc07a27d40 (KEY)0213811520150000024001104408perceptualqualityassessmentofscreencontentimages DE-627 ger DE-627 rakwb eng 004 620 DNB 54.00 bkl Yang, Huan verfasserin aut Perceptual Quality Assessment of Screen Content Images 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Research on screen content images (SCIs) becomes important as they are increasingly used in multi-device communication applications. In this paper, we present a study on perceptual quality assessment of distorted SCIs subjectively and objectively. We construct a large-scale screen image quality assessment database (SIQAD) consisting of 20 source and 980 distorted SCIs. In order to get the subjective quality scores and investigate, which part (text or picture) contributes more to the overall visual quality, the single stimulus methodology with 11 point numerical scale is employed to obtain three kinds of subjective scores corresponding to the entire, textual, and pictorial regions, respectively. According to the analysis of subjective data, we propose a weighting strategy to account for the correlation among these three kinds of subjective scores. Furthermore, we design an objective metric to measure the visual quality of distorted SCIs by considering the visual difference of textual and pictorial regions. The experimental results demonstrate that the proposed SCI perceptual quality assessment scheme, consisting of the objective metric and the weighting strategy, can achieve better performance than 11 state-of-the-art IQA methods. To the best of our knowledge, the SIQAD is the first large-scale database published for quality evaluation of SCIs, and this research is the first attempt to explore the perceptual quality assessment of distorted SCIs. Image coding Databases Measurement Quality assessment subjective quality assessment Transform coding objective quality assessment Screen content image Visualization Image quality Fang, Yuming oth Lin, Weisi oth Enthalten in IEEE transactions on image processing New York, NY : Inst., 1992 24(2015), 11, Seite 4408-4421 (DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 1057-7149 nnns volume:24 year:2015 number:11 pages:4408-4421 http://dx.doi.org/10.1109/TIP.2015.2465145 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7180347 http://www.ncbi.nlm.nih.gov/pubmed/26259078 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4318 54.00 AVZ AR 24 2015 11 4408-4421 |
allfieldsGer |
10.1109/TIP.2015.2465145 doi PQ20160617 (DE-627)OLC1959241729 (DE-599)GBVOLC1959241729 (PRQ)c1533-33acee5cbadbb1e2bf800c1b39c59d5352042c6988fc37b6f2f0834dc07a27d40 (KEY)0213811520150000024001104408perceptualqualityassessmentofscreencontentimages DE-627 ger DE-627 rakwb eng 004 620 DNB 54.00 bkl Yang, Huan verfasserin aut Perceptual Quality Assessment of Screen Content Images 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Research on screen content images (SCIs) becomes important as they are increasingly used in multi-device communication applications. In this paper, we present a study on perceptual quality assessment of distorted SCIs subjectively and objectively. We construct a large-scale screen image quality assessment database (SIQAD) consisting of 20 source and 980 distorted SCIs. In order to get the subjective quality scores and investigate, which part (text or picture) contributes more to the overall visual quality, the single stimulus methodology with 11 point numerical scale is employed to obtain three kinds of subjective scores corresponding to the entire, textual, and pictorial regions, respectively. According to the analysis of subjective data, we propose a weighting strategy to account for the correlation among these three kinds of subjective scores. Furthermore, we design an objective metric to measure the visual quality of distorted SCIs by considering the visual difference of textual and pictorial regions. The experimental results demonstrate that the proposed SCI perceptual quality assessment scheme, consisting of the objective metric and the weighting strategy, can achieve better performance than 11 state-of-the-art IQA methods. To the best of our knowledge, the SIQAD is the first large-scale database published for quality evaluation of SCIs, and this research is the first attempt to explore the perceptual quality assessment of distorted SCIs. Image coding Databases Measurement Quality assessment subjective quality assessment Transform coding objective quality assessment Screen content image Visualization Image quality Fang, Yuming oth Lin, Weisi oth Enthalten in IEEE transactions on image processing New York, NY : Inst., 1992 24(2015), 11, Seite 4408-4421 (DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 1057-7149 nnns volume:24 year:2015 number:11 pages:4408-4421 http://dx.doi.org/10.1109/TIP.2015.2465145 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7180347 http://www.ncbi.nlm.nih.gov/pubmed/26259078 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4318 54.00 AVZ AR 24 2015 11 4408-4421 |
allfieldsSound |
10.1109/TIP.2015.2465145 doi PQ20160617 (DE-627)OLC1959241729 (DE-599)GBVOLC1959241729 (PRQ)c1533-33acee5cbadbb1e2bf800c1b39c59d5352042c6988fc37b6f2f0834dc07a27d40 (KEY)0213811520150000024001104408perceptualqualityassessmentofscreencontentimages DE-627 ger DE-627 rakwb eng 004 620 DNB 54.00 bkl Yang, Huan verfasserin aut Perceptual Quality Assessment of Screen Content Images 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Research on screen content images (SCIs) becomes important as they are increasingly used in multi-device communication applications. In this paper, we present a study on perceptual quality assessment of distorted SCIs subjectively and objectively. We construct a large-scale screen image quality assessment database (SIQAD) consisting of 20 source and 980 distorted SCIs. In order to get the subjective quality scores and investigate, which part (text or picture) contributes more to the overall visual quality, the single stimulus methodology with 11 point numerical scale is employed to obtain three kinds of subjective scores corresponding to the entire, textual, and pictorial regions, respectively. According to the analysis of subjective data, we propose a weighting strategy to account for the correlation among these three kinds of subjective scores. Furthermore, we design an objective metric to measure the visual quality of distorted SCIs by considering the visual difference of textual and pictorial regions. The experimental results demonstrate that the proposed SCI perceptual quality assessment scheme, consisting of the objective metric and the weighting strategy, can achieve better performance than 11 state-of-the-art IQA methods. To the best of our knowledge, the SIQAD is the first large-scale database published for quality evaluation of SCIs, and this research is the first attempt to explore the perceptual quality assessment of distorted SCIs. Image coding Databases Measurement Quality assessment subjective quality assessment Transform coding objective quality assessment Screen content image Visualization Image quality Fang, Yuming oth Lin, Weisi oth Enthalten in IEEE transactions on image processing New York, NY : Inst., 1992 24(2015), 11, Seite 4408-4421 (DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 1057-7149 nnns volume:24 year:2015 number:11 pages:4408-4421 http://dx.doi.org/10.1109/TIP.2015.2465145 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7180347 http://www.ncbi.nlm.nih.gov/pubmed/26259078 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4318 54.00 AVZ AR 24 2015 11 4408-4421 |
language |
English |
source |
Enthalten in IEEE transactions on image processing 24(2015), 11, Seite 4408-4421 volume:24 year:2015 number:11 pages:4408-4421 |
sourceStr |
Enthalten in IEEE transactions on image processing 24(2015), 11, Seite 4408-4421 volume:24 year:2015 number:11 pages:4408-4421 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Image coding Databases Measurement Quality assessment subjective quality assessment Transform coding objective quality assessment Screen content image Visualization Image quality |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on image processing |
authorswithroles_txt_mv |
Yang, Huan @@aut@@ Fang, Yuming @@oth@@ Lin, Weisi @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
131074458 |
dewey-sort |
14 |
id |
OLC1959241729 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1959241729</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714150850.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIP.2015.2465145</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1959241729</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1959241729</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1533-33acee5cbadbb1e2bf800c1b39c59d5352042c6988fc37b6f2f0834dc07a27d40</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0213811520150000024001104408perceptualqualityassessmentofscreencontentimages</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Huan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Perceptual Quality Assessment of Screen Content Images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Research on screen content images (SCIs) becomes important as they are increasingly used in multi-device communication applications. In this paper, we present a study on perceptual quality assessment of distorted SCIs subjectively and objectively. We construct a large-scale screen image quality assessment database (SIQAD) consisting of 20 source and 980 distorted SCIs. In order to get the subjective quality scores and investigate, which part (text or picture) contributes more to the overall visual quality, the single stimulus methodology with 11 point numerical scale is employed to obtain three kinds of subjective scores corresponding to the entire, textual, and pictorial regions, respectively. According to the analysis of subjective data, we propose a weighting strategy to account for the correlation among these three kinds of subjective scores. Furthermore, we design an objective metric to measure the visual quality of distorted SCIs by considering the visual difference of textual and pictorial regions. The experimental results demonstrate that the proposed SCI perceptual quality assessment scheme, consisting of the objective metric and the weighting strategy, can achieve better performance than 11 state-of-the-art IQA methods. To the best of our knowledge, the SIQAD is the first large-scale database published for quality evaluation of SCIs, and this research is the first attempt to explore the perceptual quality assessment of distorted SCIs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Databases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quality assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subjective quality assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transform coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">objective quality assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Screen content image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image quality</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Yuming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Weisi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on image processing</subfield><subfield code="d">New York, NY : Inst., 1992</subfield><subfield code="g">24(2015), 11, Seite 4408-4421</subfield><subfield code="w">(DE-627)131074458</subfield><subfield code="w">(DE-600)1111265-7</subfield><subfield code="w">(DE-576)029165008</subfield><subfield code="x">1057-7149</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:4408-4421</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIP.2015.2465145</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7180347</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/26259078</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2015</subfield><subfield code="e">11</subfield><subfield code="h">4408-4421</subfield></datafield></record></collection>
|
author |
Yang, Huan |
spellingShingle |
Yang, Huan ddc 004 bkl 54.00 misc Image coding misc Databases misc Measurement misc Quality assessment misc subjective quality assessment misc Transform coding misc objective quality assessment misc Screen content image misc Visualization misc Image quality Perceptual Quality Assessment of Screen Content Images |
authorStr |
Yang, Huan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131074458 |
format |
Article |
dewey-ones |
004 - Data processing & computer science 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1057-7149 |
topic_title |
004 620 DNB 54.00 bkl Perceptual Quality Assessment of Screen Content Images Image coding Databases Measurement Quality assessment subjective quality assessment Transform coding objective quality assessment Screen content image Visualization Image quality |
topic |
ddc 004 bkl 54.00 misc Image coding misc Databases misc Measurement misc Quality assessment misc subjective quality assessment misc Transform coding misc objective quality assessment misc Screen content image misc Visualization misc Image quality |
topic_unstemmed |
ddc 004 bkl 54.00 misc Image coding misc Databases misc Measurement misc Quality assessment misc subjective quality assessment misc Transform coding misc objective quality assessment misc Screen content image misc Visualization misc Image quality |
topic_browse |
ddc 004 bkl 54.00 misc Image coding misc Databases misc Measurement misc Quality assessment misc subjective quality assessment misc Transform coding misc objective quality assessment misc Screen content image misc Visualization misc Image quality |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
y f yf w l wl |
hierarchy_parent_title |
IEEE transactions on image processing |
hierarchy_parent_id |
131074458 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
IEEE transactions on image processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 |
title |
Perceptual Quality Assessment of Screen Content Images |
ctrlnum |
(DE-627)OLC1959241729 (DE-599)GBVOLC1959241729 (PRQ)c1533-33acee5cbadbb1e2bf800c1b39c59d5352042c6988fc37b6f2f0834dc07a27d40 (KEY)0213811520150000024001104408perceptualqualityassessmentofscreencontentimages |
title_full |
Perceptual Quality Assessment of Screen Content Images |
author_sort |
Yang, Huan |
journal |
IEEE transactions on image processing |
journalStr |
IEEE transactions on image processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
4408 |
author_browse |
Yang, Huan |
container_volume |
24 |
class |
004 620 DNB 54.00 bkl |
format_se |
Aufsätze |
author-letter |
Yang, Huan |
doi_str_mv |
10.1109/TIP.2015.2465145 |
dewey-full |
004 620 |
title_sort |
perceptual quality assessment of screen content images |
title_auth |
Perceptual Quality Assessment of Screen Content Images |
abstract |
Research on screen content images (SCIs) becomes important as they are increasingly used in multi-device communication applications. In this paper, we present a study on perceptual quality assessment of distorted SCIs subjectively and objectively. We construct a large-scale screen image quality assessment database (SIQAD) consisting of 20 source and 980 distorted SCIs. In order to get the subjective quality scores and investigate, which part (text or picture) contributes more to the overall visual quality, the single stimulus methodology with 11 point numerical scale is employed to obtain three kinds of subjective scores corresponding to the entire, textual, and pictorial regions, respectively. According to the analysis of subjective data, we propose a weighting strategy to account for the correlation among these three kinds of subjective scores. Furthermore, we design an objective metric to measure the visual quality of distorted SCIs by considering the visual difference of textual and pictorial regions. The experimental results demonstrate that the proposed SCI perceptual quality assessment scheme, consisting of the objective metric and the weighting strategy, can achieve better performance than 11 state-of-the-art IQA methods. To the best of our knowledge, the SIQAD is the first large-scale database published for quality evaluation of SCIs, and this research is the first attempt to explore the perceptual quality assessment of distorted SCIs. |
abstractGer |
Research on screen content images (SCIs) becomes important as they are increasingly used in multi-device communication applications. In this paper, we present a study on perceptual quality assessment of distorted SCIs subjectively and objectively. We construct a large-scale screen image quality assessment database (SIQAD) consisting of 20 source and 980 distorted SCIs. In order to get the subjective quality scores and investigate, which part (text or picture) contributes more to the overall visual quality, the single stimulus methodology with 11 point numerical scale is employed to obtain three kinds of subjective scores corresponding to the entire, textual, and pictorial regions, respectively. According to the analysis of subjective data, we propose a weighting strategy to account for the correlation among these three kinds of subjective scores. Furthermore, we design an objective metric to measure the visual quality of distorted SCIs by considering the visual difference of textual and pictorial regions. The experimental results demonstrate that the proposed SCI perceptual quality assessment scheme, consisting of the objective metric and the weighting strategy, can achieve better performance than 11 state-of-the-art IQA methods. To the best of our knowledge, the SIQAD is the first large-scale database published for quality evaluation of SCIs, and this research is the first attempt to explore the perceptual quality assessment of distorted SCIs. |
abstract_unstemmed |
Research on screen content images (SCIs) becomes important as they are increasingly used in multi-device communication applications. In this paper, we present a study on perceptual quality assessment of distorted SCIs subjectively and objectively. We construct a large-scale screen image quality assessment database (SIQAD) consisting of 20 source and 980 distorted SCIs. In order to get the subjective quality scores and investigate, which part (text or picture) contributes more to the overall visual quality, the single stimulus methodology with 11 point numerical scale is employed to obtain three kinds of subjective scores corresponding to the entire, textual, and pictorial regions, respectively. According to the analysis of subjective data, we propose a weighting strategy to account for the correlation among these three kinds of subjective scores. Furthermore, we design an objective metric to measure the visual quality of distorted SCIs by considering the visual difference of textual and pictorial regions. The experimental results demonstrate that the proposed SCI perceptual quality assessment scheme, consisting of the objective metric and the weighting strategy, can achieve better performance than 11 state-of-the-art IQA methods. To the best of our knowledge, the SIQAD is the first large-scale database published for quality evaluation of SCIs, and this research is the first attempt to explore the perceptual quality assessment of distorted SCIs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4318 |
container_issue |
11 |
title_short |
Perceptual Quality Assessment of Screen Content Images |
url |
http://dx.doi.org/10.1109/TIP.2015.2465145 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7180347 http://www.ncbi.nlm.nih.gov/pubmed/26259078 |
remote_bool |
false |
author2 |
Fang, Yuming Lin, Weisi |
author2Str |
Fang, Yuming Lin, Weisi |
ppnlink |
131074458 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/TIP.2015.2465145 |
up_date |
2024-07-03T16:26:17.877Z |
_version_ |
1803575862626353152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1959241729</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714150850.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIP.2015.2465145</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1959241729</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1959241729</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1533-33acee5cbadbb1e2bf800c1b39c59d5352042c6988fc37b6f2f0834dc07a27d40</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0213811520150000024001104408perceptualqualityassessmentofscreencontentimages</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Huan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Perceptual Quality Assessment of Screen Content Images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Research on screen content images (SCIs) becomes important as they are increasingly used in multi-device communication applications. In this paper, we present a study on perceptual quality assessment of distorted SCIs subjectively and objectively. We construct a large-scale screen image quality assessment database (SIQAD) consisting of 20 source and 980 distorted SCIs. In order to get the subjective quality scores and investigate, which part (text or picture) contributes more to the overall visual quality, the single stimulus methodology with 11 point numerical scale is employed to obtain three kinds of subjective scores corresponding to the entire, textual, and pictorial regions, respectively. According to the analysis of subjective data, we propose a weighting strategy to account for the correlation among these three kinds of subjective scores. Furthermore, we design an objective metric to measure the visual quality of distorted SCIs by considering the visual difference of textual and pictorial regions. The experimental results demonstrate that the proposed SCI perceptual quality assessment scheme, consisting of the objective metric and the weighting strategy, can achieve better performance than 11 state-of-the-art IQA methods. To the best of our knowledge, the SIQAD is the first large-scale database published for quality evaluation of SCIs, and this research is the first attempt to explore the perceptual quality assessment of distorted SCIs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Databases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quality assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subjective quality assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transform coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">objective quality assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Screen content image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image quality</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Yuming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Weisi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on image processing</subfield><subfield code="d">New York, NY : Inst., 1992</subfield><subfield code="g">24(2015), 11, Seite 4408-4421</subfield><subfield code="w">(DE-627)131074458</subfield><subfield code="w">(DE-600)1111265-7</subfield><subfield code="w">(DE-576)029165008</subfield><subfield code="x">1057-7149</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:4408-4421</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIP.2015.2465145</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7180347</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/26259078</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2015</subfield><subfield code="e">11</subfield><subfield code="h">4408-4421</subfield></datafield></record></collection>
|
score |
7.402128 |