Development of an Ultralow-Power Injection-Locked PSK Receiver Architecture
The development of a novel receiver topology for ultralow-power applications, such as radio-frequency (RF) identification and wireless sensor networks, is presented in this brief. The receiver makes use of an injection-locked oscillator, which can also be used as an exact time reference. By applying...
Ausführliche Beschreibung
Autor*in: |
De Smedt, Valentijn [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
radio-frequency identification ultralow-power injection-locked PSK receiver architecture development |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on circuits and systems / 2 - New York, NY : Institute of Electrical and Electronics Engineers, 1992, 62(2015), 1, Seite 31-35 |
---|---|
Übergeordnetes Werk: |
volume:62 ; year:2015 ; number:1 ; pages:31-35 |
Links: |
---|
DOI / URN: |
10.1109/TCSII.2014.2362631 |
---|
Katalog-ID: |
OLC195925474X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC195925474X | ||
003 | DE-627 | ||
005 | 20210715225537.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TCSII.2014.2362631 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC195925474X | ||
035 | |a (DE-599)GBVOLC195925474X | ||
035 | |a (PRQ)c2647-ebb859a790f8e14f54783c4167a8bb998819f7ffb96f6451e5a46a69881c1dba0 | ||
035 | |a (KEY)0213975820150000062000100031developmentofanultralowpowerinjectionlockedpskrece | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 000 |a 620 |q DNB |
100 | 1 | |a De Smedt, Valentijn |e verfasserin |4 aut | |
245 | 1 | 0 | |a Development of an Ultralow-Power Injection-Locked PSK Receiver Architecture |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The development of a novel receiver topology for ultralow-power applications, such as radio-frequency (RF) identification and wireless sensor networks, is presented in this brief. The receiver makes use of an injection-locked oscillator, which can also be used as an exact time reference. By applying phase steps to the injected RF signal, the injection-locked oscillator temporarily loses its lock condition. This can be detected by a simple digital phase detector. By modulating the time between these phase steps, a bit stream is encoded and the circuit is used as a low-data-rate receiver. Since the circuit overhead, as compared to the injection-locked time reference itself, only consists of a few digital gates, the architecture is suitable for use in ultralow-power applications. Starting from Adler's equation for injection-locked oscillators, the behavior of the receiver is theoretically explained and the maximum data bandwidth is determined. This is compared to simulation results and measured data of a 40-nm CMOS implementation. | ||
650 | 4 | |a RFID | |
650 | 4 | |a digital gates | |
650 | 4 | |a Adler equation | |
650 | 4 | |a Adler's equation | |
650 | 4 | |a WSN | |
650 | 4 | |a Topology | |
650 | 4 | |a injection locked oscillators | |
650 | 4 | |a digital phase detector | |
650 | 4 | |a receiver topology | |
650 | 4 | |a radio-frequency identification | |
650 | 4 | |a injection-locked oscillators | |
650 | 4 | |a radiofrequency identification | |
650 | 4 | |a phase shift keying | |
650 | 4 | |a Injection-locking | |
650 | 4 | |a wireless sensor networks | |
650 | 4 | |a Lowpower | |
650 | 4 | |a exact time reference | |
650 | 4 | |a Detectors | |
650 | 4 | |a radio receivers | |
650 | 4 | |a CMOS integrated circuits | |
650 | 4 | |a Clocks | |
650 | 4 | |a ultralow-power injection-locked PSK receiver architecture development | |
650 | 4 | |a low-data-rate receiver | |
650 | 4 | |a bit stream | |
650 | 4 | |a circuit overhead | |
650 | 4 | |a logic gates | |
650 | 4 | |a 40-nm CMOS implementation | |
650 | 4 | |a Receivers | |
650 | 4 | |a Television broadcasting | |
650 | 4 | |a Measurement | |
650 | 4 | |a Integrated circuits | |
650 | 4 | |a Oscillators (Electronics) | |
650 | 4 | |a Complementary metal oxide semiconductors | |
650 | 4 | |a Design and construction | |
650 | 4 | |a Usage | |
650 | 4 | |a Semiconductor chips | |
650 | 4 | |a Bandwidth | |
700 | 1 | |a Gielen, Georges |4 oth | |
700 | 1 | |a Dehaene, Wim |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on circuits and systems / 2 |d New York, NY : Institute of Electrical and Electronics Engineers, 1992 |g 62(2015), 1, Seite 31-35 |w (DE-627)131044753 |w (DE-600)1100793-X |w (DE-576)028047451 |x 1549-7747 |7 nnns |
773 | 1 | 8 | |g volume:62 |g year:2015 |g number:1 |g pages:31-35 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TCSII.2014.2362631 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6922513 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1642128075 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2005 | ||
951 | |a AR | ||
952 | |d 62 |j 2015 |e 1 |h 31-35 |
author_variant |
s v d sv svd |
---|---|
matchkey_str |
article:15497747:2015----::eeomnoautaopwrnetolcepke |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1109/TCSII.2014.2362631 doi PQ20160617 (DE-627)OLC195925474X (DE-599)GBVOLC195925474X (PRQ)c2647-ebb859a790f8e14f54783c4167a8bb998819f7ffb96f6451e5a46a69881c1dba0 (KEY)0213975820150000062000100031developmentofanultralowpowerinjectionlockedpskrece DE-627 ger DE-627 rakwb eng 000 620 DNB De Smedt, Valentijn verfasserin aut Development of an Ultralow-Power Injection-Locked PSK Receiver Architecture 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The development of a novel receiver topology for ultralow-power applications, such as radio-frequency (RF) identification and wireless sensor networks, is presented in this brief. The receiver makes use of an injection-locked oscillator, which can also be used as an exact time reference. By applying phase steps to the injected RF signal, the injection-locked oscillator temporarily loses its lock condition. This can be detected by a simple digital phase detector. By modulating the time between these phase steps, a bit stream is encoded and the circuit is used as a low-data-rate receiver. Since the circuit overhead, as compared to the injection-locked time reference itself, only consists of a few digital gates, the architecture is suitable for use in ultralow-power applications. Starting from Adler's equation for injection-locked oscillators, the behavior of the receiver is theoretically explained and the maximum data bandwidth is determined. This is compared to simulation results and measured data of a 40-nm CMOS implementation. RFID digital gates Adler equation Adler's equation WSN Topology injection locked oscillators digital phase detector receiver topology radio-frequency identification injection-locked oscillators radiofrequency identification phase shift keying Injection-locking wireless sensor networks Lowpower exact time reference Detectors radio receivers CMOS integrated circuits Clocks ultralow-power injection-locked PSK receiver architecture development low-data-rate receiver bit stream circuit overhead logic gates 40-nm CMOS implementation Receivers Television broadcasting Measurement Integrated circuits Oscillators (Electronics) Complementary metal oxide semiconductors Design and construction Usage Semiconductor chips Bandwidth Gielen, Georges oth Dehaene, Wim oth Enthalten in IEEE transactions on circuits and systems / 2 New York, NY : Institute of Electrical and Electronics Engineers, 1992 62(2015), 1, Seite 31-35 (DE-627)131044753 (DE-600)1100793-X (DE-576)028047451 1549-7747 nnns volume:62 year:2015 number:1 pages:31-35 http://dx.doi.org/10.1109/TCSII.2014.2362631 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6922513 http://search.proquest.com/docview/1642128075 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 AR 62 2015 1 31-35 |
spelling |
10.1109/TCSII.2014.2362631 doi PQ20160617 (DE-627)OLC195925474X (DE-599)GBVOLC195925474X (PRQ)c2647-ebb859a790f8e14f54783c4167a8bb998819f7ffb96f6451e5a46a69881c1dba0 (KEY)0213975820150000062000100031developmentofanultralowpowerinjectionlockedpskrece DE-627 ger DE-627 rakwb eng 000 620 DNB De Smedt, Valentijn verfasserin aut Development of an Ultralow-Power Injection-Locked PSK Receiver Architecture 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The development of a novel receiver topology for ultralow-power applications, such as radio-frequency (RF) identification and wireless sensor networks, is presented in this brief. The receiver makes use of an injection-locked oscillator, which can also be used as an exact time reference. By applying phase steps to the injected RF signal, the injection-locked oscillator temporarily loses its lock condition. This can be detected by a simple digital phase detector. By modulating the time between these phase steps, a bit stream is encoded and the circuit is used as a low-data-rate receiver. Since the circuit overhead, as compared to the injection-locked time reference itself, only consists of a few digital gates, the architecture is suitable for use in ultralow-power applications. Starting from Adler's equation for injection-locked oscillators, the behavior of the receiver is theoretically explained and the maximum data bandwidth is determined. This is compared to simulation results and measured data of a 40-nm CMOS implementation. RFID digital gates Adler equation Adler's equation WSN Topology injection locked oscillators digital phase detector receiver topology radio-frequency identification injection-locked oscillators radiofrequency identification phase shift keying Injection-locking wireless sensor networks Lowpower exact time reference Detectors radio receivers CMOS integrated circuits Clocks ultralow-power injection-locked PSK receiver architecture development low-data-rate receiver bit stream circuit overhead logic gates 40-nm CMOS implementation Receivers Television broadcasting Measurement Integrated circuits Oscillators (Electronics) Complementary metal oxide semiconductors Design and construction Usage Semiconductor chips Bandwidth Gielen, Georges oth Dehaene, Wim oth Enthalten in IEEE transactions on circuits and systems / 2 New York, NY : Institute of Electrical and Electronics Engineers, 1992 62(2015), 1, Seite 31-35 (DE-627)131044753 (DE-600)1100793-X (DE-576)028047451 1549-7747 nnns volume:62 year:2015 number:1 pages:31-35 http://dx.doi.org/10.1109/TCSII.2014.2362631 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6922513 http://search.proquest.com/docview/1642128075 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 AR 62 2015 1 31-35 |
allfields_unstemmed |
10.1109/TCSII.2014.2362631 doi PQ20160617 (DE-627)OLC195925474X (DE-599)GBVOLC195925474X (PRQ)c2647-ebb859a790f8e14f54783c4167a8bb998819f7ffb96f6451e5a46a69881c1dba0 (KEY)0213975820150000062000100031developmentofanultralowpowerinjectionlockedpskrece DE-627 ger DE-627 rakwb eng 000 620 DNB De Smedt, Valentijn verfasserin aut Development of an Ultralow-Power Injection-Locked PSK Receiver Architecture 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The development of a novel receiver topology for ultralow-power applications, such as radio-frequency (RF) identification and wireless sensor networks, is presented in this brief. The receiver makes use of an injection-locked oscillator, which can also be used as an exact time reference. By applying phase steps to the injected RF signal, the injection-locked oscillator temporarily loses its lock condition. This can be detected by a simple digital phase detector. By modulating the time between these phase steps, a bit stream is encoded and the circuit is used as a low-data-rate receiver. Since the circuit overhead, as compared to the injection-locked time reference itself, only consists of a few digital gates, the architecture is suitable for use in ultralow-power applications. Starting from Adler's equation for injection-locked oscillators, the behavior of the receiver is theoretically explained and the maximum data bandwidth is determined. This is compared to simulation results and measured data of a 40-nm CMOS implementation. RFID digital gates Adler equation Adler's equation WSN Topology injection locked oscillators digital phase detector receiver topology radio-frequency identification injection-locked oscillators radiofrequency identification phase shift keying Injection-locking wireless sensor networks Lowpower exact time reference Detectors radio receivers CMOS integrated circuits Clocks ultralow-power injection-locked PSK receiver architecture development low-data-rate receiver bit stream circuit overhead logic gates 40-nm CMOS implementation Receivers Television broadcasting Measurement Integrated circuits Oscillators (Electronics) Complementary metal oxide semiconductors Design and construction Usage Semiconductor chips Bandwidth Gielen, Georges oth Dehaene, Wim oth Enthalten in IEEE transactions on circuits and systems / 2 New York, NY : Institute of Electrical and Electronics Engineers, 1992 62(2015), 1, Seite 31-35 (DE-627)131044753 (DE-600)1100793-X (DE-576)028047451 1549-7747 nnns volume:62 year:2015 number:1 pages:31-35 http://dx.doi.org/10.1109/TCSII.2014.2362631 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6922513 http://search.proquest.com/docview/1642128075 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 AR 62 2015 1 31-35 |
allfieldsGer |
10.1109/TCSII.2014.2362631 doi PQ20160617 (DE-627)OLC195925474X (DE-599)GBVOLC195925474X (PRQ)c2647-ebb859a790f8e14f54783c4167a8bb998819f7ffb96f6451e5a46a69881c1dba0 (KEY)0213975820150000062000100031developmentofanultralowpowerinjectionlockedpskrece DE-627 ger DE-627 rakwb eng 000 620 DNB De Smedt, Valentijn verfasserin aut Development of an Ultralow-Power Injection-Locked PSK Receiver Architecture 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The development of a novel receiver topology for ultralow-power applications, such as radio-frequency (RF) identification and wireless sensor networks, is presented in this brief. The receiver makes use of an injection-locked oscillator, which can also be used as an exact time reference. By applying phase steps to the injected RF signal, the injection-locked oscillator temporarily loses its lock condition. This can be detected by a simple digital phase detector. By modulating the time between these phase steps, a bit stream is encoded and the circuit is used as a low-data-rate receiver. Since the circuit overhead, as compared to the injection-locked time reference itself, only consists of a few digital gates, the architecture is suitable for use in ultralow-power applications. Starting from Adler's equation for injection-locked oscillators, the behavior of the receiver is theoretically explained and the maximum data bandwidth is determined. This is compared to simulation results and measured data of a 40-nm CMOS implementation. RFID digital gates Adler equation Adler's equation WSN Topology injection locked oscillators digital phase detector receiver topology radio-frequency identification injection-locked oscillators radiofrequency identification phase shift keying Injection-locking wireless sensor networks Lowpower exact time reference Detectors radio receivers CMOS integrated circuits Clocks ultralow-power injection-locked PSK receiver architecture development low-data-rate receiver bit stream circuit overhead logic gates 40-nm CMOS implementation Receivers Television broadcasting Measurement Integrated circuits Oscillators (Electronics) Complementary metal oxide semiconductors Design and construction Usage Semiconductor chips Bandwidth Gielen, Georges oth Dehaene, Wim oth Enthalten in IEEE transactions on circuits and systems / 2 New York, NY : Institute of Electrical and Electronics Engineers, 1992 62(2015), 1, Seite 31-35 (DE-627)131044753 (DE-600)1100793-X (DE-576)028047451 1549-7747 nnns volume:62 year:2015 number:1 pages:31-35 http://dx.doi.org/10.1109/TCSII.2014.2362631 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6922513 http://search.proquest.com/docview/1642128075 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 AR 62 2015 1 31-35 |
allfieldsSound |
10.1109/TCSII.2014.2362631 doi PQ20160617 (DE-627)OLC195925474X (DE-599)GBVOLC195925474X (PRQ)c2647-ebb859a790f8e14f54783c4167a8bb998819f7ffb96f6451e5a46a69881c1dba0 (KEY)0213975820150000062000100031developmentofanultralowpowerinjectionlockedpskrece DE-627 ger DE-627 rakwb eng 000 620 DNB De Smedt, Valentijn verfasserin aut Development of an Ultralow-Power Injection-Locked PSK Receiver Architecture 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The development of a novel receiver topology for ultralow-power applications, such as radio-frequency (RF) identification and wireless sensor networks, is presented in this brief. The receiver makes use of an injection-locked oscillator, which can also be used as an exact time reference. By applying phase steps to the injected RF signal, the injection-locked oscillator temporarily loses its lock condition. This can be detected by a simple digital phase detector. By modulating the time between these phase steps, a bit stream is encoded and the circuit is used as a low-data-rate receiver. Since the circuit overhead, as compared to the injection-locked time reference itself, only consists of a few digital gates, the architecture is suitable for use in ultralow-power applications. Starting from Adler's equation for injection-locked oscillators, the behavior of the receiver is theoretically explained and the maximum data bandwidth is determined. This is compared to simulation results and measured data of a 40-nm CMOS implementation. RFID digital gates Adler equation Adler's equation WSN Topology injection locked oscillators digital phase detector receiver topology radio-frequency identification injection-locked oscillators radiofrequency identification phase shift keying Injection-locking wireless sensor networks Lowpower exact time reference Detectors radio receivers CMOS integrated circuits Clocks ultralow-power injection-locked PSK receiver architecture development low-data-rate receiver bit stream circuit overhead logic gates 40-nm CMOS implementation Receivers Television broadcasting Measurement Integrated circuits Oscillators (Electronics) Complementary metal oxide semiconductors Design and construction Usage Semiconductor chips Bandwidth Gielen, Georges oth Dehaene, Wim oth Enthalten in IEEE transactions on circuits and systems / 2 New York, NY : Institute of Electrical and Electronics Engineers, 1992 62(2015), 1, Seite 31-35 (DE-627)131044753 (DE-600)1100793-X (DE-576)028047451 1549-7747 nnns volume:62 year:2015 number:1 pages:31-35 http://dx.doi.org/10.1109/TCSII.2014.2362631 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6922513 http://search.proquest.com/docview/1642128075 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 AR 62 2015 1 31-35 |
language |
English |
source |
Enthalten in IEEE transactions on circuits and systems / 2 62(2015), 1, Seite 31-35 volume:62 year:2015 number:1 pages:31-35 |
sourceStr |
Enthalten in IEEE transactions on circuits and systems / 2 62(2015), 1, Seite 31-35 volume:62 year:2015 number:1 pages:31-35 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
RFID digital gates Adler equation Adler's equation WSN Topology injection locked oscillators digital phase detector receiver topology radio-frequency identification injection-locked oscillators radiofrequency identification phase shift keying Injection-locking wireless sensor networks Lowpower exact time reference Detectors radio receivers CMOS integrated circuits Clocks ultralow-power injection-locked PSK receiver architecture development low-data-rate receiver bit stream circuit overhead logic gates 40-nm CMOS implementation Receivers Television broadcasting Measurement Integrated circuits Oscillators (Electronics) Complementary metal oxide semiconductors Design and construction Usage Semiconductor chips Bandwidth |
dewey-raw |
000 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on circuits and systems / 2 |
authorswithroles_txt_mv |
De Smedt, Valentijn @@aut@@ Gielen, Georges @@oth@@ Dehaene, Wim @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
131044753 |
dewey-sort |
0 |
id |
OLC195925474X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC195925474X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210715225537.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TCSII.2014.2362631</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC195925474X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC195925474X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2647-ebb859a790f8e14f54783c4167a8bb998819f7ffb96f6451e5a46a69881c1dba0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0213975820150000062000100031developmentofanultralowpowerinjectionlockedpskrece</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">De Smedt, Valentijn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of an Ultralow-Power Injection-Locked PSK Receiver Architecture</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The development of a novel receiver topology for ultralow-power applications, such as radio-frequency (RF) identification and wireless sensor networks, is presented in this brief. The receiver makes use of an injection-locked oscillator, which can also be used as an exact time reference. By applying phase steps to the injected RF signal, the injection-locked oscillator temporarily loses its lock condition. This can be detected by a simple digital phase detector. By modulating the time between these phase steps, a bit stream is encoded and the circuit is used as a low-data-rate receiver. Since the circuit overhead, as compared to the injection-locked time reference itself, only consists of a few digital gates, the architecture is suitable for use in ultralow-power applications. Starting from Adler's equation for injection-locked oscillators, the behavior of the receiver is theoretically explained and the maximum data bandwidth is determined. This is compared to simulation results and measured data of a 40-nm CMOS implementation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RFID</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">digital gates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adler equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adler's equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">WSN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">injection locked oscillators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">digital phase detector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">receiver topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radio-frequency identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">injection-locked oscillators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radiofrequency identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase shift keying</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Injection-locking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wireless sensor networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lowpower</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exact time reference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radio receivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CMOS integrated circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clocks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultralow-power injection-locked PSK receiver architecture development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low-data-rate receiver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bit stream</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">circuit overhead</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">logic gates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">40-nm CMOS implementation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Receivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Television broadcasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oscillators (Electronics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complementary metal oxide semiconductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design and construction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Usage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductor chips</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bandwidth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gielen, Georges</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dehaene, Wim</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on circuits and systems / 2</subfield><subfield code="d">New York, NY : Institute of Electrical and Electronics Engineers, 1992</subfield><subfield code="g">62(2015), 1, Seite 31-35</subfield><subfield code="w">(DE-627)131044753</subfield><subfield code="w">(DE-600)1100793-X</subfield><subfield code="w">(DE-576)028047451</subfield><subfield code="x">1549-7747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:31-35</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TCSII.2014.2362631</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6922513</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1642128075</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">31-35</subfield></datafield></record></collection>
|
author |
De Smedt, Valentijn |
spellingShingle |
De Smedt, Valentijn ddc 000 misc RFID misc digital gates misc Adler equation misc Adler's equation misc WSN misc Topology misc injection locked oscillators misc digital phase detector misc receiver topology misc radio-frequency identification misc injection-locked oscillators misc radiofrequency identification misc phase shift keying misc Injection-locking misc wireless sensor networks misc Lowpower misc exact time reference misc Detectors misc radio receivers misc CMOS integrated circuits misc Clocks misc ultralow-power injection-locked PSK receiver architecture development misc low-data-rate receiver misc bit stream misc circuit overhead misc logic gates misc 40-nm CMOS implementation misc Receivers misc Television broadcasting misc Measurement misc Integrated circuits misc Oscillators (Electronics) misc Complementary metal oxide semiconductors misc Design and construction misc Usage misc Semiconductor chips misc Bandwidth Development of an Ultralow-Power Injection-Locked PSK Receiver Architecture |
authorStr |
De Smedt, Valentijn |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131044753 |
format |
Article |
dewey-ones |
000 - Computer science, information & general works 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1549-7747 |
topic_title |
000 620 DNB Development of an Ultralow-Power Injection-Locked PSK Receiver Architecture RFID digital gates Adler equation Adler's equation WSN Topology injection locked oscillators digital phase detector receiver topology radio-frequency identification injection-locked oscillators radiofrequency identification phase shift keying Injection-locking wireless sensor networks Lowpower exact time reference Detectors radio receivers CMOS integrated circuits Clocks ultralow-power injection-locked PSK receiver architecture development low-data-rate receiver bit stream circuit overhead logic gates 40-nm CMOS implementation Receivers Television broadcasting Measurement Integrated circuits Oscillators (Electronics) Complementary metal oxide semiconductors Design and construction Usage Semiconductor chips Bandwidth |
topic |
ddc 000 misc RFID misc digital gates misc Adler equation misc Adler's equation misc WSN misc Topology misc injection locked oscillators misc digital phase detector misc receiver topology misc radio-frequency identification misc injection-locked oscillators misc radiofrequency identification misc phase shift keying misc Injection-locking misc wireless sensor networks misc Lowpower misc exact time reference misc Detectors misc radio receivers misc CMOS integrated circuits misc Clocks misc ultralow-power injection-locked PSK receiver architecture development misc low-data-rate receiver misc bit stream misc circuit overhead misc logic gates misc 40-nm CMOS implementation misc Receivers misc Television broadcasting misc Measurement misc Integrated circuits misc Oscillators (Electronics) misc Complementary metal oxide semiconductors misc Design and construction misc Usage misc Semiconductor chips misc Bandwidth |
topic_unstemmed |
ddc 000 misc RFID misc digital gates misc Adler equation misc Adler's equation misc WSN misc Topology misc injection locked oscillators misc digital phase detector misc receiver topology misc radio-frequency identification misc injection-locked oscillators misc radiofrequency identification misc phase shift keying misc Injection-locking misc wireless sensor networks misc Lowpower misc exact time reference misc Detectors misc radio receivers misc CMOS integrated circuits misc Clocks misc ultralow-power injection-locked PSK receiver architecture development misc low-data-rate receiver misc bit stream misc circuit overhead misc logic gates misc 40-nm CMOS implementation misc Receivers misc Television broadcasting misc Measurement misc Integrated circuits misc Oscillators (Electronics) misc Complementary metal oxide semiconductors misc Design and construction misc Usage misc Semiconductor chips misc Bandwidth |
topic_browse |
ddc 000 misc RFID misc digital gates misc Adler equation misc Adler's equation misc WSN misc Topology misc injection locked oscillators misc digital phase detector misc receiver topology misc radio-frequency identification misc injection-locked oscillators misc radiofrequency identification misc phase shift keying misc Injection-locking misc wireless sensor networks misc Lowpower misc exact time reference misc Detectors misc radio receivers misc CMOS integrated circuits misc Clocks misc ultralow-power injection-locked PSK receiver architecture development misc low-data-rate receiver misc bit stream misc circuit overhead misc logic gates misc 40-nm CMOS implementation misc Receivers misc Television broadcasting misc Measurement misc Integrated circuits misc Oscillators (Electronics) misc Complementary metal oxide semiconductors misc Design and construction misc Usage misc Semiconductor chips misc Bandwidth |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
g g gg w d wd |
hierarchy_parent_title |
IEEE transactions on circuits and systems / 2 |
hierarchy_parent_id |
131044753 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
IEEE transactions on circuits and systems / 2 |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131044753 (DE-600)1100793-X (DE-576)028047451 |
title |
Development of an Ultralow-Power Injection-Locked PSK Receiver Architecture |
ctrlnum |
(DE-627)OLC195925474X (DE-599)GBVOLC195925474X (PRQ)c2647-ebb859a790f8e14f54783c4167a8bb998819f7ffb96f6451e5a46a69881c1dba0 (KEY)0213975820150000062000100031developmentofanultralowpowerinjectionlockedpskrece |
title_full |
Development of an Ultralow-Power Injection-Locked PSK Receiver Architecture |
author_sort |
De Smedt, Valentijn |
journal |
IEEE transactions on circuits and systems / 2 |
journalStr |
IEEE transactions on circuits and systems / 2 |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
31 |
author_browse |
De Smedt, Valentijn |
container_volume |
62 |
class |
000 620 DNB |
format_se |
Aufsätze |
author-letter |
De Smedt, Valentijn |
doi_str_mv |
10.1109/TCSII.2014.2362631 |
dewey-full |
000 620 |
title_sort |
development of an ultralow-power injection-locked psk receiver architecture |
title_auth |
Development of an Ultralow-Power Injection-Locked PSK Receiver Architecture |
abstract |
The development of a novel receiver topology for ultralow-power applications, such as radio-frequency (RF) identification and wireless sensor networks, is presented in this brief. The receiver makes use of an injection-locked oscillator, which can also be used as an exact time reference. By applying phase steps to the injected RF signal, the injection-locked oscillator temporarily loses its lock condition. This can be detected by a simple digital phase detector. By modulating the time between these phase steps, a bit stream is encoded and the circuit is used as a low-data-rate receiver. Since the circuit overhead, as compared to the injection-locked time reference itself, only consists of a few digital gates, the architecture is suitable for use in ultralow-power applications. Starting from Adler's equation for injection-locked oscillators, the behavior of the receiver is theoretically explained and the maximum data bandwidth is determined. This is compared to simulation results and measured data of a 40-nm CMOS implementation. |
abstractGer |
The development of a novel receiver topology for ultralow-power applications, such as radio-frequency (RF) identification and wireless sensor networks, is presented in this brief. The receiver makes use of an injection-locked oscillator, which can also be used as an exact time reference. By applying phase steps to the injected RF signal, the injection-locked oscillator temporarily loses its lock condition. This can be detected by a simple digital phase detector. By modulating the time between these phase steps, a bit stream is encoded and the circuit is used as a low-data-rate receiver. Since the circuit overhead, as compared to the injection-locked time reference itself, only consists of a few digital gates, the architecture is suitable for use in ultralow-power applications. Starting from Adler's equation for injection-locked oscillators, the behavior of the receiver is theoretically explained and the maximum data bandwidth is determined. This is compared to simulation results and measured data of a 40-nm CMOS implementation. |
abstract_unstemmed |
The development of a novel receiver topology for ultralow-power applications, such as radio-frequency (RF) identification and wireless sensor networks, is presented in this brief. The receiver makes use of an injection-locked oscillator, which can also be used as an exact time reference. By applying phase steps to the injected RF signal, the injection-locked oscillator temporarily loses its lock condition. This can be detected by a simple digital phase detector. By modulating the time between these phase steps, a bit stream is encoded and the circuit is used as a low-data-rate receiver. Since the circuit overhead, as compared to the injection-locked time reference itself, only consists of a few digital gates, the architecture is suitable for use in ultralow-power applications. Starting from Adler's equation for injection-locked oscillators, the behavior of the receiver is theoretically explained and the maximum data bandwidth is determined. This is compared to simulation results and measured data of a 40-nm CMOS implementation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2005 |
container_issue |
1 |
title_short |
Development of an Ultralow-Power Injection-Locked PSK Receiver Architecture |
url |
http://dx.doi.org/10.1109/TCSII.2014.2362631 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6922513 http://search.proquest.com/docview/1642128075 |
remote_bool |
false |
author2 |
Gielen, Georges Dehaene, Wim |
author2Str |
Gielen, Georges Dehaene, Wim |
ppnlink |
131044753 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/TCSII.2014.2362631 |
up_date |
2024-07-03T16:30:29.683Z |
_version_ |
1803576126666178560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC195925474X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210715225537.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TCSII.2014.2362631</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC195925474X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC195925474X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2647-ebb859a790f8e14f54783c4167a8bb998819f7ffb96f6451e5a46a69881c1dba0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0213975820150000062000100031developmentofanultralowpowerinjectionlockedpskrece</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">De Smedt, Valentijn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of an Ultralow-Power Injection-Locked PSK Receiver Architecture</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The development of a novel receiver topology for ultralow-power applications, such as radio-frequency (RF) identification and wireless sensor networks, is presented in this brief. The receiver makes use of an injection-locked oscillator, which can also be used as an exact time reference. By applying phase steps to the injected RF signal, the injection-locked oscillator temporarily loses its lock condition. This can be detected by a simple digital phase detector. By modulating the time between these phase steps, a bit stream is encoded and the circuit is used as a low-data-rate receiver. Since the circuit overhead, as compared to the injection-locked time reference itself, only consists of a few digital gates, the architecture is suitable for use in ultralow-power applications. Starting from Adler's equation for injection-locked oscillators, the behavior of the receiver is theoretically explained and the maximum data bandwidth is determined. This is compared to simulation results and measured data of a 40-nm CMOS implementation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RFID</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">digital gates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adler equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adler's equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">WSN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">injection locked oscillators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">digital phase detector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">receiver topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radio-frequency identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">injection-locked oscillators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radiofrequency identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase shift keying</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Injection-locking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wireless sensor networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lowpower</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exact time reference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radio receivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CMOS integrated circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clocks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultralow-power injection-locked PSK receiver architecture development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low-data-rate receiver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bit stream</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">circuit overhead</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">logic gates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">40-nm CMOS implementation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Receivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Television broadcasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oscillators (Electronics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complementary metal oxide semiconductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design and construction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Usage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductor chips</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bandwidth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gielen, Georges</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dehaene, Wim</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on circuits and systems / 2</subfield><subfield code="d">New York, NY : Institute of Electrical and Electronics Engineers, 1992</subfield><subfield code="g">62(2015), 1, Seite 31-35</subfield><subfield code="w">(DE-627)131044753</subfield><subfield code="w">(DE-600)1100793-X</subfield><subfield code="w">(DE-576)028047451</subfield><subfield code="x">1549-7747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:31-35</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TCSII.2014.2362631</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6922513</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1642128075</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">31-35</subfield></datafield></record></collection>
|
score |
7.40189 |