The band-gap of Tl-doped gallium nitride alloys
Structural and electronic properties of hypothetical zinc blende Tl(x)Ga(1-x)N alloys have been investigated from first principles. The structural relaxation, preformed within the LDA approach, leads to a linear dependence of the lattice parameter a on the Tl content x. In turn, band structures obta...
Ausführliche Beschreibung
Autor*in: |
Winiarski, M.J [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computational materials science - Amsterdam [u.a.] : Elsevier, 1992, 108(2015), Seite 14-16 |
---|---|
Übergeordnetes Werk: |
volume:108 ; year:2015 ; pages:14-16 |
Links: |
---|
DOI / URN: |
10.1016/j.commatsci.2015.06.013 |
---|
Katalog-ID: |
OLC1959445065 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1959445065 | ||
003 | DE-627 | ||
005 | 20230714151310.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.commatsci.2015.06.013 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1959445065 | ||
035 | |a (DE-599)GBVOLC1959445065 | ||
035 | |a (PRQ)a2118-4b956538ec37b7551fc82510830904925ff6672ed280380a50ccd7e39bd8e98f0 | ||
035 | |a (KEY)0219360420150000108000000014bandgapoftldopedgalliumnitridealloys | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DNB |
100 | 1 | |a Winiarski, M.J |e verfasserin |4 aut | |
245 | 1 | 4 | |a The band-gap of Tl-doped gallium nitride alloys |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Structural and electronic properties of hypothetical zinc blende Tl(x)Ga(1-x)N alloys have been investigated from first principles. The structural relaxation, preformed within the LDA approach, leads to a linear dependence of the lattice parameter a on the Tl content x. In turn, band structures obtained by MBJLDA calculations are significantly different from the corresponding LDA results. The decrease of the band-gap in Tl-doped GaN materials (for x<0.25) is predicted to be a linear function of x, i.e. 0.08 eV per atomic % of thallium. The semimetallic character is expected for materials with x>0.5. The obtained spin-orbit coupling driven splitting between the heavy-hole and split-off band at the Gamma point of the Brillouin zone in Tl(x)Ga(1-x)N systems is significantly weaker when compared to that of Tl-doped InN materials. | ||
650 | 4 | |a Materials Science | |
650 | 4 | |a Condensed Matter | |
773 | 0 | 8 | |i Enthalten in |t Computational materials science |d Amsterdam [u.a.] : Elsevier, 1992 |g 108(2015), Seite 14-16 |w (DE-627)131162241 |w (DE-600)1134845-8 |w (DE-576)043035515 |x 0927-0256 |7 nnns |
773 | 1 | 8 | |g volume:108 |g year:2015 |g pages:14-16 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.commatsci.2015.06.013 |3 Volltext |
856 | 4 | 2 | |u http://arxiv.org/abs/1506.08577 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 108 |j 2015 |h 14-16 |
author_variant |
m w mw |
---|---|
matchkey_str |
article:09270256:2015----::hbngpfloeglim |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1016/j.commatsci.2015.06.013 doi PQ20160617 (DE-627)OLC1959445065 (DE-599)GBVOLC1959445065 (PRQ)a2118-4b956538ec37b7551fc82510830904925ff6672ed280380a50ccd7e39bd8e98f0 (KEY)0219360420150000108000000014bandgapoftldopedgalliumnitridealloys DE-627 ger DE-627 rakwb eng 530 DNB Winiarski, M.J verfasserin aut The band-gap of Tl-doped gallium nitride alloys 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Structural and electronic properties of hypothetical zinc blende Tl(x)Ga(1-x)N alloys have been investigated from first principles. The structural relaxation, preformed within the LDA approach, leads to a linear dependence of the lattice parameter a on the Tl content x. In turn, band structures obtained by MBJLDA calculations are significantly different from the corresponding LDA results. The decrease of the band-gap in Tl-doped GaN materials (for x<0.25) is predicted to be a linear function of x, i.e. 0.08 eV per atomic % of thallium. The semimetallic character is expected for materials with x>0.5. The obtained spin-orbit coupling driven splitting between the heavy-hole and split-off band at the Gamma point of the Brillouin zone in Tl(x)Ga(1-x)N systems is significantly weaker when compared to that of Tl-doped InN materials. Materials Science Condensed Matter Enthalten in Computational materials science Amsterdam [u.a.] : Elsevier, 1992 108(2015), Seite 14-16 (DE-627)131162241 (DE-600)1134845-8 (DE-576)043035515 0927-0256 nnns volume:108 year:2015 pages:14-16 http://dx.doi.org/10.1016/j.commatsci.2015.06.013 Volltext http://arxiv.org/abs/1506.08577 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 AR 108 2015 14-16 |
spelling |
10.1016/j.commatsci.2015.06.013 doi PQ20160617 (DE-627)OLC1959445065 (DE-599)GBVOLC1959445065 (PRQ)a2118-4b956538ec37b7551fc82510830904925ff6672ed280380a50ccd7e39bd8e98f0 (KEY)0219360420150000108000000014bandgapoftldopedgalliumnitridealloys DE-627 ger DE-627 rakwb eng 530 DNB Winiarski, M.J verfasserin aut The band-gap of Tl-doped gallium nitride alloys 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Structural and electronic properties of hypothetical zinc blende Tl(x)Ga(1-x)N alloys have been investigated from first principles. The structural relaxation, preformed within the LDA approach, leads to a linear dependence of the lattice parameter a on the Tl content x. In turn, band structures obtained by MBJLDA calculations are significantly different from the corresponding LDA results. The decrease of the band-gap in Tl-doped GaN materials (for x<0.25) is predicted to be a linear function of x, i.e. 0.08 eV per atomic % of thallium. The semimetallic character is expected for materials with x>0.5. The obtained spin-orbit coupling driven splitting between the heavy-hole and split-off band at the Gamma point of the Brillouin zone in Tl(x)Ga(1-x)N systems is significantly weaker when compared to that of Tl-doped InN materials. Materials Science Condensed Matter Enthalten in Computational materials science Amsterdam [u.a.] : Elsevier, 1992 108(2015), Seite 14-16 (DE-627)131162241 (DE-600)1134845-8 (DE-576)043035515 0927-0256 nnns volume:108 year:2015 pages:14-16 http://dx.doi.org/10.1016/j.commatsci.2015.06.013 Volltext http://arxiv.org/abs/1506.08577 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 AR 108 2015 14-16 |
allfields_unstemmed |
10.1016/j.commatsci.2015.06.013 doi PQ20160617 (DE-627)OLC1959445065 (DE-599)GBVOLC1959445065 (PRQ)a2118-4b956538ec37b7551fc82510830904925ff6672ed280380a50ccd7e39bd8e98f0 (KEY)0219360420150000108000000014bandgapoftldopedgalliumnitridealloys DE-627 ger DE-627 rakwb eng 530 DNB Winiarski, M.J verfasserin aut The band-gap of Tl-doped gallium nitride alloys 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Structural and electronic properties of hypothetical zinc blende Tl(x)Ga(1-x)N alloys have been investigated from first principles. The structural relaxation, preformed within the LDA approach, leads to a linear dependence of the lattice parameter a on the Tl content x. In turn, band structures obtained by MBJLDA calculations are significantly different from the corresponding LDA results. The decrease of the band-gap in Tl-doped GaN materials (for x<0.25) is predicted to be a linear function of x, i.e. 0.08 eV per atomic % of thallium. The semimetallic character is expected for materials with x>0.5. The obtained spin-orbit coupling driven splitting between the heavy-hole and split-off band at the Gamma point of the Brillouin zone in Tl(x)Ga(1-x)N systems is significantly weaker when compared to that of Tl-doped InN materials. Materials Science Condensed Matter Enthalten in Computational materials science Amsterdam [u.a.] : Elsevier, 1992 108(2015), Seite 14-16 (DE-627)131162241 (DE-600)1134845-8 (DE-576)043035515 0927-0256 nnns volume:108 year:2015 pages:14-16 http://dx.doi.org/10.1016/j.commatsci.2015.06.013 Volltext http://arxiv.org/abs/1506.08577 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 AR 108 2015 14-16 |
allfieldsGer |
10.1016/j.commatsci.2015.06.013 doi PQ20160617 (DE-627)OLC1959445065 (DE-599)GBVOLC1959445065 (PRQ)a2118-4b956538ec37b7551fc82510830904925ff6672ed280380a50ccd7e39bd8e98f0 (KEY)0219360420150000108000000014bandgapoftldopedgalliumnitridealloys DE-627 ger DE-627 rakwb eng 530 DNB Winiarski, M.J verfasserin aut The band-gap of Tl-doped gallium nitride alloys 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Structural and electronic properties of hypothetical zinc blende Tl(x)Ga(1-x)N alloys have been investigated from first principles. The structural relaxation, preformed within the LDA approach, leads to a linear dependence of the lattice parameter a on the Tl content x. In turn, band structures obtained by MBJLDA calculations are significantly different from the corresponding LDA results. The decrease of the band-gap in Tl-doped GaN materials (for x<0.25) is predicted to be a linear function of x, i.e. 0.08 eV per atomic % of thallium. The semimetallic character is expected for materials with x>0.5. The obtained spin-orbit coupling driven splitting between the heavy-hole and split-off band at the Gamma point of the Brillouin zone in Tl(x)Ga(1-x)N systems is significantly weaker when compared to that of Tl-doped InN materials. Materials Science Condensed Matter Enthalten in Computational materials science Amsterdam [u.a.] : Elsevier, 1992 108(2015), Seite 14-16 (DE-627)131162241 (DE-600)1134845-8 (DE-576)043035515 0927-0256 nnns volume:108 year:2015 pages:14-16 http://dx.doi.org/10.1016/j.commatsci.2015.06.013 Volltext http://arxiv.org/abs/1506.08577 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 AR 108 2015 14-16 |
allfieldsSound |
10.1016/j.commatsci.2015.06.013 doi PQ20160617 (DE-627)OLC1959445065 (DE-599)GBVOLC1959445065 (PRQ)a2118-4b956538ec37b7551fc82510830904925ff6672ed280380a50ccd7e39bd8e98f0 (KEY)0219360420150000108000000014bandgapoftldopedgalliumnitridealloys DE-627 ger DE-627 rakwb eng 530 DNB Winiarski, M.J verfasserin aut The band-gap of Tl-doped gallium nitride alloys 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Structural and electronic properties of hypothetical zinc blende Tl(x)Ga(1-x)N alloys have been investigated from first principles. The structural relaxation, preformed within the LDA approach, leads to a linear dependence of the lattice parameter a on the Tl content x. In turn, band structures obtained by MBJLDA calculations are significantly different from the corresponding LDA results. The decrease of the band-gap in Tl-doped GaN materials (for x<0.25) is predicted to be a linear function of x, i.e. 0.08 eV per atomic % of thallium. The semimetallic character is expected for materials with x>0.5. The obtained spin-orbit coupling driven splitting between the heavy-hole and split-off band at the Gamma point of the Brillouin zone in Tl(x)Ga(1-x)N systems is significantly weaker when compared to that of Tl-doped InN materials. Materials Science Condensed Matter Enthalten in Computational materials science Amsterdam [u.a.] : Elsevier, 1992 108(2015), Seite 14-16 (DE-627)131162241 (DE-600)1134845-8 (DE-576)043035515 0927-0256 nnns volume:108 year:2015 pages:14-16 http://dx.doi.org/10.1016/j.commatsci.2015.06.013 Volltext http://arxiv.org/abs/1506.08577 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 AR 108 2015 14-16 |
language |
English |
source |
Enthalten in Computational materials science 108(2015), Seite 14-16 volume:108 year:2015 pages:14-16 |
sourceStr |
Enthalten in Computational materials science 108(2015), Seite 14-16 volume:108 year:2015 pages:14-16 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Materials Science Condensed Matter |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Computational materials science |
authorswithroles_txt_mv |
Winiarski, M.J @@aut@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
131162241 |
dewey-sort |
3530 |
id |
OLC1959445065 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1959445065</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714151310.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.commatsci.2015.06.013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1959445065</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1959445065</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a2118-4b956538ec37b7551fc82510830904925ff6672ed280380a50ccd7e39bd8e98f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0219360420150000108000000014bandgapoftldopedgalliumnitridealloys</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Winiarski, M.J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The band-gap of Tl-doped gallium nitride alloys</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Structural and electronic properties of hypothetical zinc blende Tl(x)Ga(1-x)N alloys have been investigated from first principles. The structural relaxation, preformed within the LDA approach, leads to a linear dependence of the lattice parameter a on the Tl content x. In turn, band structures obtained by MBJLDA calculations are significantly different from the corresponding LDA results. The decrease of the band-gap in Tl-doped GaN materials (for x<0.25) is predicted to be a linear function of x, i.e. 0.08 eV per atomic % of thallium. The semimetallic character is expected for materials with x>0.5. The obtained spin-orbit coupling driven splitting between the heavy-hole and split-off band at the Gamma point of the Brillouin zone in Tl(x)Ga(1-x)N systems is significantly weaker when compared to that of Tl-doped InN materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensed Matter</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational materials science</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1992</subfield><subfield code="g">108(2015), Seite 14-16</subfield><subfield code="w">(DE-627)131162241</subfield><subfield code="w">(DE-600)1134845-8</subfield><subfield code="w">(DE-576)043035515</subfield><subfield code="x">0927-0256</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:108</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:14-16</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.commatsci.2015.06.013</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1506.08577</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">108</subfield><subfield code="j">2015</subfield><subfield code="h">14-16</subfield></datafield></record></collection>
|
author |
Winiarski, M.J |
spellingShingle |
Winiarski, M.J ddc 530 misc Materials Science misc Condensed Matter The band-gap of Tl-doped gallium nitride alloys |
authorStr |
Winiarski, M.J |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131162241 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0927-0256 |
topic_title |
530 DNB The band-gap of Tl-doped gallium nitride alloys Materials Science Condensed Matter |
topic |
ddc 530 misc Materials Science misc Condensed Matter |
topic_unstemmed |
ddc 530 misc Materials Science misc Condensed Matter |
topic_browse |
ddc 530 misc Materials Science misc Condensed Matter |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Computational materials science |
hierarchy_parent_id |
131162241 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Computational materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131162241 (DE-600)1134845-8 (DE-576)043035515 |
title |
The band-gap of Tl-doped gallium nitride alloys |
ctrlnum |
(DE-627)OLC1959445065 (DE-599)GBVOLC1959445065 (PRQ)a2118-4b956538ec37b7551fc82510830904925ff6672ed280380a50ccd7e39bd8e98f0 (KEY)0219360420150000108000000014bandgapoftldopedgalliumnitridealloys |
title_full |
The band-gap of Tl-doped gallium nitride alloys |
author_sort |
Winiarski, M.J |
journal |
Computational materials science |
journalStr |
Computational materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
14 |
author_browse |
Winiarski, M.J |
container_volume |
108 |
class |
530 DNB |
format_se |
Aufsätze |
author-letter |
Winiarski, M.J |
doi_str_mv |
10.1016/j.commatsci.2015.06.013 |
dewey-full |
530 |
title_sort |
band-gap of tl-doped gallium nitride alloys |
title_auth |
The band-gap of Tl-doped gallium nitride alloys |
abstract |
Structural and electronic properties of hypothetical zinc blende Tl(x)Ga(1-x)N alloys have been investigated from first principles. The structural relaxation, preformed within the LDA approach, leads to a linear dependence of the lattice parameter a on the Tl content x. In turn, band structures obtained by MBJLDA calculations are significantly different from the corresponding LDA results. The decrease of the band-gap in Tl-doped GaN materials (for x<0.25) is predicted to be a linear function of x, i.e. 0.08 eV per atomic % of thallium. The semimetallic character is expected for materials with x>0.5. The obtained spin-orbit coupling driven splitting between the heavy-hole and split-off band at the Gamma point of the Brillouin zone in Tl(x)Ga(1-x)N systems is significantly weaker when compared to that of Tl-doped InN materials. |
abstractGer |
Structural and electronic properties of hypothetical zinc blende Tl(x)Ga(1-x)N alloys have been investigated from first principles. The structural relaxation, preformed within the LDA approach, leads to a linear dependence of the lattice parameter a on the Tl content x. In turn, band structures obtained by MBJLDA calculations are significantly different from the corresponding LDA results. The decrease of the band-gap in Tl-doped GaN materials (for x<0.25) is predicted to be a linear function of x, i.e. 0.08 eV per atomic % of thallium. The semimetallic character is expected for materials with x>0.5. The obtained spin-orbit coupling driven splitting between the heavy-hole and split-off band at the Gamma point of the Brillouin zone in Tl(x)Ga(1-x)N systems is significantly weaker when compared to that of Tl-doped InN materials. |
abstract_unstemmed |
Structural and electronic properties of hypothetical zinc blende Tl(x)Ga(1-x)N alloys have been investigated from first principles. The structural relaxation, preformed within the LDA approach, leads to a linear dependence of the lattice parameter a on the Tl content x. In turn, band structures obtained by MBJLDA calculations are significantly different from the corresponding LDA results. The decrease of the band-gap in Tl-doped GaN materials (for x<0.25) is predicted to be a linear function of x, i.e. 0.08 eV per atomic % of thallium. The semimetallic character is expected for materials with x>0.5. The obtained spin-orbit coupling driven splitting between the heavy-hole and split-off band at the Gamma point of the Brillouin zone in Tl(x)Ga(1-x)N systems is significantly weaker when compared to that of Tl-doped InN materials. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 |
title_short |
The band-gap of Tl-doped gallium nitride alloys |
url |
http://dx.doi.org/10.1016/j.commatsci.2015.06.013 http://arxiv.org/abs/1506.08577 |
remote_bool |
false |
ppnlink |
131162241 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.commatsci.2015.06.013 |
up_date |
2024-07-03T17:17:49.337Z |
_version_ |
1803579104260259840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1959445065</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714151310.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.commatsci.2015.06.013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1959445065</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1959445065</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a2118-4b956538ec37b7551fc82510830904925ff6672ed280380a50ccd7e39bd8e98f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0219360420150000108000000014bandgapoftldopedgalliumnitridealloys</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Winiarski, M.J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The band-gap of Tl-doped gallium nitride alloys</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Structural and electronic properties of hypothetical zinc blende Tl(x)Ga(1-x)N alloys have been investigated from first principles. The structural relaxation, preformed within the LDA approach, leads to a linear dependence of the lattice parameter a on the Tl content x. In turn, band structures obtained by MBJLDA calculations are significantly different from the corresponding LDA results. The decrease of the band-gap in Tl-doped GaN materials (for x<0.25) is predicted to be a linear function of x, i.e. 0.08 eV per atomic % of thallium. The semimetallic character is expected for materials with x>0.5. The obtained spin-orbit coupling driven splitting between the heavy-hole and split-off band at the Gamma point of the Brillouin zone in Tl(x)Ga(1-x)N systems is significantly weaker when compared to that of Tl-doped InN materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensed Matter</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational materials science</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1992</subfield><subfield code="g">108(2015), Seite 14-16</subfield><subfield code="w">(DE-627)131162241</subfield><subfield code="w">(DE-600)1134845-8</subfield><subfield code="w">(DE-576)043035515</subfield><subfield code="x">0927-0256</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:108</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:14-16</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.commatsci.2015.06.013</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1506.08577</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">108</subfield><subfield code="j">2015</subfield><subfield code="h">14-16</subfield></datafield></record></collection>
|
score |
7.401043 |