Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System
This paper deals with a positioning system based on a dielectric electro-active polymer membrane. The motion is generated by the deformation of the membrane caused by the electrostatic compressive force between two compliant electrodes applied on the surface of the polymer. This paper proposes a det...
Ausführliche Beschreibung
Autor*in: |
Rizzello, Gianluca [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on control systems technology - New York, NY : IEEE, 1993, 23(2015), 2, Seite 632-643 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2015 ; number:2 ; pages:632-643 |
Links: |
---|
DOI / URN: |
10.1109/TCST.2014.2338356 |
---|
Katalog-ID: |
OLC1959559273 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1959559273 | ||
003 | DE-627 | ||
005 | 20230714151545.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TCST.2014.2338356 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1959559273 | ||
035 | |a (DE-599)GBVOLC1959559273 | ||
035 | |a (PRQ)c1308-d0eddfb9eb129c22c07c4714ea23365e9b030d784dd8000af30f9d5b111247f60 | ||
035 | |a (KEY)0226256820150000023000200632modelingidentificationandcontrolofadielectricelect | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DNB |
100 | 1 | |a Rizzello, Gianluca |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This paper deals with a positioning system based on a dielectric electro-active polymer membrane. The motion is generated by the deformation of the membrane caused by the electrostatic compressive force between two compliant electrodes applied on the surface of the polymer. This paper proposes a detailed electro-mechanical nonlinear model of the system, which is subsequently used to develop (in both time and frequency domains) various model-based feedback control laws. Accurate modeling is useful to compensate the nonlinear behavior of the actuator (caused by the material characteristics and geometry) and obtain PID controllers providing precise tracking of steps or sinusoidal reference signals. The various design strategies are compared on various experimental tests. | ||
650 | 4 | |a Load modeling | |
650 | 4 | |a dielectric electro-active polymer positioning system | |
650 | 4 | |a frequency-domain analysis | |
650 | 4 | |a material characteristics | |
650 | 4 | |a membranes | |
650 | 4 | |a motion generation | |
650 | 4 | |a frequency domain | |
650 | 4 | |a Springs | |
650 | 4 | |a PID | |
650 | 4 | |a design strategy | |
650 | 4 | |a smart materials | |
650 | 4 | |a sinusoidal reference signal | |
650 | 4 | |a three-term control | |
650 | 4 | |a model-based feedback control law | |
650 | 4 | |a actuator | |
650 | 4 | |a position control | |
650 | 4 | |a nonlinear behavior | |
650 | 4 | |a mechatronics | |
650 | 4 | |a Electro-active polymers (EAPs) | |
650 | 4 | |a motion control | |
650 | 4 | |a time-domain analysis | |
650 | 4 | |a feedback | |
650 | 4 | |a electrostatic compressive force | |
650 | 4 | |a dielectric electro-active polymer membrane | |
650 | 4 | |a PID controller | |
650 | 4 | |a compliant electrode | |
650 | 4 | |a time domain | |
650 | 4 | |a Stress | |
650 | 4 | |a Mathematical model | |
650 | 4 | |a deformation | |
650 | 4 | |a geometry | |
650 | 4 | |a precision motion control | |
650 | 4 | |a Actuators | |
650 | 4 | |a electro-mechanical nonlinear model | |
650 | 4 | |a electroactive polymer actuators | |
650 | 4 | |a nonlinear control systems | |
650 | 4 | |a compressive strength | |
650 | 4 | |a Polymers | |
700 | 1 | |a Naso, David |4 oth | |
700 | 1 | |a York, Alexander |4 oth | |
700 | 1 | |a Seelecke, Stefan |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on control systems technology |d New York, NY : IEEE, 1993 |g 23(2015), 2, Seite 632-643 |w (DE-627)171098137 |w (DE-600)1151354-8 |w (DE-576)03420315X |x 1063-6536 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2015 |g number:2 |g pages:632-643 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TCST.2014.2338356 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6867294 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
951 | |a AR | ||
952 | |d 23 |j 2015 |e 2 |h 632-643 |
author_variant |
g r gr |
---|---|
matchkey_str |
article:10636536:2015----::oeigdniiainncnrlfdeetieetocieo |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1109/TCST.2014.2338356 doi PQ20160617 (DE-627)OLC1959559273 (DE-599)GBVOLC1959559273 (PRQ)c1308-d0eddfb9eb129c22c07c4714ea23365e9b030d784dd8000af30f9d5b111247f60 (KEY)0226256820150000023000200632modelingidentificationandcontrolofadielectricelect DE-627 ger DE-627 rakwb eng 004 DNB Rizzello, Gianluca verfasserin aut Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper deals with a positioning system based on a dielectric electro-active polymer membrane. The motion is generated by the deformation of the membrane caused by the electrostatic compressive force between two compliant electrodes applied on the surface of the polymer. This paper proposes a detailed electro-mechanical nonlinear model of the system, which is subsequently used to develop (in both time and frequency domains) various model-based feedback control laws. Accurate modeling is useful to compensate the nonlinear behavior of the actuator (caused by the material characteristics and geometry) and obtain PID controllers providing precise tracking of steps or sinusoidal reference signals. The various design strategies are compared on various experimental tests. Load modeling dielectric electro-active polymer positioning system frequency-domain analysis material characteristics membranes motion generation frequency domain Springs PID design strategy smart materials sinusoidal reference signal three-term control model-based feedback control law actuator position control nonlinear behavior mechatronics Electro-active polymers (EAPs) motion control time-domain analysis feedback electrostatic compressive force dielectric electro-active polymer membrane PID controller compliant electrode time domain Stress Mathematical model deformation geometry precision motion control Actuators electro-mechanical nonlinear model electroactive polymer actuators nonlinear control systems compressive strength Polymers Naso, David oth York, Alexander oth Seelecke, Stefan oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 23(2015), 2, Seite 632-643 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:23 year:2015 number:2 pages:632-643 http://dx.doi.org/10.1109/TCST.2014.2338356 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6867294 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 AR 23 2015 2 632-643 |
spelling |
10.1109/TCST.2014.2338356 doi PQ20160617 (DE-627)OLC1959559273 (DE-599)GBVOLC1959559273 (PRQ)c1308-d0eddfb9eb129c22c07c4714ea23365e9b030d784dd8000af30f9d5b111247f60 (KEY)0226256820150000023000200632modelingidentificationandcontrolofadielectricelect DE-627 ger DE-627 rakwb eng 004 DNB Rizzello, Gianluca verfasserin aut Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper deals with a positioning system based on a dielectric electro-active polymer membrane. The motion is generated by the deformation of the membrane caused by the electrostatic compressive force between two compliant electrodes applied on the surface of the polymer. This paper proposes a detailed electro-mechanical nonlinear model of the system, which is subsequently used to develop (in both time and frequency domains) various model-based feedback control laws. Accurate modeling is useful to compensate the nonlinear behavior of the actuator (caused by the material characteristics and geometry) and obtain PID controllers providing precise tracking of steps or sinusoidal reference signals. The various design strategies are compared on various experimental tests. Load modeling dielectric electro-active polymer positioning system frequency-domain analysis material characteristics membranes motion generation frequency domain Springs PID design strategy smart materials sinusoidal reference signal three-term control model-based feedback control law actuator position control nonlinear behavior mechatronics Electro-active polymers (EAPs) motion control time-domain analysis feedback electrostatic compressive force dielectric electro-active polymer membrane PID controller compliant electrode time domain Stress Mathematical model deformation geometry precision motion control Actuators electro-mechanical nonlinear model electroactive polymer actuators nonlinear control systems compressive strength Polymers Naso, David oth York, Alexander oth Seelecke, Stefan oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 23(2015), 2, Seite 632-643 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:23 year:2015 number:2 pages:632-643 http://dx.doi.org/10.1109/TCST.2014.2338356 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6867294 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 AR 23 2015 2 632-643 |
allfields_unstemmed |
10.1109/TCST.2014.2338356 doi PQ20160617 (DE-627)OLC1959559273 (DE-599)GBVOLC1959559273 (PRQ)c1308-d0eddfb9eb129c22c07c4714ea23365e9b030d784dd8000af30f9d5b111247f60 (KEY)0226256820150000023000200632modelingidentificationandcontrolofadielectricelect DE-627 ger DE-627 rakwb eng 004 DNB Rizzello, Gianluca verfasserin aut Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper deals with a positioning system based on a dielectric electro-active polymer membrane. The motion is generated by the deformation of the membrane caused by the electrostatic compressive force between two compliant electrodes applied on the surface of the polymer. This paper proposes a detailed electro-mechanical nonlinear model of the system, which is subsequently used to develop (in both time and frequency domains) various model-based feedback control laws. Accurate modeling is useful to compensate the nonlinear behavior of the actuator (caused by the material characteristics and geometry) and obtain PID controllers providing precise tracking of steps or sinusoidal reference signals. The various design strategies are compared on various experimental tests. Load modeling dielectric electro-active polymer positioning system frequency-domain analysis material characteristics membranes motion generation frequency domain Springs PID design strategy smart materials sinusoidal reference signal three-term control model-based feedback control law actuator position control nonlinear behavior mechatronics Electro-active polymers (EAPs) motion control time-domain analysis feedback electrostatic compressive force dielectric electro-active polymer membrane PID controller compliant electrode time domain Stress Mathematical model deformation geometry precision motion control Actuators electro-mechanical nonlinear model electroactive polymer actuators nonlinear control systems compressive strength Polymers Naso, David oth York, Alexander oth Seelecke, Stefan oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 23(2015), 2, Seite 632-643 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:23 year:2015 number:2 pages:632-643 http://dx.doi.org/10.1109/TCST.2014.2338356 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6867294 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 AR 23 2015 2 632-643 |
allfieldsGer |
10.1109/TCST.2014.2338356 doi PQ20160617 (DE-627)OLC1959559273 (DE-599)GBVOLC1959559273 (PRQ)c1308-d0eddfb9eb129c22c07c4714ea23365e9b030d784dd8000af30f9d5b111247f60 (KEY)0226256820150000023000200632modelingidentificationandcontrolofadielectricelect DE-627 ger DE-627 rakwb eng 004 DNB Rizzello, Gianluca verfasserin aut Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper deals with a positioning system based on a dielectric electro-active polymer membrane. The motion is generated by the deformation of the membrane caused by the electrostatic compressive force between two compliant electrodes applied on the surface of the polymer. This paper proposes a detailed electro-mechanical nonlinear model of the system, which is subsequently used to develop (in both time and frequency domains) various model-based feedback control laws. Accurate modeling is useful to compensate the nonlinear behavior of the actuator (caused by the material characteristics and geometry) and obtain PID controllers providing precise tracking of steps or sinusoidal reference signals. The various design strategies are compared on various experimental tests. Load modeling dielectric electro-active polymer positioning system frequency-domain analysis material characteristics membranes motion generation frequency domain Springs PID design strategy smart materials sinusoidal reference signal three-term control model-based feedback control law actuator position control nonlinear behavior mechatronics Electro-active polymers (EAPs) motion control time-domain analysis feedback electrostatic compressive force dielectric electro-active polymer membrane PID controller compliant electrode time domain Stress Mathematical model deformation geometry precision motion control Actuators electro-mechanical nonlinear model electroactive polymer actuators nonlinear control systems compressive strength Polymers Naso, David oth York, Alexander oth Seelecke, Stefan oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 23(2015), 2, Seite 632-643 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:23 year:2015 number:2 pages:632-643 http://dx.doi.org/10.1109/TCST.2014.2338356 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6867294 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 AR 23 2015 2 632-643 |
allfieldsSound |
10.1109/TCST.2014.2338356 doi PQ20160617 (DE-627)OLC1959559273 (DE-599)GBVOLC1959559273 (PRQ)c1308-d0eddfb9eb129c22c07c4714ea23365e9b030d784dd8000af30f9d5b111247f60 (KEY)0226256820150000023000200632modelingidentificationandcontrolofadielectricelect DE-627 ger DE-627 rakwb eng 004 DNB Rizzello, Gianluca verfasserin aut Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper deals with a positioning system based on a dielectric electro-active polymer membrane. The motion is generated by the deformation of the membrane caused by the electrostatic compressive force between two compliant electrodes applied on the surface of the polymer. This paper proposes a detailed electro-mechanical nonlinear model of the system, which is subsequently used to develop (in both time and frequency domains) various model-based feedback control laws. Accurate modeling is useful to compensate the nonlinear behavior of the actuator (caused by the material characteristics and geometry) and obtain PID controllers providing precise tracking of steps or sinusoidal reference signals. The various design strategies are compared on various experimental tests. Load modeling dielectric electro-active polymer positioning system frequency-domain analysis material characteristics membranes motion generation frequency domain Springs PID design strategy smart materials sinusoidal reference signal three-term control model-based feedback control law actuator position control nonlinear behavior mechatronics Electro-active polymers (EAPs) motion control time-domain analysis feedback electrostatic compressive force dielectric electro-active polymer membrane PID controller compliant electrode time domain Stress Mathematical model deformation geometry precision motion control Actuators electro-mechanical nonlinear model electroactive polymer actuators nonlinear control systems compressive strength Polymers Naso, David oth York, Alexander oth Seelecke, Stefan oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 23(2015), 2, Seite 632-643 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:23 year:2015 number:2 pages:632-643 http://dx.doi.org/10.1109/TCST.2014.2338356 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6867294 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 AR 23 2015 2 632-643 |
language |
English |
source |
Enthalten in IEEE transactions on control systems technology 23(2015), 2, Seite 632-643 volume:23 year:2015 number:2 pages:632-643 |
sourceStr |
Enthalten in IEEE transactions on control systems technology 23(2015), 2, Seite 632-643 volume:23 year:2015 number:2 pages:632-643 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Load modeling dielectric electro-active polymer positioning system frequency-domain analysis material characteristics membranes motion generation frequency domain Springs PID design strategy smart materials sinusoidal reference signal three-term control model-based feedback control law actuator position control nonlinear behavior mechatronics Electro-active polymers (EAPs) motion control time-domain analysis feedback electrostatic compressive force dielectric electro-active polymer membrane PID controller compliant electrode time domain Stress Mathematical model deformation geometry precision motion control Actuators electro-mechanical nonlinear model electroactive polymer actuators nonlinear control systems compressive strength Polymers |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on control systems technology |
authorswithroles_txt_mv |
Rizzello, Gianluca @@aut@@ Naso, David @@oth@@ York, Alexander @@oth@@ Seelecke, Stefan @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
171098137 |
dewey-sort |
14 |
id |
OLC1959559273 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1959559273</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714151545.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TCST.2014.2338356</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1959559273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1959559273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1308-d0eddfb9eb129c22c07c4714ea23365e9b030d784dd8000af30f9d5b111247f60</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0226256820150000023000200632modelingidentificationandcontrolofadielectricelect</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rizzello, Gianluca</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper deals with a positioning system based on a dielectric electro-active polymer membrane. The motion is generated by the deformation of the membrane caused by the electrostatic compressive force between two compliant electrodes applied on the surface of the polymer. This paper proposes a detailed electro-mechanical nonlinear model of the system, which is subsequently used to develop (in both time and frequency domains) various model-based feedback control laws. Accurate modeling is useful to compensate the nonlinear behavior of the actuator (caused by the material characteristics and geometry) and obtain PID controllers providing precise tracking of steps or sinusoidal reference signals. The various design strategies are compared on various experimental tests.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dielectric electro-active polymer positioning system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency-domain analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">material characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">membranes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">motion generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency domain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Springs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PID</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">design strategy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sinusoidal reference signal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">three-term control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model-based feedback control law</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">actuator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">position control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mechatronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electro-active polymers (EAPs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">motion control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time-domain analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrostatic compressive force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dielectric electro-active polymer membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PID controller</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compliant electrode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time domain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">precision motion control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Actuators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electro-mechanical nonlinear model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electroactive polymer actuators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear control systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compressive strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naso, David</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">York, Alexander</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seelecke, Stefan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on control systems technology</subfield><subfield code="d">New York, NY : IEEE, 1993</subfield><subfield code="g">23(2015), 2, Seite 632-643</subfield><subfield code="w">(DE-627)171098137</subfield><subfield code="w">(DE-600)1151354-8</subfield><subfield code="w">(DE-576)03420315X</subfield><subfield code="x">1063-6536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:632-643</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TCST.2014.2338356</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6867294</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="h">632-643</subfield></datafield></record></collection>
|
author |
Rizzello, Gianluca |
spellingShingle |
Rizzello, Gianluca ddc 004 misc Load modeling misc dielectric electro-active polymer positioning system misc frequency-domain analysis misc material characteristics misc membranes misc motion generation misc frequency domain misc Springs misc PID misc design strategy misc smart materials misc sinusoidal reference signal misc three-term control misc model-based feedback control law misc actuator misc position control misc nonlinear behavior misc mechatronics misc Electro-active polymers (EAPs) misc motion control misc time-domain analysis misc feedback misc electrostatic compressive force misc dielectric electro-active polymer membrane misc PID controller misc compliant electrode misc time domain misc Stress misc Mathematical model misc deformation misc geometry misc precision motion control misc Actuators misc electro-mechanical nonlinear model misc electroactive polymer actuators misc nonlinear control systems misc compressive strength misc Polymers Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System |
authorStr |
Rizzello, Gianluca |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171098137 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1063-6536 |
topic_title |
004 DNB Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System Load modeling dielectric electro-active polymer positioning system frequency-domain analysis material characteristics membranes motion generation frequency domain Springs PID design strategy smart materials sinusoidal reference signal three-term control model-based feedback control law actuator position control nonlinear behavior mechatronics Electro-active polymers (EAPs) motion control time-domain analysis feedback electrostatic compressive force dielectric electro-active polymer membrane PID controller compliant electrode time domain Stress Mathematical model deformation geometry precision motion control Actuators electro-mechanical nonlinear model electroactive polymer actuators nonlinear control systems compressive strength Polymers |
topic |
ddc 004 misc Load modeling misc dielectric electro-active polymer positioning system misc frequency-domain analysis misc material characteristics misc membranes misc motion generation misc frequency domain misc Springs misc PID misc design strategy misc smart materials misc sinusoidal reference signal misc three-term control misc model-based feedback control law misc actuator misc position control misc nonlinear behavior misc mechatronics misc Electro-active polymers (EAPs) misc motion control misc time-domain analysis misc feedback misc electrostatic compressive force misc dielectric electro-active polymer membrane misc PID controller misc compliant electrode misc time domain misc Stress misc Mathematical model misc deformation misc geometry misc precision motion control misc Actuators misc electro-mechanical nonlinear model misc electroactive polymer actuators misc nonlinear control systems misc compressive strength misc Polymers |
topic_unstemmed |
ddc 004 misc Load modeling misc dielectric electro-active polymer positioning system misc frequency-domain analysis misc material characteristics misc membranes misc motion generation misc frequency domain misc Springs misc PID misc design strategy misc smart materials misc sinusoidal reference signal misc three-term control misc model-based feedback control law misc actuator misc position control misc nonlinear behavior misc mechatronics misc Electro-active polymers (EAPs) misc motion control misc time-domain analysis misc feedback misc electrostatic compressive force misc dielectric electro-active polymer membrane misc PID controller misc compliant electrode misc time domain misc Stress misc Mathematical model misc deformation misc geometry misc precision motion control misc Actuators misc electro-mechanical nonlinear model misc electroactive polymer actuators misc nonlinear control systems misc compressive strength misc Polymers |
topic_browse |
ddc 004 misc Load modeling misc dielectric electro-active polymer positioning system misc frequency-domain analysis misc material characteristics misc membranes misc motion generation misc frequency domain misc Springs misc PID misc design strategy misc smart materials misc sinusoidal reference signal misc three-term control misc model-based feedback control law misc actuator misc position control misc nonlinear behavior misc mechatronics misc Electro-active polymers (EAPs) misc motion control misc time-domain analysis misc feedback misc electrostatic compressive force misc dielectric electro-active polymer membrane misc PID controller misc compliant electrode misc time domain misc Stress misc Mathematical model misc deformation misc geometry misc precision motion control misc Actuators misc electro-mechanical nonlinear model misc electroactive polymer actuators misc nonlinear control systems misc compressive strength misc Polymers |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
d n dn a y ay s s ss |
hierarchy_parent_title |
IEEE transactions on control systems technology |
hierarchy_parent_id |
171098137 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
IEEE transactions on control systems technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X |
title |
Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System |
ctrlnum |
(DE-627)OLC1959559273 (DE-599)GBVOLC1959559273 (PRQ)c1308-d0eddfb9eb129c22c07c4714ea23365e9b030d784dd8000af30f9d5b111247f60 (KEY)0226256820150000023000200632modelingidentificationandcontrolofadielectricelect |
title_full |
Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System |
author_sort |
Rizzello, Gianluca |
journal |
IEEE transactions on control systems technology |
journalStr |
IEEE transactions on control systems technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
632 |
author_browse |
Rizzello, Gianluca |
container_volume |
23 |
class |
004 DNB |
format_se |
Aufsätze |
author-letter |
Rizzello, Gianluca |
doi_str_mv |
10.1109/TCST.2014.2338356 |
dewey-full |
004 |
title_sort |
modeling, identification, and control of a dielectric electro-active polymer positioning system |
title_auth |
Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System |
abstract |
This paper deals with a positioning system based on a dielectric electro-active polymer membrane. The motion is generated by the deformation of the membrane caused by the electrostatic compressive force between two compliant electrodes applied on the surface of the polymer. This paper proposes a detailed electro-mechanical nonlinear model of the system, which is subsequently used to develop (in both time and frequency domains) various model-based feedback control laws. Accurate modeling is useful to compensate the nonlinear behavior of the actuator (caused by the material characteristics and geometry) and obtain PID controllers providing precise tracking of steps or sinusoidal reference signals. The various design strategies are compared on various experimental tests. |
abstractGer |
This paper deals with a positioning system based on a dielectric electro-active polymer membrane. The motion is generated by the deformation of the membrane caused by the electrostatic compressive force between two compliant electrodes applied on the surface of the polymer. This paper proposes a detailed electro-mechanical nonlinear model of the system, which is subsequently used to develop (in both time and frequency domains) various model-based feedback control laws. Accurate modeling is useful to compensate the nonlinear behavior of the actuator (caused by the material characteristics and geometry) and obtain PID controllers providing precise tracking of steps or sinusoidal reference signals. The various design strategies are compared on various experimental tests. |
abstract_unstemmed |
This paper deals with a positioning system based on a dielectric electro-active polymer membrane. The motion is generated by the deformation of the membrane caused by the electrostatic compressive force between two compliant electrodes applied on the surface of the polymer. This paper proposes a detailed electro-mechanical nonlinear model of the system, which is subsequently used to develop (in both time and frequency domains) various model-based feedback control laws. Accurate modeling is useful to compensate the nonlinear behavior of the actuator (caused by the material characteristics and geometry) and obtain PID controllers providing precise tracking of steps or sinusoidal reference signals. The various design strategies are compared on various experimental tests. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 |
container_issue |
2 |
title_short |
Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System |
url |
http://dx.doi.org/10.1109/TCST.2014.2338356 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6867294 |
remote_bool |
false |
author2 |
Naso, David York, Alexander Seelecke, Stefan |
author2Str |
Naso, David York, Alexander Seelecke, Stefan |
ppnlink |
171098137 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1109/TCST.2014.2338356 |
up_date |
2024-07-03T17:51:48.207Z |
_version_ |
1803581242169360384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1959559273</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714151545.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TCST.2014.2338356</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1959559273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1959559273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1308-d0eddfb9eb129c22c07c4714ea23365e9b030d784dd8000af30f9d5b111247f60</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0226256820150000023000200632modelingidentificationandcontrolofadielectricelect</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rizzello, Gianluca</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper deals with a positioning system based on a dielectric electro-active polymer membrane. The motion is generated by the deformation of the membrane caused by the electrostatic compressive force between two compliant electrodes applied on the surface of the polymer. This paper proposes a detailed electro-mechanical nonlinear model of the system, which is subsequently used to develop (in both time and frequency domains) various model-based feedback control laws. Accurate modeling is useful to compensate the nonlinear behavior of the actuator (caused by the material characteristics and geometry) and obtain PID controllers providing precise tracking of steps or sinusoidal reference signals. The various design strategies are compared on various experimental tests.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dielectric electro-active polymer positioning system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency-domain analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">material characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">membranes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">motion generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency domain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Springs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PID</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">design strategy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sinusoidal reference signal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">three-term control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model-based feedback control law</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">actuator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">position control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mechatronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electro-active polymers (EAPs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">motion control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time-domain analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrostatic compressive force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dielectric electro-active polymer membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PID controller</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compliant electrode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time domain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">precision motion control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Actuators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electro-mechanical nonlinear model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electroactive polymer actuators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear control systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compressive strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naso, David</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">York, Alexander</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seelecke, Stefan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on control systems technology</subfield><subfield code="d">New York, NY : IEEE, 1993</subfield><subfield code="g">23(2015), 2, Seite 632-643</subfield><subfield code="w">(DE-627)171098137</subfield><subfield code="w">(DE-600)1151354-8</subfield><subfield code="w">(DE-576)03420315X</subfield><subfield code="x">1063-6536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:632-643</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TCST.2014.2338356</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6867294</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="h">632-643</subfield></datafield></record></collection>
|
score |
7.4007044 |