Integral-Type Sliding Mode Fault-Tolerant Control for Attitude Stabilization of Spacecraft
Two fault-tolerant control (FTC) schemes for spacecraft attitude stabilization with external disturbances are proposed in this brief. The approach is based on integral-type sliding mode control strategy to compensate for actuator faults without controller reconfiguration. First, a basic integral-typ...
Ausführliche Beschreibung
Autor*in: |
Qiang Shen [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
spacecraft attitude stabilization |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on control systems technology - New York, NY : IEEE, 1993, 23(2015), 3, Seite 1131-1138 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2015 ; number:3 ; pages:1131-1138 |
Links: |
---|
DOI / URN: |
10.1109/TCST.2014.2354260 |
---|
Katalog-ID: |
OLC1959559591 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1959559591 | ||
003 | DE-627 | ||
005 | 20230714151547.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TCST.2014.2354260 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1959559591 | ||
035 | |a (DE-599)GBVOLC1959559591 | ||
035 | |a (PRQ)c1556-209ade42c8ee7d6e2f7f834296fbc5c302fb215ff014e80f6d356a88d73f212a0 | ||
035 | |a (KEY)0226256820150000023000301131integraltypeslidingmodefaulttolerantcontrolforatti | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DNB |
100 | 0 | |a Qiang Shen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Integral-Type Sliding Mode Fault-Tolerant Control for Attitude Stabilization of Spacecraft |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Two fault-tolerant control (FTC) schemes for spacecraft attitude stabilization with external disturbances are proposed in this brief. The approach is based on integral-type sliding mode control strategy to compensate for actuator faults without controller reconfiguration. First, a basic integral-type sliding mode FTC scheme is designed so that sliding manifold can be maintained from the very beginning. Once the system enters the sliding mode, the dynamics of the closed-loop system with actuator fault is identical to that of the nominal healthy system. Second, the integral-type sliding mode fault-tolerant controller is incorporated with adaptive technique to accommodate actuator faults so that the required boundary information can be relaxed. The effectiveness of the proposed schemes against actuator faults is demonstrated in simulation. | ||
650 | 4 | |a variable structure systems | |
650 | 4 | |a attitude stabilization | |
650 | 4 | |a Actuator fault | |
650 | 4 | |a FTC schemes | |
650 | 4 | |a adaptive control | |
650 | 4 | |a stability | |
650 | 4 | |a attitude control | |
650 | 4 | |a adaptive technique | |
650 | 4 | |a sliding manifold | |
650 | 4 | |a external disturbances | |
650 | 4 | |a spacecraft | |
650 | 4 | |a nominal healthy system | |
650 | 4 | |a Fault tolerance | |
650 | 4 | |a actuator faults | |
650 | 4 | |a space vehicles | |
650 | 4 | |a fault tolerant control | |
650 | 4 | |a Fault tolerant systems | |
650 | 4 | |a Frequency modulation | |
650 | 4 | |a spacecraft attitude stabilization | |
650 | 4 | |a Manifolds | |
650 | 4 | |a integral-type sliding mode control (ISMC) | |
650 | 4 | |a actuators | |
650 | 4 | |a fault-tolerant control (FTC) | |
650 | 4 | |a boundary information | |
650 | 4 | |a closed-loop system | |
650 | 4 | |a integral-type sliding mode fault-tolerant control | |
700 | 0 | |a Danwei Wang |4 oth | |
700 | 0 | |a Senqiang Zhu |4 oth | |
700 | 0 | |a Eng Kee Poh |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on control systems technology |d New York, NY : IEEE, 1993 |g 23(2015), 3, Seite 1131-1138 |w (DE-627)171098137 |w (DE-600)1151354-8 |w (DE-576)03420315X |x 1063-6536 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2015 |g number:3 |g pages:1131-1138 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TCST.2014.2354260 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6910254 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
951 | |a AR | ||
952 | |d 23 |j 2015 |e 3 |h 1131-1138 |
author_variant |
q s qs |
---|---|
matchkey_str |
article:10636536:2015----::nerlyeldnmdfutoeatotofrtiuet |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1109/TCST.2014.2354260 doi PQ20160617 (DE-627)OLC1959559591 (DE-599)GBVOLC1959559591 (PRQ)c1556-209ade42c8ee7d6e2f7f834296fbc5c302fb215ff014e80f6d356a88d73f212a0 (KEY)0226256820150000023000301131integraltypeslidingmodefaulttolerantcontrolforatti DE-627 ger DE-627 rakwb eng 004 DNB Qiang Shen verfasserin aut Integral-Type Sliding Mode Fault-Tolerant Control for Attitude Stabilization of Spacecraft 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Two fault-tolerant control (FTC) schemes for spacecraft attitude stabilization with external disturbances are proposed in this brief. The approach is based on integral-type sliding mode control strategy to compensate for actuator faults without controller reconfiguration. First, a basic integral-type sliding mode FTC scheme is designed so that sliding manifold can be maintained from the very beginning. Once the system enters the sliding mode, the dynamics of the closed-loop system with actuator fault is identical to that of the nominal healthy system. Second, the integral-type sliding mode fault-tolerant controller is incorporated with adaptive technique to accommodate actuator faults so that the required boundary information can be relaxed. The effectiveness of the proposed schemes against actuator faults is demonstrated in simulation. variable structure systems attitude stabilization Actuator fault FTC schemes adaptive control stability attitude control adaptive technique sliding manifold external disturbances spacecraft nominal healthy system Fault tolerance actuator faults space vehicles fault tolerant control Fault tolerant systems Frequency modulation spacecraft attitude stabilization Manifolds integral-type sliding mode control (ISMC) actuators fault-tolerant control (FTC) boundary information closed-loop system integral-type sliding mode fault-tolerant control Danwei Wang oth Senqiang Zhu oth Eng Kee Poh oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 23(2015), 3, Seite 1131-1138 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:23 year:2015 number:3 pages:1131-1138 http://dx.doi.org/10.1109/TCST.2014.2354260 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6910254 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 AR 23 2015 3 1131-1138 |
spelling |
10.1109/TCST.2014.2354260 doi PQ20160617 (DE-627)OLC1959559591 (DE-599)GBVOLC1959559591 (PRQ)c1556-209ade42c8ee7d6e2f7f834296fbc5c302fb215ff014e80f6d356a88d73f212a0 (KEY)0226256820150000023000301131integraltypeslidingmodefaulttolerantcontrolforatti DE-627 ger DE-627 rakwb eng 004 DNB Qiang Shen verfasserin aut Integral-Type Sliding Mode Fault-Tolerant Control for Attitude Stabilization of Spacecraft 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Two fault-tolerant control (FTC) schemes for spacecraft attitude stabilization with external disturbances are proposed in this brief. The approach is based on integral-type sliding mode control strategy to compensate for actuator faults without controller reconfiguration. First, a basic integral-type sliding mode FTC scheme is designed so that sliding manifold can be maintained from the very beginning. Once the system enters the sliding mode, the dynamics of the closed-loop system with actuator fault is identical to that of the nominal healthy system. Second, the integral-type sliding mode fault-tolerant controller is incorporated with adaptive technique to accommodate actuator faults so that the required boundary information can be relaxed. The effectiveness of the proposed schemes against actuator faults is demonstrated in simulation. variable structure systems attitude stabilization Actuator fault FTC schemes adaptive control stability attitude control adaptive technique sliding manifold external disturbances spacecraft nominal healthy system Fault tolerance actuator faults space vehicles fault tolerant control Fault tolerant systems Frequency modulation spacecraft attitude stabilization Manifolds integral-type sliding mode control (ISMC) actuators fault-tolerant control (FTC) boundary information closed-loop system integral-type sliding mode fault-tolerant control Danwei Wang oth Senqiang Zhu oth Eng Kee Poh oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 23(2015), 3, Seite 1131-1138 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:23 year:2015 number:3 pages:1131-1138 http://dx.doi.org/10.1109/TCST.2014.2354260 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6910254 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 AR 23 2015 3 1131-1138 |
allfields_unstemmed |
10.1109/TCST.2014.2354260 doi PQ20160617 (DE-627)OLC1959559591 (DE-599)GBVOLC1959559591 (PRQ)c1556-209ade42c8ee7d6e2f7f834296fbc5c302fb215ff014e80f6d356a88d73f212a0 (KEY)0226256820150000023000301131integraltypeslidingmodefaulttolerantcontrolforatti DE-627 ger DE-627 rakwb eng 004 DNB Qiang Shen verfasserin aut Integral-Type Sliding Mode Fault-Tolerant Control for Attitude Stabilization of Spacecraft 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Two fault-tolerant control (FTC) schemes for spacecraft attitude stabilization with external disturbances are proposed in this brief. The approach is based on integral-type sliding mode control strategy to compensate for actuator faults without controller reconfiguration. First, a basic integral-type sliding mode FTC scheme is designed so that sliding manifold can be maintained from the very beginning. Once the system enters the sliding mode, the dynamics of the closed-loop system with actuator fault is identical to that of the nominal healthy system. Second, the integral-type sliding mode fault-tolerant controller is incorporated with adaptive technique to accommodate actuator faults so that the required boundary information can be relaxed. The effectiveness of the proposed schemes against actuator faults is demonstrated in simulation. variable structure systems attitude stabilization Actuator fault FTC schemes adaptive control stability attitude control adaptive technique sliding manifold external disturbances spacecraft nominal healthy system Fault tolerance actuator faults space vehicles fault tolerant control Fault tolerant systems Frequency modulation spacecraft attitude stabilization Manifolds integral-type sliding mode control (ISMC) actuators fault-tolerant control (FTC) boundary information closed-loop system integral-type sliding mode fault-tolerant control Danwei Wang oth Senqiang Zhu oth Eng Kee Poh oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 23(2015), 3, Seite 1131-1138 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:23 year:2015 number:3 pages:1131-1138 http://dx.doi.org/10.1109/TCST.2014.2354260 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6910254 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 AR 23 2015 3 1131-1138 |
allfieldsGer |
10.1109/TCST.2014.2354260 doi PQ20160617 (DE-627)OLC1959559591 (DE-599)GBVOLC1959559591 (PRQ)c1556-209ade42c8ee7d6e2f7f834296fbc5c302fb215ff014e80f6d356a88d73f212a0 (KEY)0226256820150000023000301131integraltypeslidingmodefaulttolerantcontrolforatti DE-627 ger DE-627 rakwb eng 004 DNB Qiang Shen verfasserin aut Integral-Type Sliding Mode Fault-Tolerant Control for Attitude Stabilization of Spacecraft 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Two fault-tolerant control (FTC) schemes for spacecraft attitude stabilization with external disturbances are proposed in this brief. The approach is based on integral-type sliding mode control strategy to compensate for actuator faults without controller reconfiguration. First, a basic integral-type sliding mode FTC scheme is designed so that sliding manifold can be maintained from the very beginning. Once the system enters the sliding mode, the dynamics of the closed-loop system with actuator fault is identical to that of the nominal healthy system. Second, the integral-type sliding mode fault-tolerant controller is incorporated with adaptive technique to accommodate actuator faults so that the required boundary information can be relaxed. The effectiveness of the proposed schemes against actuator faults is demonstrated in simulation. variable structure systems attitude stabilization Actuator fault FTC schemes adaptive control stability attitude control adaptive technique sliding manifold external disturbances spacecraft nominal healthy system Fault tolerance actuator faults space vehicles fault tolerant control Fault tolerant systems Frequency modulation spacecraft attitude stabilization Manifolds integral-type sliding mode control (ISMC) actuators fault-tolerant control (FTC) boundary information closed-loop system integral-type sliding mode fault-tolerant control Danwei Wang oth Senqiang Zhu oth Eng Kee Poh oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 23(2015), 3, Seite 1131-1138 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:23 year:2015 number:3 pages:1131-1138 http://dx.doi.org/10.1109/TCST.2014.2354260 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6910254 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 AR 23 2015 3 1131-1138 |
allfieldsSound |
10.1109/TCST.2014.2354260 doi PQ20160617 (DE-627)OLC1959559591 (DE-599)GBVOLC1959559591 (PRQ)c1556-209ade42c8ee7d6e2f7f834296fbc5c302fb215ff014e80f6d356a88d73f212a0 (KEY)0226256820150000023000301131integraltypeslidingmodefaulttolerantcontrolforatti DE-627 ger DE-627 rakwb eng 004 DNB Qiang Shen verfasserin aut Integral-Type Sliding Mode Fault-Tolerant Control for Attitude Stabilization of Spacecraft 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Two fault-tolerant control (FTC) schemes for spacecraft attitude stabilization with external disturbances are proposed in this brief. The approach is based on integral-type sliding mode control strategy to compensate for actuator faults without controller reconfiguration. First, a basic integral-type sliding mode FTC scheme is designed so that sliding manifold can be maintained from the very beginning. Once the system enters the sliding mode, the dynamics of the closed-loop system with actuator fault is identical to that of the nominal healthy system. Second, the integral-type sliding mode fault-tolerant controller is incorporated with adaptive technique to accommodate actuator faults so that the required boundary information can be relaxed. The effectiveness of the proposed schemes against actuator faults is demonstrated in simulation. variable structure systems attitude stabilization Actuator fault FTC schemes adaptive control stability attitude control adaptive technique sliding manifold external disturbances spacecraft nominal healthy system Fault tolerance actuator faults space vehicles fault tolerant control Fault tolerant systems Frequency modulation spacecraft attitude stabilization Manifolds integral-type sliding mode control (ISMC) actuators fault-tolerant control (FTC) boundary information closed-loop system integral-type sliding mode fault-tolerant control Danwei Wang oth Senqiang Zhu oth Eng Kee Poh oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 23(2015), 3, Seite 1131-1138 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:23 year:2015 number:3 pages:1131-1138 http://dx.doi.org/10.1109/TCST.2014.2354260 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6910254 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 AR 23 2015 3 1131-1138 |
language |
English |
source |
Enthalten in IEEE transactions on control systems technology 23(2015), 3, Seite 1131-1138 volume:23 year:2015 number:3 pages:1131-1138 |
sourceStr |
Enthalten in IEEE transactions on control systems technology 23(2015), 3, Seite 1131-1138 volume:23 year:2015 number:3 pages:1131-1138 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
variable structure systems attitude stabilization Actuator fault FTC schemes adaptive control stability attitude control adaptive technique sliding manifold external disturbances spacecraft nominal healthy system Fault tolerance actuator faults space vehicles fault tolerant control Fault tolerant systems Frequency modulation spacecraft attitude stabilization Manifolds integral-type sliding mode control (ISMC) actuators fault-tolerant control (FTC) boundary information closed-loop system integral-type sliding mode fault-tolerant control |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on control systems technology |
authorswithroles_txt_mv |
Qiang Shen @@aut@@ Danwei Wang @@oth@@ Senqiang Zhu @@oth@@ Eng Kee Poh @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
171098137 |
dewey-sort |
14 |
id |
OLC1959559591 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1959559591</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714151547.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TCST.2014.2354260</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1959559591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1959559591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1556-209ade42c8ee7d6e2f7f834296fbc5c302fb215ff014e80f6d356a88d73f212a0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0226256820150000023000301131integraltypeslidingmodefaulttolerantcontrolforatti</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qiang Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integral-Type Sliding Mode Fault-Tolerant Control for Attitude Stabilization of Spacecraft</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Two fault-tolerant control (FTC) schemes for spacecraft attitude stabilization with external disturbances are proposed in this brief. The approach is based on integral-type sliding mode control strategy to compensate for actuator faults without controller reconfiguration. First, a basic integral-type sliding mode FTC scheme is designed so that sliding manifold can be maintained from the very beginning. Once the system enters the sliding mode, the dynamics of the closed-loop system with actuator fault is identical to that of the nominal healthy system. Second, the integral-type sliding mode fault-tolerant controller is incorporated with adaptive technique to accommodate actuator faults so that the required boundary information can be relaxed. The effectiveness of the proposed schemes against actuator faults is demonstrated in simulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variable structure systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attitude stabilization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Actuator fault</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FTC schemes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attitude control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive technique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sliding manifold</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">external disturbances</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spacecraft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nominal healthy system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault tolerance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">actuator faults</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">space vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault tolerant control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault tolerant systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency modulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spacecraft attitude stabilization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integral-type sliding mode control (ISMC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">actuators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault-tolerant control (FTC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">boundary information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">closed-loop system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integral-type sliding mode fault-tolerant control</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Danwei Wang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Senqiang Zhu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eng Kee Poh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on control systems technology</subfield><subfield code="d">New York, NY : IEEE, 1993</subfield><subfield code="g">23(2015), 3, Seite 1131-1138</subfield><subfield code="w">(DE-627)171098137</subfield><subfield code="w">(DE-600)1151354-8</subfield><subfield code="w">(DE-576)03420315X</subfield><subfield code="x">1063-6536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1131-1138</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TCST.2014.2354260</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6910254</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">1131-1138</subfield></datafield></record></collection>
|
author |
Qiang Shen |
spellingShingle |
Qiang Shen ddc 004 misc variable structure systems misc attitude stabilization misc Actuator fault misc FTC schemes misc adaptive control misc stability misc attitude control misc adaptive technique misc sliding manifold misc external disturbances misc spacecraft misc nominal healthy system misc Fault tolerance misc actuator faults misc space vehicles misc fault tolerant control misc Fault tolerant systems misc Frequency modulation misc spacecraft attitude stabilization misc Manifolds misc integral-type sliding mode control (ISMC) misc actuators misc fault-tolerant control (FTC) misc boundary information misc closed-loop system misc integral-type sliding mode fault-tolerant control Integral-Type Sliding Mode Fault-Tolerant Control for Attitude Stabilization of Spacecraft |
authorStr |
Qiang Shen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171098137 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1063-6536 |
topic_title |
004 DNB Integral-Type Sliding Mode Fault-Tolerant Control for Attitude Stabilization of Spacecraft variable structure systems attitude stabilization Actuator fault FTC schemes adaptive control stability attitude control adaptive technique sliding manifold external disturbances spacecraft nominal healthy system Fault tolerance actuator faults space vehicles fault tolerant control Fault tolerant systems Frequency modulation spacecraft attitude stabilization Manifolds integral-type sliding mode control (ISMC) actuators fault-tolerant control (FTC) boundary information closed-loop system integral-type sliding mode fault-tolerant control |
topic |
ddc 004 misc variable structure systems misc attitude stabilization misc Actuator fault misc FTC schemes misc adaptive control misc stability misc attitude control misc adaptive technique misc sliding manifold misc external disturbances misc spacecraft misc nominal healthy system misc Fault tolerance misc actuator faults misc space vehicles misc fault tolerant control misc Fault tolerant systems misc Frequency modulation misc spacecraft attitude stabilization misc Manifolds misc integral-type sliding mode control (ISMC) misc actuators misc fault-tolerant control (FTC) misc boundary information misc closed-loop system misc integral-type sliding mode fault-tolerant control |
topic_unstemmed |
ddc 004 misc variable structure systems misc attitude stabilization misc Actuator fault misc FTC schemes misc adaptive control misc stability misc attitude control misc adaptive technique misc sliding manifold misc external disturbances misc spacecraft misc nominal healthy system misc Fault tolerance misc actuator faults misc space vehicles misc fault tolerant control misc Fault tolerant systems misc Frequency modulation misc spacecraft attitude stabilization misc Manifolds misc integral-type sliding mode control (ISMC) misc actuators misc fault-tolerant control (FTC) misc boundary information misc closed-loop system misc integral-type sliding mode fault-tolerant control |
topic_browse |
ddc 004 misc variable structure systems misc attitude stabilization misc Actuator fault misc FTC schemes misc adaptive control misc stability misc attitude control misc adaptive technique misc sliding manifold misc external disturbances misc spacecraft misc nominal healthy system misc Fault tolerance misc actuator faults misc space vehicles misc fault tolerant control misc Fault tolerant systems misc Frequency modulation misc spacecraft attitude stabilization misc Manifolds misc integral-type sliding mode control (ISMC) misc actuators misc fault-tolerant control (FTC) misc boundary information misc closed-loop system misc integral-type sliding mode fault-tolerant control |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
d w dw s z sz e k p ekp |
hierarchy_parent_title |
IEEE transactions on control systems technology |
hierarchy_parent_id |
171098137 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
IEEE transactions on control systems technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X |
title |
Integral-Type Sliding Mode Fault-Tolerant Control for Attitude Stabilization of Spacecraft |
ctrlnum |
(DE-627)OLC1959559591 (DE-599)GBVOLC1959559591 (PRQ)c1556-209ade42c8ee7d6e2f7f834296fbc5c302fb215ff014e80f6d356a88d73f212a0 (KEY)0226256820150000023000301131integraltypeslidingmodefaulttolerantcontrolforatti |
title_full |
Integral-Type Sliding Mode Fault-Tolerant Control for Attitude Stabilization of Spacecraft |
author_sort |
Qiang Shen |
journal |
IEEE transactions on control systems technology |
journalStr |
IEEE transactions on control systems technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1131 |
author_browse |
Qiang Shen |
container_volume |
23 |
class |
004 DNB |
format_se |
Aufsätze |
author-letter |
Qiang Shen |
doi_str_mv |
10.1109/TCST.2014.2354260 |
dewey-full |
004 |
title_sort |
integral-type sliding mode fault-tolerant control for attitude stabilization of spacecraft |
title_auth |
Integral-Type Sliding Mode Fault-Tolerant Control for Attitude Stabilization of Spacecraft |
abstract |
Two fault-tolerant control (FTC) schemes for spacecraft attitude stabilization with external disturbances are proposed in this brief. The approach is based on integral-type sliding mode control strategy to compensate for actuator faults without controller reconfiguration. First, a basic integral-type sliding mode FTC scheme is designed so that sliding manifold can be maintained from the very beginning. Once the system enters the sliding mode, the dynamics of the closed-loop system with actuator fault is identical to that of the nominal healthy system. Second, the integral-type sliding mode fault-tolerant controller is incorporated with adaptive technique to accommodate actuator faults so that the required boundary information can be relaxed. The effectiveness of the proposed schemes against actuator faults is demonstrated in simulation. |
abstractGer |
Two fault-tolerant control (FTC) schemes for spacecraft attitude stabilization with external disturbances are proposed in this brief. The approach is based on integral-type sliding mode control strategy to compensate for actuator faults without controller reconfiguration. First, a basic integral-type sliding mode FTC scheme is designed so that sliding manifold can be maintained from the very beginning. Once the system enters the sliding mode, the dynamics of the closed-loop system with actuator fault is identical to that of the nominal healthy system. Second, the integral-type sliding mode fault-tolerant controller is incorporated with adaptive technique to accommodate actuator faults so that the required boundary information can be relaxed. The effectiveness of the proposed schemes against actuator faults is demonstrated in simulation. |
abstract_unstemmed |
Two fault-tolerant control (FTC) schemes for spacecraft attitude stabilization with external disturbances are proposed in this brief. The approach is based on integral-type sliding mode control strategy to compensate for actuator faults without controller reconfiguration. First, a basic integral-type sliding mode FTC scheme is designed so that sliding manifold can be maintained from the very beginning. Once the system enters the sliding mode, the dynamics of the closed-loop system with actuator fault is identical to that of the nominal healthy system. Second, the integral-type sliding mode fault-tolerant controller is incorporated with adaptive technique to accommodate actuator faults so that the required boundary information can be relaxed. The effectiveness of the proposed schemes against actuator faults is demonstrated in simulation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 |
container_issue |
3 |
title_short |
Integral-Type Sliding Mode Fault-Tolerant Control for Attitude Stabilization of Spacecraft |
url |
http://dx.doi.org/10.1109/TCST.2014.2354260 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6910254 |
remote_bool |
false |
author2 |
Danwei Wang Senqiang Zhu Eng Kee Poh |
author2Str |
Danwei Wang Senqiang Zhu Eng Kee Poh |
ppnlink |
171098137 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1109/TCST.2014.2354260 |
up_date |
2024-07-03T17:51:54.797Z |
_version_ |
1803581249089961984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1959559591</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714151547.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TCST.2014.2354260</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1959559591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1959559591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1556-209ade42c8ee7d6e2f7f834296fbc5c302fb215ff014e80f6d356a88d73f212a0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0226256820150000023000301131integraltypeslidingmodefaulttolerantcontrolforatti</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qiang Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integral-Type Sliding Mode Fault-Tolerant Control for Attitude Stabilization of Spacecraft</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Two fault-tolerant control (FTC) schemes for spacecraft attitude stabilization with external disturbances are proposed in this brief. The approach is based on integral-type sliding mode control strategy to compensate for actuator faults without controller reconfiguration. First, a basic integral-type sliding mode FTC scheme is designed so that sliding manifold can be maintained from the very beginning. Once the system enters the sliding mode, the dynamics of the closed-loop system with actuator fault is identical to that of the nominal healthy system. Second, the integral-type sliding mode fault-tolerant controller is incorporated with adaptive technique to accommodate actuator faults so that the required boundary information can be relaxed. The effectiveness of the proposed schemes against actuator faults is demonstrated in simulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variable structure systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attitude stabilization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Actuator fault</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FTC schemes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attitude control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive technique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sliding manifold</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">external disturbances</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spacecraft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nominal healthy system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault tolerance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">actuator faults</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">space vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault tolerant control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault tolerant systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency modulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spacecraft attitude stabilization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integral-type sliding mode control (ISMC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">actuators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault-tolerant control (FTC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">boundary information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">closed-loop system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integral-type sliding mode fault-tolerant control</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Danwei Wang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Senqiang Zhu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eng Kee Poh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on control systems technology</subfield><subfield code="d">New York, NY : IEEE, 1993</subfield><subfield code="g">23(2015), 3, Seite 1131-1138</subfield><subfield code="w">(DE-627)171098137</subfield><subfield code="w">(DE-600)1151354-8</subfield><subfield code="w">(DE-576)03420315X</subfield><subfield code="x">1063-6536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1131-1138</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TCST.2014.2354260</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6910254</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">1131-1138</subfield></datafield></record></collection>
|
score |
7.399296 |