Adaptive Suboptimal Output-Feedback Control for Linear Systems Using Integral Reinforcement Learning

Reinforcement learning (RL) techniques have been successfully used to find optimal state-feedback controllers for continuous-time (CT) systems. However, in most real-world control applications, it is not practical to measure the system states and it is desirable to design output-feedback controllers...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Zhu, Lemei M [verfasserIn]

Modares, Hamidreza

Peen, Gan Oon

Lewis, Frank L

Baozeng Yue

Format:

Artikel

Sprache:

Englisch

Erschienen:

2015

Schlagwörter:

learning (artificial intelligence)

online learning algorithm

continuous-time systems

learning systems

adaptive control

observers

optimal state-feedback controllers

Convergence

Control systems

IRL Bellman equation

suboptimal output-feedback solution

F-16 aircraft

Integral reinforcement learning (IRL)

IRL-based algorithm

Equations

output-feedback gain

Heuristic algorithms

linear systems

output-feedback controllers

optimal control

adaptive suboptimal output-feedback control

partially unknown CT linear systems

Mathematical model

output-feedback policy

CT systems

output feedback

integral reinforcement learning technique

X-Y table

state feedback

suboptimal control

linear continuous-time (CT) systems

IRL technique

continuous time systems

Algorithms

Distance learning

Feedback

Übergeordnetes Werk:

Enthalten in: IEEE transactions on control systems technology - New York, NY : IEEE, 1993, 23(2015), 1, Seite 264-273

Übergeordnetes Werk:

volume:23 ; year:2015 ; number:1 ; pages:264-273

Links:

Volltext
Link aufrufen
Link aufrufen

DOI / URN:

10.1109/TCST.2014.2322778

Katalog-ID:

OLC1959560093

Nicht das Richtige dabei?

Schreiben Sie uns!