Adaptive Suboptimal Output-Feedback Control for Linear Systems Using Integral Reinforcement Learning
Reinforcement learning (RL) techniques have been successfully used to find optimal state-feedback controllers for continuous-time (CT) systems. However, in most real-world control applications, it is not practical to measure the system states and it is desirable to design output-feedback controllers...
Ausführliche Beschreibung
Autor*in: |
Zhu, Lemei M [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on control systems technology - New York, NY : IEEE, 1993, 23(2015), 1, Seite 264-273 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2015 ; number:1 ; pages:264-273 |
Links: |
---|
DOI / URN: |
10.1109/TCST.2014.2322778 |
---|
Katalog-ID: |
OLC1959560093 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1959560093 | ||
003 | DE-627 | ||
005 | 20230714151550.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TCST.2014.2322778 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1959560093 | ||
035 | |a (DE-599)GBVOLC1959560093 | ||
035 | |a (PRQ)c2112-2ac35ac992406e3539935e36e932f972210f11cc993d5fd62fec6fe25fd324ed0 | ||
035 | |a (KEY)0226256820150000023000100264adaptivesuboptimaloutputfeedbackcontrolforlinearsy | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DNB |
100 | 1 | |a Zhu, Lemei M |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adaptive Suboptimal Output-Feedback Control for Linear Systems Using Integral Reinforcement Learning |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Reinforcement learning (RL) techniques have been successfully used to find optimal state-feedback controllers for continuous-time (CT) systems. However, in most real-world control applications, it is not practical to measure the system states and it is desirable to design output-feedback controllers. This paper develops an online learning algorithm based on the integral RL (IRL) technique to find a suboptimal output-feedback controller for partially unknown CT linear systems. The proposed IRL-based algorithm solves an IRL Bellman equation in each iteration online in real time to evaluate an output-feedback policy and updates the output-feedback gain using the information given by the evaluated policy. The knowledge of the system drift dynamics is not required by the proposed method. An adaptive observer is used to provide the knowledge of the full states for the IRL Bellman equation during learning. However, the observer is not needed after the learning process is finished. The convergence of the proposed algorithm to a suboptimal output-feedback solution and the performance of the proposed method are verified through simulation on two real-world applications, namely, the X-Y table and the F-16 aircraft. | ||
650 | 4 | |a learning (artificial intelligence) | |
650 | 4 | |a online learning algorithm | |
650 | 4 | |a continuous-time systems | |
650 | 4 | |a learning systems | |
650 | 4 | |a adaptive control | |
650 | 4 | |a observers | |
650 | 4 | |a optimal state-feedback controllers | |
650 | 4 | |a Convergence | |
650 | 4 | |a Control systems | |
650 | 4 | |a IRL Bellman equation | |
650 | 4 | |a suboptimal output-feedback solution | |
650 | 4 | |a F-16 aircraft | |
650 | 4 | |a Integral reinforcement learning (IRL) | |
650 | 4 | |a IRL-based algorithm | |
650 | 4 | |a Equations | |
650 | 4 | |a output-feedback gain | |
650 | 4 | |a Heuristic algorithms | |
650 | 4 | |a linear systems | |
650 | 4 | |a output-feedback controllers | |
650 | 4 | |a optimal control | |
650 | 4 | |a adaptive suboptimal output-feedback control | |
650 | 4 | |a partially unknown CT linear systems | |
650 | 4 | |a Mathematical model | |
650 | 4 | |a output-feedback policy | |
650 | 4 | |a CT systems | |
650 | 4 | |a output feedback | |
650 | 4 | |a integral reinforcement learning technique | |
650 | 4 | |a X-Y table | |
650 | 4 | |a state feedback | |
650 | 4 | |a suboptimal control | |
650 | 4 | |a linear continuous-time (CT) systems | |
650 | 4 | |a IRL technique | |
650 | 4 | |a continuous time systems | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Distance learning | |
650 | 4 | |a Feedback | |
700 | 1 | |a Modares, Hamidreza |4 oth | |
700 | 1 | |a Peen, Gan Oon |4 oth | |
700 | 1 | |a Lewis, Frank L |4 oth | |
700 | 0 | |a Baozeng Yue |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on control systems technology |d New York, NY : IEEE, 1993 |g 23(2015), 1, Seite 264-273 |w (DE-627)171098137 |w (DE-600)1151354-8 |w (DE-576)03420315X |x 1063-6536 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2015 |g number:1 |g pages:264-273 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TCST.2014.2322778 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6824757 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1638471433 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
951 | |a AR | ||
952 | |d 23 |j 2015 |e 1 |h 264-273 |
author_variant |
l m z lm lmz |
---|---|
matchkey_str |
article:10636536:2015----::dpieuotmluptedakotofrierytmuigner |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1109/TCST.2014.2322778 doi PQ20160617 (DE-627)OLC1959560093 (DE-599)GBVOLC1959560093 (PRQ)c2112-2ac35ac992406e3539935e36e932f972210f11cc993d5fd62fec6fe25fd324ed0 (KEY)0226256820150000023000100264adaptivesuboptimaloutputfeedbackcontrolforlinearsy DE-627 ger DE-627 rakwb eng 004 DNB Zhu, Lemei M verfasserin aut Adaptive Suboptimal Output-Feedback Control for Linear Systems Using Integral Reinforcement Learning 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Reinforcement learning (RL) techniques have been successfully used to find optimal state-feedback controllers for continuous-time (CT) systems. However, in most real-world control applications, it is not practical to measure the system states and it is desirable to design output-feedback controllers. This paper develops an online learning algorithm based on the integral RL (IRL) technique to find a suboptimal output-feedback controller for partially unknown CT linear systems. The proposed IRL-based algorithm solves an IRL Bellman equation in each iteration online in real time to evaluate an output-feedback policy and updates the output-feedback gain using the information given by the evaluated policy. The knowledge of the system drift dynamics is not required by the proposed method. An adaptive observer is used to provide the knowledge of the full states for the IRL Bellman equation during learning. However, the observer is not needed after the learning process is finished. The convergence of the proposed algorithm to a suboptimal output-feedback solution and the performance of the proposed method are verified through simulation on two real-world applications, namely, the X-Y table and the F-16 aircraft. learning (artificial intelligence) online learning algorithm continuous-time systems learning systems adaptive control observers optimal state-feedback controllers Convergence Control systems IRL Bellman equation suboptimal output-feedback solution F-16 aircraft Integral reinforcement learning (IRL) IRL-based algorithm Equations output-feedback gain Heuristic algorithms linear systems output-feedback controllers optimal control adaptive suboptimal output-feedback control partially unknown CT linear systems Mathematical model output-feedback policy CT systems output feedback integral reinforcement learning technique X-Y table state feedback suboptimal control linear continuous-time (CT) systems IRL technique continuous time systems Algorithms Distance learning Feedback Modares, Hamidreza oth Peen, Gan Oon oth Lewis, Frank L oth Baozeng Yue oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 23(2015), 1, Seite 264-273 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:23 year:2015 number:1 pages:264-273 http://dx.doi.org/10.1109/TCST.2014.2322778 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6824757 http://search.proquest.com/docview/1638471433 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 AR 23 2015 1 264-273 |
spelling |
10.1109/TCST.2014.2322778 doi PQ20160617 (DE-627)OLC1959560093 (DE-599)GBVOLC1959560093 (PRQ)c2112-2ac35ac992406e3539935e36e932f972210f11cc993d5fd62fec6fe25fd324ed0 (KEY)0226256820150000023000100264adaptivesuboptimaloutputfeedbackcontrolforlinearsy DE-627 ger DE-627 rakwb eng 004 DNB Zhu, Lemei M verfasserin aut Adaptive Suboptimal Output-Feedback Control for Linear Systems Using Integral Reinforcement Learning 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Reinforcement learning (RL) techniques have been successfully used to find optimal state-feedback controllers for continuous-time (CT) systems. However, in most real-world control applications, it is not practical to measure the system states and it is desirable to design output-feedback controllers. This paper develops an online learning algorithm based on the integral RL (IRL) technique to find a suboptimal output-feedback controller for partially unknown CT linear systems. The proposed IRL-based algorithm solves an IRL Bellman equation in each iteration online in real time to evaluate an output-feedback policy and updates the output-feedback gain using the information given by the evaluated policy. The knowledge of the system drift dynamics is not required by the proposed method. An adaptive observer is used to provide the knowledge of the full states for the IRL Bellman equation during learning. However, the observer is not needed after the learning process is finished. The convergence of the proposed algorithm to a suboptimal output-feedback solution and the performance of the proposed method are verified through simulation on two real-world applications, namely, the X-Y table and the F-16 aircraft. learning (artificial intelligence) online learning algorithm continuous-time systems learning systems adaptive control observers optimal state-feedback controllers Convergence Control systems IRL Bellman equation suboptimal output-feedback solution F-16 aircraft Integral reinforcement learning (IRL) IRL-based algorithm Equations output-feedback gain Heuristic algorithms linear systems output-feedback controllers optimal control adaptive suboptimal output-feedback control partially unknown CT linear systems Mathematical model output-feedback policy CT systems output feedback integral reinforcement learning technique X-Y table state feedback suboptimal control linear continuous-time (CT) systems IRL technique continuous time systems Algorithms Distance learning Feedback Modares, Hamidreza oth Peen, Gan Oon oth Lewis, Frank L oth Baozeng Yue oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 23(2015), 1, Seite 264-273 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:23 year:2015 number:1 pages:264-273 http://dx.doi.org/10.1109/TCST.2014.2322778 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6824757 http://search.proquest.com/docview/1638471433 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 AR 23 2015 1 264-273 |
allfields_unstemmed |
10.1109/TCST.2014.2322778 doi PQ20160617 (DE-627)OLC1959560093 (DE-599)GBVOLC1959560093 (PRQ)c2112-2ac35ac992406e3539935e36e932f972210f11cc993d5fd62fec6fe25fd324ed0 (KEY)0226256820150000023000100264adaptivesuboptimaloutputfeedbackcontrolforlinearsy DE-627 ger DE-627 rakwb eng 004 DNB Zhu, Lemei M verfasserin aut Adaptive Suboptimal Output-Feedback Control for Linear Systems Using Integral Reinforcement Learning 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Reinforcement learning (RL) techniques have been successfully used to find optimal state-feedback controllers for continuous-time (CT) systems. However, in most real-world control applications, it is not practical to measure the system states and it is desirable to design output-feedback controllers. This paper develops an online learning algorithm based on the integral RL (IRL) technique to find a suboptimal output-feedback controller for partially unknown CT linear systems. The proposed IRL-based algorithm solves an IRL Bellman equation in each iteration online in real time to evaluate an output-feedback policy and updates the output-feedback gain using the information given by the evaluated policy. The knowledge of the system drift dynamics is not required by the proposed method. An adaptive observer is used to provide the knowledge of the full states for the IRL Bellman equation during learning. However, the observer is not needed after the learning process is finished. The convergence of the proposed algorithm to a suboptimal output-feedback solution and the performance of the proposed method are verified through simulation on two real-world applications, namely, the X-Y table and the F-16 aircraft. learning (artificial intelligence) online learning algorithm continuous-time systems learning systems adaptive control observers optimal state-feedback controllers Convergence Control systems IRL Bellman equation suboptimal output-feedback solution F-16 aircraft Integral reinforcement learning (IRL) IRL-based algorithm Equations output-feedback gain Heuristic algorithms linear systems output-feedback controllers optimal control adaptive suboptimal output-feedback control partially unknown CT linear systems Mathematical model output-feedback policy CT systems output feedback integral reinforcement learning technique X-Y table state feedback suboptimal control linear continuous-time (CT) systems IRL technique continuous time systems Algorithms Distance learning Feedback Modares, Hamidreza oth Peen, Gan Oon oth Lewis, Frank L oth Baozeng Yue oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 23(2015), 1, Seite 264-273 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:23 year:2015 number:1 pages:264-273 http://dx.doi.org/10.1109/TCST.2014.2322778 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6824757 http://search.proquest.com/docview/1638471433 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 AR 23 2015 1 264-273 |
allfieldsGer |
10.1109/TCST.2014.2322778 doi PQ20160617 (DE-627)OLC1959560093 (DE-599)GBVOLC1959560093 (PRQ)c2112-2ac35ac992406e3539935e36e932f972210f11cc993d5fd62fec6fe25fd324ed0 (KEY)0226256820150000023000100264adaptivesuboptimaloutputfeedbackcontrolforlinearsy DE-627 ger DE-627 rakwb eng 004 DNB Zhu, Lemei M verfasserin aut Adaptive Suboptimal Output-Feedback Control for Linear Systems Using Integral Reinforcement Learning 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Reinforcement learning (RL) techniques have been successfully used to find optimal state-feedback controllers for continuous-time (CT) systems. However, in most real-world control applications, it is not practical to measure the system states and it is desirable to design output-feedback controllers. This paper develops an online learning algorithm based on the integral RL (IRL) technique to find a suboptimal output-feedback controller for partially unknown CT linear systems. The proposed IRL-based algorithm solves an IRL Bellman equation in each iteration online in real time to evaluate an output-feedback policy and updates the output-feedback gain using the information given by the evaluated policy. The knowledge of the system drift dynamics is not required by the proposed method. An adaptive observer is used to provide the knowledge of the full states for the IRL Bellman equation during learning. However, the observer is not needed after the learning process is finished. The convergence of the proposed algorithm to a suboptimal output-feedback solution and the performance of the proposed method are verified through simulation on two real-world applications, namely, the X-Y table and the F-16 aircraft. learning (artificial intelligence) online learning algorithm continuous-time systems learning systems adaptive control observers optimal state-feedback controllers Convergence Control systems IRL Bellman equation suboptimal output-feedback solution F-16 aircraft Integral reinforcement learning (IRL) IRL-based algorithm Equations output-feedback gain Heuristic algorithms linear systems output-feedback controllers optimal control adaptive suboptimal output-feedback control partially unknown CT linear systems Mathematical model output-feedback policy CT systems output feedback integral reinforcement learning technique X-Y table state feedback suboptimal control linear continuous-time (CT) systems IRL technique continuous time systems Algorithms Distance learning Feedback Modares, Hamidreza oth Peen, Gan Oon oth Lewis, Frank L oth Baozeng Yue oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 23(2015), 1, Seite 264-273 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:23 year:2015 number:1 pages:264-273 http://dx.doi.org/10.1109/TCST.2014.2322778 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6824757 http://search.proquest.com/docview/1638471433 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 AR 23 2015 1 264-273 |
allfieldsSound |
10.1109/TCST.2014.2322778 doi PQ20160617 (DE-627)OLC1959560093 (DE-599)GBVOLC1959560093 (PRQ)c2112-2ac35ac992406e3539935e36e932f972210f11cc993d5fd62fec6fe25fd324ed0 (KEY)0226256820150000023000100264adaptivesuboptimaloutputfeedbackcontrolforlinearsy DE-627 ger DE-627 rakwb eng 004 DNB Zhu, Lemei M verfasserin aut Adaptive Suboptimal Output-Feedback Control for Linear Systems Using Integral Reinforcement Learning 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Reinforcement learning (RL) techniques have been successfully used to find optimal state-feedback controllers for continuous-time (CT) systems. However, in most real-world control applications, it is not practical to measure the system states and it is desirable to design output-feedback controllers. This paper develops an online learning algorithm based on the integral RL (IRL) technique to find a suboptimal output-feedback controller for partially unknown CT linear systems. The proposed IRL-based algorithm solves an IRL Bellman equation in each iteration online in real time to evaluate an output-feedback policy and updates the output-feedback gain using the information given by the evaluated policy. The knowledge of the system drift dynamics is not required by the proposed method. An adaptive observer is used to provide the knowledge of the full states for the IRL Bellman equation during learning. However, the observer is not needed after the learning process is finished. The convergence of the proposed algorithm to a suboptimal output-feedback solution and the performance of the proposed method are verified through simulation on two real-world applications, namely, the X-Y table and the F-16 aircraft. learning (artificial intelligence) online learning algorithm continuous-time systems learning systems adaptive control observers optimal state-feedback controllers Convergence Control systems IRL Bellman equation suboptimal output-feedback solution F-16 aircraft Integral reinforcement learning (IRL) IRL-based algorithm Equations output-feedback gain Heuristic algorithms linear systems output-feedback controllers optimal control adaptive suboptimal output-feedback control partially unknown CT linear systems Mathematical model output-feedback policy CT systems output feedback integral reinforcement learning technique X-Y table state feedback suboptimal control linear continuous-time (CT) systems IRL technique continuous time systems Algorithms Distance learning Feedback Modares, Hamidreza oth Peen, Gan Oon oth Lewis, Frank L oth Baozeng Yue oth Enthalten in IEEE transactions on control systems technology New York, NY : IEEE, 1993 23(2015), 1, Seite 264-273 (DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X 1063-6536 nnns volume:23 year:2015 number:1 pages:264-273 http://dx.doi.org/10.1109/TCST.2014.2322778 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6824757 http://search.proquest.com/docview/1638471433 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 AR 23 2015 1 264-273 |
language |
English |
source |
Enthalten in IEEE transactions on control systems technology 23(2015), 1, Seite 264-273 volume:23 year:2015 number:1 pages:264-273 |
sourceStr |
Enthalten in IEEE transactions on control systems technology 23(2015), 1, Seite 264-273 volume:23 year:2015 number:1 pages:264-273 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
learning (artificial intelligence) online learning algorithm continuous-time systems learning systems adaptive control observers optimal state-feedback controllers Convergence Control systems IRL Bellman equation suboptimal output-feedback solution F-16 aircraft Integral reinforcement learning (IRL) IRL-based algorithm Equations output-feedback gain Heuristic algorithms linear systems output-feedback controllers optimal control adaptive suboptimal output-feedback control partially unknown CT linear systems Mathematical model output-feedback policy CT systems output feedback integral reinforcement learning technique X-Y table state feedback suboptimal control linear continuous-time (CT) systems IRL technique continuous time systems Algorithms Distance learning Feedback |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on control systems technology |
authorswithroles_txt_mv |
Zhu, Lemei M @@aut@@ Modares, Hamidreza @@oth@@ Peen, Gan Oon @@oth@@ Lewis, Frank L @@oth@@ Baozeng Yue @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
171098137 |
dewey-sort |
14 |
id |
OLC1959560093 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1959560093</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714151550.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TCST.2014.2322778</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1959560093</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1959560093</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2112-2ac35ac992406e3539935e36e932f972210f11cc993d5fd62fec6fe25fd324ed0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0226256820150000023000100264adaptivesuboptimaloutputfeedbackcontrolforlinearsy</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Lemei M</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive Suboptimal Output-Feedback Control for Linear Systems Using Integral Reinforcement Learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reinforcement learning (RL) techniques have been successfully used to find optimal state-feedback controllers for continuous-time (CT) systems. However, in most real-world control applications, it is not practical to measure the system states and it is desirable to design output-feedback controllers. This paper develops an online learning algorithm based on the integral RL (IRL) technique to find a suboptimal output-feedback controller for partially unknown CT linear systems. The proposed IRL-based algorithm solves an IRL Bellman equation in each iteration online in real time to evaluate an output-feedback policy and updates the output-feedback gain using the information given by the evaluated policy. The knowledge of the system drift dynamics is not required by the proposed method. An adaptive observer is used to provide the knowledge of the full states for the IRL Bellman equation during learning. However, the observer is not needed after the learning process is finished. The convergence of the proposed algorithm to a suboptimal output-feedback solution and the performance of the proposed method are verified through simulation on two real-world applications, namely, the X-Y table and the F-16 aircraft.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">learning (artificial intelligence)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">online learning algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continuous-time systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">learning systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">observers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimal state-feedback controllers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IRL Bellman equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">suboptimal output-feedback solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">F-16 aircraft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral reinforcement learning (IRL)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IRL-based algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">output-feedback gain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">output-feedback controllers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimal control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive suboptimal output-feedback control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">partially unknown CT linear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">output-feedback policy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CT systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">output feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integral reinforcement learning technique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-Y table</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">state feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">suboptimal control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear continuous-time (CT) systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IRL technique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continuous time systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distance learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feedback</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Modares, Hamidreza</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peen, Gan Oon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lewis, Frank L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Baozeng Yue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on control systems technology</subfield><subfield code="d">New York, NY : IEEE, 1993</subfield><subfield code="g">23(2015), 1, Seite 264-273</subfield><subfield code="w">(DE-627)171098137</subfield><subfield code="w">(DE-600)1151354-8</subfield><subfield code="w">(DE-576)03420315X</subfield><subfield code="x">1063-6536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:264-273</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TCST.2014.2322778</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6824757</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1638471433</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">264-273</subfield></datafield></record></collection>
|
author |
Zhu, Lemei M |
spellingShingle |
Zhu, Lemei M ddc 004 misc learning (artificial intelligence) misc online learning algorithm misc continuous-time systems misc learning systems misc adaptive control misc observers misc optimal state-feedback controllers misc Convergence misc Control systems misc IRL Bellman equation misc suboptimal output-feedback solution misc F-16 aircraft misc Integral reinforcement learning (IRL) misc IRL-based algorithm misc Equations misc output-feedback gain misc Heuristic algorithms misc linear systems misc output-feedback controllers misc optimal control misc adaptive suboptimal output-feedback control misc partially unknown CT linear systems misc Mathematical model misc output-feedback policy misc CT systems misc output feedback misc integral reinforcement learning technique misc X-Y table misc state feedback misc suboptimal control misc linear continuous-time (CT) systems misc IRL technique misc continuous time systems misc Algorithms misc Distance learning misc Feedback Adaptive Suboptimal Output-Feedback Control for Linear Systems Using Integral Reinforcement Learning |
authorStr |
Zhu, Lemei M |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171098137 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1063-6536 |
topic_title |
004 DNB Adaptive Suboptimal Output-Feedback Control for Linear Systems Using Integral Reinforcement Learning learning (artificial intelligence) online learning algorithm continuous-time systems learning systems adaptive control observers optimal state-feedback controllers Convergence Control systems IRL Bellman equation suboptimal output-feedback solution F-16 aircraft Integral reinforcement learning (IRL) IRL-based algorithm Equations output-feedback gain Heuristic algorithms linear systems output-feedback controllers optimal control adaptive suboptimal output-feedback control partially unknown CT linear systems Mathematical model output-feedback policy CT systems output feedback integral reinforcement learning technique X-Y table state feedback suboptimal control linear continuous-time (CT) systems IRL technique continuous time systems Algorithms Distance learning Feedback |
topic |
ddc 004 misc learning (artificial intelligence) misc online learning algorithm misc continuous-time systems misc learning systems misc adaptive control misc observers misc optimal state-feedback controllers misc Convergence misc Control systems misc IRL Bellman equation misc suboptimal output-feedback solution misc F-16 aircraft misc Integral reinforcement learning (IRL) misc IRL-based algorithm misc Equations misc output-feedback gain misc Heuristic algorithms misc linear systems misc output-feedback controllers misc optimal control misc adaptive suboptimal output-feedback control misc partially unknown CT linear systems misc Mathematical model misc output-feedback policy misc CT systems misc output feedback misc integral reinforcement learning technique misc X-Y table misc state feedback misc suboptimal control misc linear continuous-time (CT) systems misc IRL technique misc continuous time systems misc Algorithms misc Distance learning misc Feedback |
topic_unstemmed |
ddc 004 misc learning (artificial intelligence) misc online learning algorithm misc continuous-time systems misc learning systems misc adaptive control misc observers misc optimal state-feedback controllers misc Convergence misc Control systems misc IRL Bellman equation misc suboptimal output-feedback solution misc F-16 aircraft misc Integral reinforcement learning (IRL) misc IRL-based algorithm misc Equations misc output-feedback gain misc Heuristic algorithms misc linear systems misc output-feedback controllers misc optimal control misc adaptive suboptimal output-feedback control misc partially unknown CT linear systems misc Mathematical model misc output-feedback policy misc CT systems misc output feedback misc integral reinforcement learning technique misc X-Y table misc state feedback misc suboptimal control misc linear continuous-time (CT) systems misc IRL technique misc continuous time systems misc Algorithms misc Distance learning misc Feedback |
topic_browse |
ddc 004 misc learning (artificial intelligence) misc online learning algorithm misc continuous-time systems misc learning systems misc adaptive control misc observers misc optimal state-feedback controllers misc Convergence misc Control systems misc IRL Bellman equation misc suboptimal output-feedback solution misc F-16 aircraft misc Integral reinforcement learning (IRL) misc IRL-based algorithm misc Equations misc output-feedback gain misc Heuristic algorithms misc linear systems misc output-feedback controllers misc optimal control misc adaptive suboptimal output-feedback control misc partially unknown CT linear systems misc Mathematical model misc output-feedback policy misc CT systems misc output feedback misc integral reinforcement learning technique misc X-Y table misc state feedback misc suboptimal control misc linear continuous-time (CT) systems misc IRL technique misc continuous time systems misc Algorithms misc Distance learning misc Feedback |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
h m hm g o p go gop f l l fl fll b y by |
hierarchy_parent_title |
IEEE transactions on control systems technology |
hierarchy_parent_id |
171098137 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
IEEE transactions on control systems technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171098137 (DE-600)1151354-8 (DE-576)03420315X |
title |
Adaptive Suboptimal Output-Feedback Control for Linear Systems Using Integral Reinforcement Learning |
ctrlnum |
(DE-627)OLC1959560093 (DE-599)GBVOLC1959560093 (PRQ)c2112-2ac35ac992406e3539935e36e932f972210f11cc993d5fd62fec6fe25fd324ed0 (KEY)0226256820150000023000100264adaptivesuboptimaloutputfeedbackcontrolforlinearsy |
title_full |
Adaptive Suboptimal Output-Feedback Control for Linear Systems Using Integral Reinforcement Learning |
author_sort |
Zhu, Lemei M |
journal |
IEEE transactions on control systems technology |
journalStr |
IEEE transactions on control systems technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
264 |
author_browse |
Zhu, Lemei M |
container_volume |
23 |
class |
004 DNB |
format_se |
Aufsätze |
author-letter |
Zhu, Lemei M |
doi_str_mv |
10.1109/TCST.2014.2322778 |
dewey-full |
004 |
title_sort |
adaptive suboptimal output-feedback control for linear systems using integral reinforcement learning |
title_auth |
Adaptive Suboptimal Output-Feedback Control for Linear Systems Using Integral Reinforcement Learning |
abstract |
Reinforcement learning (RL) techniques have been successfully used to find optimal state-feedback controllers for continuous-time (CT) systems. However, in most real-world control applications, it is not practical to measure the system states and it is desirable to design output-feedback controllers. This paper develops an online learning algorithm based on the integral RL (IRL) technique to find a suboptimal output-feedback controller for partially unknown CT linear systems. The proposed IRL-based algorithm solves an IRL Bellman equation in each iteration online in real time to evaluate an output-feedback policy and updates the output-feedback gain using the information given by the evaluated policy. The knowledge of the system drift dynamics is not required by the proposed method. An adaptive observer is used to provide the knowledge of the full states for the IRL Bellman equation during learning. However, the observer is not needed after the learning process is finished. The convergence of the proposed algorithm to a suboptimal output-feedback solution and the performance of the proposed method are verified through simulation on two real-world applications, namely, the X-Y table and the F-16 aircraft. |
abstractGer |
Reinforcement learning (RL) techniques have been successfully used to find optimal state-feedback controllers for continuous-time (CT) systems. However, in most real-world control applications, it is not practical to measure the system states and it is desirable to design output-feedback controllers. This paper develops an online learning algorithm based on the integral RL (IRL) technique to find a suboptimal output-feedback controller for partially unknown CT linear systems. The proposed IRL-based algorithm solves an IRL Bellman equation in each iteration online in real time to evaluate an output-feedback policy and updates the output-feedback gain using the information given by the evaluated policy. The knowledge of the system drift dynamics is not required by the proposed method. An adaptive observer is used to provide the knowledge of the full states for the IRL Bellman equation during learning. However, the observer is not needed after the learning process is finished. The convergence of the proposed algorithm to a suboptimal output-feedback solution and the performance of the proposed method are verified through simulation on two real-world applications, namely, the X-Y table and the F-16 aircraft. |
abstract_unstemmed |
Reinforcement learning (RL) techniques have been successfully used to find optimal state-feedback controllers for continuous-time (CT) systems. However, in most real-world control applications, it is not practical to measure the system states and it is desirable to design output-feedback controllers. This paper develops an online learning algorithm based on the integral RL (IRL) technique to find a suboptimal output-feedback controller for partially unknown CT linear systems. The proposed IRL-based algorithm solves an IRL Bellman equation in each iteration online in real time to evaluate an output-feedback policy and updates the output-feedback gain using the information given by the evaluated policy. The knowledge of the system drift dynamics is not required by the proposed method. An adaptive observer is used to provide the knowledge of the full states for the IRL Bellman equation during learning. However, the observer is not needed after the learning process is finished. The convergence of the proposed algorithm to a suboptimal output-feedback solution and the performance of the proposed method are verified through simulation on two real-world applications, namely, the X-Y table and the F-16 aircraft. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 |
container_issue |
1 |
title_short |
Adaptive Suboptimal Output-Feedback Control for Linear Systems Using Integral Reinforcement Learning |
url |
http://dx.doi.org/10.1109/TCST.2014.2322778 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6824757 http://search.proquest.com/docview/1638471433 |
remote_bool |
false |
author2 |
Modares, Hamidreza Peen, Gan Oon Lewis, Frank L Baozeng Yue |
author2Str |
Modares, Hamidreza Peen, Gan Oon Lewis, Frank L Baozeng Yue |
ppnlink |
171098137 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1109/TCST.2014.2322778 |
up_date |
2024-07-03T17:52:04.199Z |
_version_ |
1803581258936090624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1959560093</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714151550.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TCST.2014.2322778</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1959560093</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1959560093</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2112-2ac35ac992406e3539935e36e932f972210f11cc993d5fd62fec6fe25fd324ed0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0226256820150000023000100264adaptivesuboptimaloutputfeedbackcontrolforlinearsy</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Lemei M</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive Suboptimal Output-Feedback Control for Linear Systems Using Integral Reinforcement Learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reinforcement learning (RL) techniques have been successfully used to find optimal state-feedback controllers for continuous-time (CT) systems. However, in most real-world control applications, it is not practical to measure the system states and it is desirable to design output-feedback controllers. This paper develops an online learning algorithm based on the integral RL (IRL) technique to find a suboptimal output-feedback controller for partially unknown CT linear systems. The proposed IRL-based algorithm solves an IRL Bellman equation in each iteration online in real time to evaluate an output-feedback policy and updates the output-feedback gain using the information given by the evaluated policy. The knowledge of the system drift dynamics is not required by the proposed method. An adaptive observer is used to provide the knowledge of the full states for the IRL Bellman equation during learning. However, the observer is not needed after the learning process is finished. The convergence of the proposed algorithm to a suboptimal output-feedback solution and the performance of the proposed method are verified through simulation on two real-world applications, namely, the X-Y table and the F-16 aircraft.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">learning (artificial intelligence)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">online learning algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continuous-time systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">learning systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">observers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimal state-feedback controllers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IRL Bellman equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">suboptimal output-feedback solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">F-16 aircraft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral reinforcement learning (IRL)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IRL-based algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">output-feedback gain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">output-feedback controllers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimal control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive suboptimal output-feedback control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">partially unknown CT linear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">output-feedback policy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CT systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">output feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integral reinforcement learning technique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-Y table</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">state feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">suboptimal control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear continuous-time (CT) systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IRL technique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continuous time systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distance learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feedback</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Modares, Hamidreza</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peen, Gan Oon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lewis, Frank L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Baozeng Yue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on control systems technology</subfield><subfield code="d">New York, NY : IEEE, 1993</subfield><subfield code="g">23(2015), 1, Seite 264-273</subfield><subfield code="w">(DE-627)171098137</subfield><subfield code="w">(DE-600)1151354-8</subfield><subfield code="w">(DE-576)03420315X</subfield><subfield code="x">1063-6536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:264-273</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TCST.2014.2322778</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6824757</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1638471433</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">264-273</subfield></datafield></record></collection>
|
score |
7.4030848 |