A Way to Choquet Calculus
In this paper, we deal with the Choquet integral and derivative with respect to fuzzy measures on the nonnegative real line and present a way to Choquet calculus as a new research paradigm. In Choquet calculus, a representation for calculating the continuous Choquet integral is first given by restri...
Ausführliche Beschreibung
Autor*in: |
Sugeno, Michio [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on fuzzy systems - New York, NY : Inst., 1993, 23(2015), 5, Seite 1439-1457 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2015 ; number:5 ; pages:1439-1457 |
Links: |
---|
DOI / URN: |
10.1109/TFUZZ.2014.2362148 |
---|
Katalog-ID: |
OLC1959562800 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1959562800 | ||
003 | DE-627 | ||
005 | 20230714151555.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TFUZZ.2014.2362148 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1959562800 | ||
035 | |a (DE-599)GBVOLC1959562800 | ||
035 | |a (PRQ)c1889-e2ccfc41a89bfc805b0c598160647ed0e5d1a3990359b39703800c0b0392ef940 | ||
035 | |a (KEY)0226257620150000023000501439waytochoquetcalculus | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DNB |
100 | 1 | |a Sugeno, Michio |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Way to Choquet Calculus |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, we deal with the Choquet integral and derivative with respect to fuzzy measures on the nonnegative real line and present a way to Choquet calculus as a new research paradigm. In Choquet calculus, a representation for calculating the continuous Choquet integral is first given by restricting the integrand to a class of nondecreasing and continuous functions and the fuzzy measure to a class of distorted Lebesgue measures. Next, the derivative of functions with respect to distorted Lebesgue measures is defined as the inverse operation of the Choquet integral. Then, elementary properties in Choquet calculus are explored. In addition, we clarify the relation of Choquet calculus with fractional calculus, where the fractional Choquet integral and derivative are newly defined. In addition, we consider differential equations with respect to distorted Lebesgue measures and give their solutions. Finally, we introduce conditional distorted Lebesgue measures and explore their properties. | ||
650 | 4 | |a Generators | |
650 | 4 | |a Choquet calculus | |
650 | 4 | |a Fractional calculus | |
650 | 4 | |a Laplace equations | |
650 | 4 | |a Distortion measurement | |
650 | 4 | |a conditional distorted Lebesgue measure | |
650 | 4 | |a Integral equations | |
650 | 4 | |a distorted Lebesgue measure | |
650 | 4 | |a Differential equations | |
650 | 4 | |a Calculus | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on fuzzy systems |d New York, NY : Inst., 1993 |g 23(2015), 5, Seite 1439-1457 |w (DE-627)171085515 |w (DE-600)1149610-1 |w (DE-576)034198547 |x 1063-6706 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2015 |g number:5 |g pages:1439-1457 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TFUZZ.2014.2362148 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6918497 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1729225354 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 23 |j 2015 |e 5 |h 1439-1457 |
author_variant |
m s ms |
---|---|
matchkey_str |
article:10636706:2015----::wyohqec |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1109/TFUZZ.2014.2362148 doi PQ20160617 (DE-627)OLC1959562800 (DE-599)GBVOLC1959562800 (PRQ)c1889-e2ccfc41a89bfc805b0c598160647ed0e5d1a3990359b39703800c0b0392ef940 (KEY)0226257620150000023000501439waytochoquetcalculus DE-627 ger DE-627 rakwb eng 004 DNB Sugeno, Michio verfasserin aut A Way to Choquet Calculus 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we deal with the Choquet integral and derivative with respect to fuzzy measures on the nonnegative real line and present a way to Choquet calculus as a new research paradigm. In Choquet calculus, a representation for calculating the continuous Choquet integral is first given by restricting the integrand to a class of nondecreasing and continuous functions and the fuzzy measure to a class of distorted Lebesgue measures. Next, the derivative of functions with respect to distorted Lebesgue measures is defined as the inverse operation of the Choquet integral. Then, elementary properties in Choquet calculus are explored. In addition, we clarify the relation of Choquet calculus with fractional calculus, where the fractional Choquet integral and derivative are newly defined. In addition, we consider differential equations with respect to distorted Lebesgue measures and give their solutions. Finally, we introduce conditional distorted Lebesgue measures and explore their properties. Generators Choquet calculus Fractional calculus Laplace equations Distortion measurement conditional distorted Lebesgue measure Integral equations distorted Lebesgue measure Differential equations Calculus Enthalten in IEEE transactions on fuzzy systems New York, NY : Inst., 1993 23(2015), 5, Seite 1439-1457 (DE-627)171085515 (DE-600)1149610-1 (DE-576)034198547 1063-6706 nnns volume:23 year:2015 number:5 pages:1439-1457 http://dx.doi.org/10.1109/TFUZZ.2014.2362148 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6918497 http://search.proquest.com/docview/1729225354 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_30 GBV_ILN_70 GBV_ILN_4318 AR 23 2015 5 1439-1457 |
spelling |
10.1109/TFUZZ.2014.2362148 doi PQ20160617 (DE-627)OLC1959562800 (DE-599)GBVOLC1959562800 (PRQ)c1889-e2ccfc41a89bfc805b0c598160647ed0e5d1a3990359b39703800c0b0392ef940 (KEY)0226257620150000023000501439waytochoquetcalculus DE-627 ger DE-627 rakwb eng 004 DNB Sugeno, Michio verfasserin aut A Way to Choquet Calculus 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we deal with the Choquet integral and derivative with respect to fuzzy measures on the nonnegative real line and present a way to Choquet calculus as a new research paradigm. In Choquet calculus, a representation for calculating the continuous Choquet integral is first given by restricting the integrand to a class of nondecreasing and continuous functions and the fuzzy measure to a class of distorted Lebesgue measures. Next, the derivative of functions with respect to distorted Lebesgue measures is defined as the inverse operation of the Choquet integral. Then, elementary properties in Choquet calculus are explored. In addition, we clarify the relation of Choquet calculus with fractional calculus, where the fractional Choquet integral and derivative are newly defined. In addition, we consider differential equations with respect to distorted Lebesgue measures and give their solutions. Finally, we introduce conditional distorted Lebesgue measures and explore their properties. Generators Choquet calculus Fractional calculus Laplace equations Distortion measurement conditional distorted Lebesgue measure Integral equations distorted Lebesgue measure Differential equations Calculus Enthalten in IEEE transactions on fuzzy systems New York, NY : Inst., 1993 23(2015), 5, Seite 1439-1457 (DE-627)171085515 (DE-600)1149610-1 (DE-576)034198547 1063-6706 nnns volume:23 year:2015 number:5 pages:1439-1457 http://dx.doi.org/10.1109/TFUZZ.2014.2362148 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6918497 http://search.proquest.com/docview/1729225354 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_30 GBV_ILN_70 GBV_ILN_4318 AR 23 2015 5 1439-1457 |
allfields_unstemmed |
10.1109/TFUZZ.2014.2362148 doi PQ20160617 (DE-627)OLC1959562800 (DE-599)GBVOLC1959562800 (PRQ)c1889-e2ccfc41a89bfc805b0c598160647ed0e5d1a3990359b39703800c0b0392ef940 (KEY)0226257620150000023000501439waytochoquetcalculus DE-627 ger DE-627 rakwb eng 004 DNB Sugeno, Michio verfasserin aut A Way to Choquet Calculus 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we deal with the Choquet integral and derivative with respect to fuzzy measures on the nonnegative real line and present a way to Choquet calculus as a new research paradigm. In Choquet calculus, a representation for calculating the continuous Choquet integral is first given by restricting the integrand to a class of nondecreasing and continuous functions and the fuzzy measure to a class of distorted Lebesgue measures. Next, the derivative of functions with respect to distorted Lebesgue measures is defined as the inverse operation of the Choquet integral. Then, elementary properties in Choquet calculus are explored. In addition, we clarify the relation of Choquet calculus with fractional calculus, where the fractional Choquet integral and derivative are newly defined. In addition, we consider differential equations with respect to distorted Lebesgue measures and give their solutions. Finally, we introduce conditional distorted Lebesgue measures and explore their properties. Generators Choquet calculus Fractional calculus Laplace equations Distortion measurement conditional distorted Lebesgue measure Integral equations distorted Lebesgue measure Differential equations Calculus Enthalten in IEEE transactions on fuzzy systems New York, NY : Inst., 1993 23(2015), 5, Seite 1439-1457 (DE-627)171085515 (DE-600)1149610-1 (DE-576)034198547 1063-6706 nnns volume:23 year:2015 number:5 pages:1439-1457 http://dx.doi.org/10.1109/TFUZZ.2014.2362148 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6918497 http://search.proquest.com/docview/1729225354 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_30 GBV_ILN_70 GBV_ILN_4318 AR 23 2015 5 1439-1457 |
allfieldsGer |
10.1109/TFUZZ.2014.2362148 doi PQ20160617 (DE-627)OLC1959562800 (DE-599)GBVOLC1959562800 (PRQ)c1889-e2ccfc41a89bfc805b0c598160647ed0e5d1a3990359b39703800c0b0392ef940 (KEY)0226257620150000023000501439waytochoquetcalculus DE-627 ger DE-627 rakwb eng 004 DNB Sugeno, Michio verfasserin aut A Way to Choquet Calculus 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we deal with the Choquet integral and derivative with respect to fuzzy measures on the nonnegative real line and present a way to Choquet calculus as a new research paradigm. In Choquet calculus, a representation for calculating the continuous Choquet integral is first given by restricting the integrand to a class of nondecreasing and continuous functions and the fuzzy measure to a class of distorted Lebesgue measures. Next, the derivative of functions with respect to distorted Lebesgue measures is defined as the inverse operation of the Choquet integral. Then, elementary properties in Choquet calculus are explored. In addition, we clarify the relation of Choquet calculus with fractional calculus, where the fractional Choquet integral and derivative are newly defined. In addition, we consider differential equations with respect to distorted Lebesgue measures and give their solutions. Finally, we introduce conditional distorted Lebesgue measures and explore their properties. Generators Choquet calculus Fractional calculus Laplace equations Distortion measurement conditional distorted Lebesgue measure Integral equations distorted Lebesgue measure Differential equations Calculus Enthalten in IEEE transactions on fuzzy systems New York, NY : Inst., 1993 23(2015), 5, Seite 1439-1457 (DE-627)171085515 (DE-600)1149610-1 (DE-576)034198547 1063-6706 nnns volume:23 year:2015 number:5 pages:1439-1457 http://dx.doi.org/10.1109/TFUZZ.2014.2362148 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6918497 http://search.proquest.com/docview/1729225354 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_30 GBV_ILN_70 GBV_ILN_4318 AR 23 2015 5 1439-1457 |
allfieldsSound |
10.1109/TFUZZ.2014.2362148 doi PQ20160617 (DE-627)OLC1959562800 (DE-599)GBVOLC1959562800 (PRQ)c1889-e2ccfc41a89bfc805b0c598160647ed0e5d1a3990359b39703800c0b0392ef940 (KEY)0226257620150000023000501439waytochoquetcalculus DE-627 ger DE-627 rakwb eng 004 DNB Sugeno, Michio verfasserin aut A Way to Choquet Calculus 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we deal with the Choquet integral and derivative with respect to fuzzy measures on the nonnegative real line and present a way to Choquet calculus as a new research paradigm. In Choquet calculus, a representation for calculating the continuous Choquet integral is first given by restricting the integrand to a class of nondecreasing and continuous functions and the fuzzy measure to a class of distorted Lebesgue measures. Next, the derivative of functions with respect to distorted Lebesgue measures is defined as the inverse operation of the Choquet integral. Then, elementary properties in Choquet calculus are explored. In addition, we clarify the relation of Choquet calculus with fractional calculus, where the fractional Choquet integral and derivative are newly defined. In addition, we consider differential equations with respect to distorted Lebesgue measures and give their solutions. Finally, we introduce conditional distorted Lebesgue measures and explore their properties. Generators Choquet calculus Fractional calculus Laplace equations Distortion measurement conditional distorted Lebesgue measure Integral equations distorted Lebesgue measure Differential equations Calculus Enthalten in IEEE transactions on fuzzy systems New York, NY : Inst., 1993 23(2015), 5, Seite 1439-1457 (DE-627)171085515 (DE-600)1149610-1 (DE-576)034198547 1063-6706 nnns volume:23 year:2015 number:5 pages:1439-1457 http://dx.doi.org/10.1109/TFUZZ.2014.2362148 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6918497 http://search.proquest.com/docview/1729225354 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_30 GBV_ILN_70 GBV_ILN_4318 AR 23 2015 5 1439-1457 |
language |
English |
source |
Enthalten in IEEE transactions on fuzzy systems 23(2015), 5, Seite 1439-1457 volume:23 year:2015 number:5 pages:1439-1457 |
sourceStr |
Enthalten in IEEE transactions on fuzzy systems 23(2015), 5, Seite 1439-1457 volume:23 year:2015 number:5 pages:1439-1457 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Generators Choquet calculus Fractional calculus Laplace equations Distortion measurement conditional distorted Lebesgue measure Integral equations distorted Lebesgue measure Differential equations Calculus |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on fuzzy systems |
authorswithroles_txt_mv |
Sugeno, Michio @@aut@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
171085515 |
dewey-sort |
14 |
id |
OLC1959562800 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1959562800</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714151555.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TFUZZ.2014.2362148</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1959562800</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1959562800</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1889-e2ccfc41a89bfc805b0c598160647ed0e5d1a3990359b39703800c0b0392ef940</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0226257620150000023000501439waytochoquetcalculus</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sugeno, Michio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Way to Choquet Calculus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we deal with the Choquet integral and derivative with respect to fuzzy measures on the nonnegative real line and present a way to Choquet calculus as a new research paradigm. In Choquet calculus, a representation for calculating the continuous Choquet integral is first given by restricting the integrand to a class of nondecreasing and continuous functions and the fuzzy measure to a class of distorted Lebesgue measures. Next, the derivative of functions with respect to distorted Lebesgue measures is defined as the inverse operation of the Choquet integral. Then, elementary properties in Choquet calculus are explored. In addition, we clarify the relation of Choquet calculus with fractional calculus, where the fractional Choquet integral and derivative are newly defined. In addition, we consider differential equations with respect to distorted Lebesgue measures and give their solutions. Finally, we introduce conditional distorted Lebesgue measures and explore their properties.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Choquet calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplace equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distortion measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conditional distorted Lebesgue measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distorted Lebesgue measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on fuzzy systems</subfield><subfield code="d">New York, NY : Inst., 1993</subfield><subfield code="g">23(2015), 5, Seite 1439-1457</subfield><subfield code="w">(DE-627)171085515</subfield><subfield code="w">(DE-600)1149610-1</subfield><subfield code="w">(DE-576)034198547</subfield><subfield code="x">1063-6706</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1439-1457</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TFUZZ.2014.2362148</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6918497</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1729225354</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2015</subfield><subfield code="e">5</subfield><subfield code="h">1439-1457</subfield></datafield></record></collection>
|
author |
Sugeno, Michio |
spellingShingle |
Sugeno, Michio ddc 004 misc Generators misc Choquet calculus misc Fractional calculus misc Laplace equations misc Distortion measurement misc conditional distorted Lebesgue measure misc Integral equations misc distorted Lebesgue measure misc Differential equations misc Calculus A Way to Choquet Calculus |
authorStr |
Sugeno, Michio |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171085515 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1063-6706 |
topic_title |
004 DNB A Way to Choquet Calculus Generators Choquet calculus Fractional calculus Laplace equations Distortion measurement conditional distorted Lebesgue measure Integral equations distorted Lebesgue measure Differential equations Calculus |
topic |
ddc 004 misc Generators misc Choquet calculus misc Fractional calculus misc Laplace equations misc Distortion measurement misc conditional distorted Lebesgue measure misc Integral equations misc distorted Lebesgue measure misc Differential equations misc Calculus |
topic_unstemmed |
ddc 004 misc Generators misc Choquet calculus misc Fractional calculus misc Laplace equations misc Distortion measurement misc conditional distorted Lebesgue measure misc Integral equations misc distorted Lebesgue measure misc Differential equations misc Calculus |
topic_browse |
ddc 004 misc Generators misc Choquet calculus misc Fractional calculus misc Laplace equations misc Distortion measurement misc conditional distorted Lebesgue measure misc Integral equations misc distorted Lebesgue measure misc Differential equations misc Calculus |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
IEEE transactions on fuzzy systems |
hierarchy_parent_id |
171085515 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
IEEE transactions on fuzzy systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171085515 (DE-600)1149610-1 (DE-576)034198547 |
title |
A Way to Choquet Calculus |
ctrlnum |
(DE-627)OLC1959562800 (DE-599)GBVOLC1959562800 (PRQ)c1889-e2ccfc41a89bfc805b0c598160647ed0e5d1a3990359b39703800c0b0392ef940 (KEY)0226257620150000023000501439waytochoquetcalculus |
title_full |
A Way to Choquet Calculus |
author_sort |
Sugeno, Michio |
journal |
IEEE transactions on fuzzy systems |
journalStr |
IEEE transactions on fuzzy systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1439 |
author_browse |
Sugeno, Michio |
container_volume |
23 |
class |
004 DNB |
format_se |
Aufsätze |
author-letter |
Sugeno, Michio |
doi_str_mv |
10.1109/TFUZZ.2014.2362148 |
dewey-full |
004 |
title_sort |
way to choquet calculus |
title_auth |
A Way to Choquet Calculus |
abstract |
In this paper, we deal with the Choquet integral and derivative with respect to fuzzy measures on the nonnegative real line and present a way to Choquet calculus as a new research paradigm. In Choquet calculus, a representation for calculating the continuous Choquet integral is first given by restricting the integrand to a class of nondecreasing and continuous functions and the fuzzy measure to a class of distorted Lebesgue measures. Next, the derivative of functions with respect to distorted Lebesgue measures is defined as the inverse operation of the Choquet integral. Then, elementary properties in Choquet calculus are explored. In addition, we clarify the relation of Choquet calculus with fractional calculus, where the fractional Choquet integral and derivative are newly defined. In addition, we consider differential equations with respect to distorted Lebesgue measures and give their solutions. Finally, we introduce conditional distorted Lebesgue measures and explore their properties. |
abstractGer |
In this paper, we deal with the Choquet integral and derivative with respect to fuzzy measures on the nonnegative real line and present a way to Choquet calculus as a new research paradigm. In Choquet calculus, a representation for calculating the continuous Choquet integral is first given by restricting the integrand to a class of nondecreasing and continuous functions and the fuzzy measure to a class of distorted Lebesgue measures. Next, the derivative of functions with respect to distorted Lebesgue measures is defined as the inverse operation of the Choquet integral. Then, elementary properties in Choquet calculus are explored. In addition, we clarify the relation of Choquet calculus with fractional calculus, where the fractional Choquet integral and derivative are newly defined. In addition, we consider differential equations with respect to distorted Lebesgue measures and give their solutions. Finally, we introduce conditional distorted Lebesgue measures and explore their properties. |
abstract_unstemmed |
In this paper, we deal with the Choquet integral and derivative with respect to fuzzy measures on the nonnegative real line and present a way to Choquet calculus as a new research paradigm. In Choquet calculus, a representation for calculating the continuous Choquet integral is first given by restricting the integrand to a class of nondecreasing and continuous functions and the fuzzy measure to a class of distorted Lebesgue measures. Next, the derivative of functions with respect to distorted Lebesgue measures is defined as the inverse operation of the Choquet integral. Then, elementary properties in Choquet calculus are explored. In addition, we clarify the relation of Choquet calculus with fractional calculus, where the fractional Choquet integral and derivative are newly defined. In addition, we consider differential equations with respect to distorted Lebesgue measures and give their solutions. Finally, we introduce conditional distorted Lebesgue measures and explore their properties. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_30 GBV_ILN_70 GBV_ILN_4318 |
container_issue |
5 |
title_short |
A Way to Choquet Calculus |
url |
http://dx.doi.org/10.1109/TFUZZ.2014.2362148 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6918497 http://search.proquest.com/docview/1729225354 |
remote_bool |
false |
ppnlink |
171085515 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1109/TFUZZ.2014.2362148 |
up_date |
2024-07-03T17:52:50.530Z |
_version_ |
1803581307519762432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1959562800</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714151555.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TFUZZ.2014.2362148</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1959562800</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1959562800</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1889-e2ccfc41a89bfc805b0c598160647ed0e5d1a3990359b39703800c0b0392ef940</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0226257620150000023000501439waytochoquetcalculus</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sugeno, Michio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Way to Choquet Calculus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we deal with the Choquet integral and derivative with respect to fuzzy measures on the nonnegative real line and present a way to Choquet calculus as a new research paradigm. In Choquet calculus, a representation for calculating the continuous Choquet integral is first given by restricting the integrand to a class of nondecreasing and continuous functions and the fuzzy measure to a class of distorted Lebesgue measures. Next, the derivative of functions with respect to distorted Lebesgue measures is defined as the inverse operation of the Choquet integral. Then, elementary properties in Choquet calculus are explored. In addition, we clarify the relation of Choquet calculus with fractional calculus, where the fractional Choquet integral and derivative are newly defined. In addition, we consider differential equations with respect to distorted Lebesgue measures and give their solutions. Finally, we introduce conditional distorted Lebesgue measures and explore their properties.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Choquet calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplace equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distortion measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conditional distorted Lebesgue measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distorted Lebesgue measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on fuzzy systems</subfield><subfield code="d">New York, NY : Inst., 1993</subfield><subfield code="g">23(2015), 5, Seite 1439-1457</subfield><subfield code="w">(DE-627)171085515</subfield><subfield code="w">(DE-600)1149610-1</subfield><subfield code="w">(DE-576)034198547</subfield><subfield code="x">1063-6706</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1439-1457</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TFUZZ.2014.2362148</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6918497</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1729225354</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2015</subfield><subfield code="e">5</subfield><subfield code="h">1439-1457</subfield></datafield></record></collection>
|
score |
7.400943 |