A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data

The current financial crisis has stressed the need to obtain more accurate prediction models in order to decrease risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue....
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Sanz, Jose Antonio [verfasserIn]

Bernardo, Dario

Herrera, Francisco

Bustince, Humberto

Hagras, Hani

Format:

Artikel

Sprache:

Englisch

Erschienen:

2015

Schlagwörter:

learning (artificial intelligence)

IVTURS FA RC-HD

Measurement

economic cycles

Predictive models

original FURIA

financial data processing

Accuracy

generated linguistic model

fuzzy approximative classifier

real-world financial modeling

fuzzy set theory

Biological system modeling

financial crisis

SMOTE

Proposals

knowledge based systems

type-1 interval-valued fuzzy counterparts

real-world imbalanced financial datasets

Data models

learning process

synthetic minority oversampling technique

compact evolutionary interval-valued fuzzy rule-based classification system

Equations

pattern classification

evolutionary computation

C4.5 decision tree

real-world financial prediction

interval-valued fuzzy rule-based classification system with tuning and rule selection

Datasets

Fuzzy logic

Übergeordnetes Werk:

Enthalten in: IEEE transactions on fuzzy systems - New York, NY : Inst., 1993, 23(2015), 4, Seite 973-990

Übergeordnetes Werk:

volume:23 ; year:2015 ; number:4 ; pages:973-990

Links:

Volltext
Link aufrufen
Link aufrufen

DOI / URN:

10.1109/TFUZZ.2014.2336263

Katalog-ID:

OLC1959563335

Nicht das Richtige dabei?

Schreiben Sie uns!