Regularity conditions in the realisability problem with applications to point processes and random closed sets
We study existence of random elements with partially specified distributions. The technique relies on the existence of a positive extension for linear functionals accompanied by additional conditions that ensure the regularity of the extension needed for interpreting it as a probability measure. It...
Ausführliche Beschreibung
Autor*in: |
Raphael Lachieze-Rey [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: © Copyright 2015 Institute of Mathematical Statistics |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The annals of applied probability - Cleveland, Ohio : Inst. of Mathematical Statistics, 1991, 25(2015), 1, Seite 116-149 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2015 ; number:1 ; pages:116-149 |
Links: |
---|
DOI / URN: |
10.1214/13-AAP990 |
---|
Katalog-ID: |
OLC1959666258 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1959666258 | ||
003 | DE-627 | ||
005 | 20230714151811.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1214/13-AAP990 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1959666258 | ||
035 | |a (DE-599)GBVOLC1959666258 | ||
035 | |a (PRQ)a2695-595f0ed16ab5cbb5b2422cf9d108bc38d8f4f32f30b1e99a1bd65fa73204cc6f0 | ||
035 | |a (KEY)0227692520150000025000100116regularityconditionsintherealisabilityproblemwitha | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DNB |
100 | 0 | |a Raphael Lachieze-Rey |e verfasserin |4 aut | |
245 | 1 | 0 | |a Regularity conditions in the realisability problem with applications to point processes and random closed sets |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We study existence of random elements with partially specified distributions. The technique relies on the existence of a positive extension for linear functionals accompanied by additional conditions that ensure the regularity of the extension needed for interpreting it as a probability measure. It is shown in which case the extension can be chosen to possess some invariance properties. The results are applied to the existence of point processes with given correlation measure and random closed sets with given two-point covering function or contact distribution function. It is shown that the regularity condition can be efficiently checked in many cases in order to ensure that the obtained point processes are indeed locally finite and random sets have closed realisations. | ||
540 | |a Nutzungsrecht: © Copyright 2015 Institute of Mathematical Statistics | ||
650 | 4 | |a Probability | |
650 | 4 | |a Efficiency | |
650 | 4 | |a Correlation analysis | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematical Physics | |
650 | 4 | |a random closed set | |
650 | 4 | |a two-point covering probability | |
650 | 4 | |a 46A40 | |
650 | 4 | |a 74A40 | |
650 | 4 | |a 47B65 | |
650 | 4 | |a contact distribution function | |
650 | 4 | |a correlation measure | |
650 | 4 | |a 60D05 | |
650 | 4 | |a Point process | |
650 | 4 | |a realisability | |
650 | 4 | |a 28C05 | |
650 | 4 | |a 60G55 | |
650 | 4 | |a 82D30 | |
700 | 0 | |a Ilya Molchanov |4 oth | |
773 | 0 | 8 | |i Enthalten in |t The annals of applied probability |d Cleveland, Ohio : Inst. of Mathematical Statistics, 1991 |g 25(2015), 1, Seite 116-149 |w (DE-627)130971227 |w (DE-600)1070890-X |w (DE-576)025191543 |x 1050-5164 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2015 |g number:1 |g pages:116-149 |
856 | 4 | 1 | |u http://dx.doi.org/10.1214/13-AAP990 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1644151656 |
856 | 4 | 2 | |u http://arxiv.org/abs/1102.1950 |
856 | 4 | 2 | |u http://projecteuclid.org/euclid.aoap/1418740181 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 25 |j 2015 |e 1 |h 116-149 |
author_variant |
r l r rlr |
---|---|
matchkey_str |
article:10505164:2015----::euaiyodtosnhraiaiiyrbewtapiaintpitrc |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1214/13-AAP990 doi PQ20160617 (DE-627)OLC1959666258 (DE-599)GBVOLC1959666258 (PRQ)a2695-595f0ed16ab5cbb5b2422cf9d108bc38d8f4f32f30b1e99a1bd65fa73204cc6f0 (KEY)0227692520150000025000100116regularityconditionsintherealisabilityproblemwitha DE-627 ger DE-627 rakwb eng 510 DNB Raphael Lachieze-Rey verfasserin aut Regularity conditions in the realisability problem with applications to point processes and random closed sets 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We study existence of random elements with partially specified distributions. The technique relies on the existence of a positive extension for linear functionals accompanied by additional conditions that ensure the regularity of the extension needed for interpreting it as a probability measure. It is shown in which case the extension can be chosen to possess some invariance properties. The results are applied to the existence of point processes with given correlation measure and random closed sets with given two-point covering function or contact distribution function. It is shown that the regularity condition can be efficiently checked in many cases in order to ensure that the obtained point processes are indeed locally finite and random sets have closed realisations. Nutzungsrecht: © Copyright 2015 Institute of Mathematical Statistics Probability Efficiency Correlation analysis Mathematics Mathematical Physics random closed set two-point covering probability 46A40 74A40 47B65 contact distribution function correlation measure 60D05 Point process realisability 28C05 60G55 82D30 Ilya Molchanov oth Enthalten in The annals of applied probability Cleveland, Ohio : Inst. of Mathematical Statistics, 1991 25(2015), 1, Seite 116-149 (DE-627)130971227 (DE-600)1070890-X (DE-576)025191543 1050-5164 nnns volume:25 year:2015 number:1 pages:116-149 http://dx.doi.org/10.1214/13-AAP990 Volltext http://search.proquest.com/docview/1644151656 http://arxiv.org/abs/1102.1950 http://projecteuclid.org/euclid.aoap/1418740181 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 AR 25 2015 1 116-149 |
spelling |
10.1214/13-AAP990 doi PQ20160617 (DE-627)OLC1959666258 (DE-599)GBVOLC1959666258 (PRQ)a2695-595f0ed16ab5cbb5b2422cf9d108bc38d8f4f32f30b1e99a1bd65fa73204cc6f0 (KEY)0227692520150000025000100116regularityconditionsintherealisabilityproblemwitha DE-627 ger DE-627 rakwb eng 510 DNB Raphael Lachieze-Rey verfasserin aut Regularity conditions in the realisability problem with applications to point processes and random closed sets 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We study existence of random elements with partially specified distributions. The technique relies on the existence of a positive extension for linear functionals accompanied by additional conditions that ensure the regularity of the extension needed for interpreting it as a probability measure. It is shown in which case the extension can be chosen to possess some invariance properties. The results are applied to the existence of point processes with given correlation measure and random closed sets with given two-point covering function or contact distribution function. It is shown that the regularity condition can be efficiently checked in many cases in order to ensure that the obtained point processes are indeed locally finite and random sets have closed realisations. Nutzungsrecht: © Copyright 2015 Institute of Mathematical Statistics Probability Efficiency Correlation analysis Mathematics Mathematical Physics random closed set two-point covering probability 46A40 74A40 47B65 contact distribution function correlation measure 60D05 Point process realisability 28C05 60G55 82D30 Ilya Molchanov oth Enthalten in The annals of applied probability Cleveland, Ohio : Inst. of Mathematical Statistics, 1991 25(2015), 1, Seite 116-149 (DE-627)130971227 (DE-600)1070890-X (DE-576)025191543 1050-5164 nnns volume:25 year:2015 number:1 pages:116-149 http://dx.doi.org/10.1214/13-AAP990 Volltext http://search.proquest.com/docview/1644151656 http://arxiv.org/abs/1102.1950 http://projecteuclid.org/euclid.aoap/1418740181 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 AR 25 2015 1 116-149 |
allfields_unstemmed |
10.1214/13-AAP990 doi PQ20160617 (DE-627)OLC1959666258 (DE-599)GBVOLC1959666258 (PRQ)a2695-595f0ed16ab5cbb5b2422cf9d108bc38d8f4f32f30b1e99a1bd65fa73204cc6f0 (KEY)0227692520150000025000100116regularityconditionsintherealisabilityproblemwitha DE-627 ger DE-627 rakwb eng 510 DNB Raphael Lachieze-Rey verfasserin aut Regularity conditions in the realisability problem with applications to point processes and random closed sets 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We study existence of random elements with partially specified distributions. The technique relies on the existence of a positive extension for linear functionals accompanied by additional conditions that ensure the regularity of the extension needed for interpreting it as a probability measure. It is shown in which case the extension can be chosen to possess some invariance properties. The results are applied to the existence of point processes with given correlation measure and random closed sets with given two-point covering function or contact distribution function. It is shown that the regularity condition can be efficiently checked in many cases in order to ensure that the obtained point processes are indeed locally finite and random sets have closed realisations. Nutzungsrecht: © Copyright 2015 Institute of Mathematical Statistics Probability Efficiency Correlation analysis Mathematics Mathematical Physics random closed set two-point covering probability 46A40 74A40 47B65 contact distribution function correlation measure 60D05 Point process realisability 28C05 60G55 82D30 Ilya Molchanov oth Enthalten in The annals of applied probability Cleveland, Ohio : Inst. of Mathematical Statistics, 1991 25(2015), 1, Seite 116-149 (DE-627)130971227 (DE-600)1070890-X (DE-576)025191543 1050-5164 nnns volume:25 year:2015 number:1 pages:116-149 http://dx.doi.org/10.1214/13-AAP990 Volltext http://search.proquest.com/docview/1644151656 http://arxiv.org/abs/1102.1950 http://projecteuclid.org/euclid.aoap/1418740181 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 AR 25 2015 1 116-149 |
allfieldsGer |
10.1214/13-AAP990 doi PQ20160617 (DE-627)OLC1959666258 (DE-599)GBVOLC1959666258 (PRQ)a2695-595f0ed16ab5cbb5b2422cf9d108bc38d8f4f32f30b1e99a1bd65fa73204cc6f0 (KEY)0227692520150000025000100116regularityconditionsintherealisabilityproblemwitha DE-627 ger DE-627 rakwb eng 510 DNB Raphael Lachieze-Rey verfasserin aut Regularity conditions in the realisability problem with applications to point processes and random closed sets 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We study existence of random elements with partially specified distributions. The technique relies on the existence of a positive extension for linear functionals accompanied by additional conditions that ensure the regularity of the extension needed for interpreting it as a probability measure. It is shown in which case the extension can be chosen to possess some invariance properties. The results are applied to the existence of point processes with given correlation measure and random closed sets with given two-point covering function or contact distribution function. It is shown that the regularity condition can be efficiently checked in many cases in order to ensure that the obtained point processes are indeed locally finite and random sets have closed realisations. Nutzungsrecht: © Copyright 2015 Institute of Mathematical Statistics Probability Efficiency Correlation analysis Mathematics Mathematical Physics random closed set two-point covering probability 46A40 74A40 47B65 contact distribution function correlation measure 60D05 Point process realisability 28C05 60G55 82D30 Ilya Molchanov oth Enthalten in The annals of applied probability Cleveland, Ohio : Inst. of Mathematical Statistics, 1991 25(2015), 1, Seite 116-149 (DE-627)130971227 (DE-600)1070890-X (DE-576)025191543 1050-5164 nnns volume:25 year:2015 number:1 pages:116-149 http://dx.doi.org/10.1214/13-AAP990 Volltext http://search.proquest.com/docview/1644151656 http://arxiv.org/abs/1102.1950 http://projecteuclid.org/euclid.aoap/1418740181 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 AR 25 2015 1 116-149 |
allfieldsSound |
10.1214/13-AAP990 doi PQ20160617 (DE-627)OLC1959666258 (DE-599)GBVOLC1959666258 (PRQ)a2695-595f0ed16ab5cbb5b2422cf9d108bc38d8f4f32f30b1e99a1bd65fa73204cc6f0 (KEY)0227692520150000025000100116regularityconditionsintherealisabilityproblemwitha DE-627 ger DE-627 rakwb eng 510 DNB Raphael Lachieze-Rey verfasserin aut Regularity conditions in the realisability problem with applications to point processes and random closed sets 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We study existence of random elements with partially specified distributions. The technique relies on the existence of a positive extension for linear functionals accompanied by additional conditions that ensure the regularity of the extension needed for interpreting it as a probability measure. It is shown in which case the extension can be chosen to possess some invariance properties. The results are applied to the existence of point processes with given correlation measure and random closed sets with given two-point covering function or contact distribution function. It is shown that the regularity condition can be efficiently checked in many cases in order to ensure that the obtained point processes are indeed locally finite and random sets have closed realisations. Nutzungsrecht: © Copyright 2015 Institute of Mathematical Statistics Probability Efficiency Correlation analysis Mathematics Mathematical Physics random closed set two-point covering probability 46A40 74A40 47B65 contact distribution function correlation measure 60D05 Point process realisability 28C05 60G55 82D30 Ilya Molchanov oth Enthalten in The annals of applied probability Cleveland, Ohio : Inst. of Mathematical Statistics, 1991 25(2015), 1, Seite 116-149 (DE-627)130971227 (DE-600)1070890-X (DE-576)025191543 1050-5164 nnns volume:25 year:2015 number:1 pages:116-149 http://dx.doi.org/10.1214/13-AAP990 Volltext http://search.proquest.com/docview/1644151656 http://arxiv.org/abs/1102.1950 http://projecteuclid.org/euclid.aoap/1418740181 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 AR 25 2015 1 116-149 |
language |
English |
source |
Enthalten in The annals of applied probability 25(2015), 1, Seite 116-149 volume:25 year:2015 number:1 pages:116-149 |
sourceStr |
Enthalten in The annals of applied probability 25(2015), 1, Seite 116-149 volume:25 year:2015 number:1 pages:116-149 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Probability Efficiency Correlation analysis Mathematics Mathematical Physics random closed set two-point covering probability 46A40 74A40 47B65 contact distribution function correlation measure 60D05 Point process realisability 28C05 60G55 82D30 |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
The annals of applied probability |
authorswithroles_txt_mv |
Raphael Lachieze-Rey @@aut@@ Ilya Molchanov @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
130971227 |
dewey-sort |
3510 |
id |
OLC1959666258 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1959666258</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714151811.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1214/13-AAP990</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1959666258</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1959666258</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a2695-595f0ed16ab5cbb5b2422cf9d108bc38d8f4f32f30b1e99a1bd65fa73204cc6f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0227692520150000025000100116regularityconditionsintherealisabilityproblemwitha</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Raphael Lachieze-Rey</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regularity conditions in the realisability problem with applications to point processes and random closed sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study existence of random elements with partially specified distributions. The technique relies on the existence of a positive extension for linear functionals accompanied by additional conditions that ensure the regularity of the extension needed for interpreting it as a probability measure. It is shown in which case the extension can be chosen to possess some invariance properties. The results are applied to the existence of point processes with given correlation measure and random closed sets with given two-point covering function or contact distribution function. It is shown that the regularity condition can be efficiently checked in many cases in order to ensure that the obtained point processes are indeed locally finite and random sets have closed realisations.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Copyright 2015 Institute of Mathematical Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Correlation analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random closed set</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-point covering probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">46A40</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">74A40</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">47B65</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">contact distribution function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">correlation measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">60D05</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Point process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">realisability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">28C05</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">60G55</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">82D30</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ilya Molchanov</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The annals of applied probability</subfield><subfield code="d">Cleveland, Ohio : Inst. of Mathematical Statistics, 1991</subfield><subfield code="g">25(2015), 1, Seite 116-149</subfield><subfield code="w">(DE-627)130971227</subfield><subfield code="w">(DE-600)1070890-X</subfield><subfield code="w">(DE-576)025191543</subfield><subfield code="x">1050-5164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:116-149</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1214/13-AAP990</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1644151656</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1102.1950</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://projecteuclid.org/euclid.aoap/1418740181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">116-149</subfield></datafield></record></collection>
|
author |
Raphael Lachieze-Rey |
spellingShingle |
Raphael Lachieze-Rey ddc 510 misc Probability misc Efficiency misc Correlation analysis misc Mathematics misc Mathematical Physics misc random closed set misc two-point covering probability misc 46A40 misc 74A40 misc 47B65 misc contact distribution function misc correlation measure misc 60D05 misc Point process misc realisability misc 28C05 misc 60G55 misc 82D30 Regularity conditions in the realisability problem with applications to point processes and random closed sets |
authorStr |
Raphael Lachieze-Rey |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130971227 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1050-5164 |
topic_title |
510 DNB Regularity conditions in the realisability problem with applications to point processes and random closed sets Probability Efficiency Correlation analysis Mathematics Mathematical Physics random closed set two-point covering probability 46A40 74A40 47B65 contact distribution function correlation measure 60D05 Point process realisability 28C05 60G55 82D30 |
topic |
ddc 510 misc Probability misc Efficiency misc Correlation analysis misc Mathematics misc Mathematical Physics misc random closed set misc two-point covering probability misc 46A40 misc 74A40 misc 47B65 misc contact distribution function misc correlation measure misc 60D05 misc Point process misc realisability misc 28C05 misc 60G55 misc 82D30 |
topic_unstemmed |
ddc 510 misc Probability misc Efficiency misc Correlation analysis misc Mathematics misc Mathematical Physics misc random closed set misc two-point covering probability misc 46A40 misc 74A40 misc 47B65 misc contact distribution function misc correlation measure misc 60D05 misc Point process misc realisability misc 28C05 misc 60G55 misc 82D30 |
topic_browse |
ddc 510 misc Probability misc Efficiency misc Correlation analysis misc Mathematics misc Mathematical Physics misc random closed set misc two-point covering probability misc 46A40 misc 74A40 misc 47B65 misc contact distribution function misc correlation measure misc 60D05 misc Point process misc realisability misc 28C05 misc 60G55 misc 82D30 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
i m im |
hierarchy_parent_title |
The annals of applied probability |
hierarchy_parent_id |
130971227 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
The annals of applied probability |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130971227 (DE-600)1070890-X (DE-576)025191543 |
title |
Regularity conditions in the realisability problem with applications to point processes and random closed sets |
ctrlnum |
(DE-627)OLC1959666258 (DE-599)GBVOLC1959666258 (PRQ)a2695-595f0ed16ab5cbb5b2422cf9d108bc38d8f4f32f30b1e99a1bd65fa73204cc6f0 (KEY)0227692520150000025000100116regularityconditionsintherealisabilityproblemwitha |
title_full |
Regularity conditions in the realisability problem with applications to point processes and random closed sets |
author_sort |
Raphael Lachieze-Rey |
journal |
The annals of applied probability |
journalStr |
The annals of applied probability |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
116 |
author_browse |
Raphael Lachieze-Rey |
container_volume |
25 |
class |
510 DNB |
format_se |
Aufsätze |
author-letter |
Raphael Lachieze-Rey |
doi_str_mv |
10.1214/13-AAP990 |
dewey-full |
510 |
title_sort |
regularity conditions in the realisability problem with applications to point processes and random closed sets |
title_auth |
Regularity conditions in the realisability problem with applications to point processes and random closed sets |
abstract |
We study existence of random elements with partially specified distributions. The technique relies on the existence of a positive extension for linear functionals accompanied by additional conditions that ensure the regularity of the extension needed for interpreting it as a probability measure. It is shown in which case the extension can be chosen to possess some invariance properties. The results are applied to the existence of point processes with given correlation measure and random closed sets with given two-point covering function or contact distribution function. It is shown that the regularity condition can be efficiently checked in many cases in order to ensure that the obtained point processes are indeed locally finite and random sets have closed realisations. |
abstractGer |
We study existence of random elements with partially specified distributions. The technique relies on the existence of a positive extension for linear functionals accompanied by additional conditions that ensure the regularity of the extension needed for interpreting it as a probability measure. It is shown in which case the extension can be chosen to possess some invariance properties. The results are applied to the existence of point processes with given correlation measure and random closed sets with given two-point covering function or contact distribution function. It is shown that the regularity condition can be efficiently checked in many cases in order to ensure that the obtained point processes are indeed locally finite and random sets have closed realisations. |
abstract_unstemmed |
We study existence of random elements with partially specified distributions. The technique relies on the existence of a positive extension for linear functionals accompanied by additional conditions that ensure the regularity of the extension needed for interpreting it as a probability measure. It is shown in which case the extension can be chosen to possess some invariance properties. The results are applied to the existence of point processes with given correlation measure and random closed sets with given two-point covering function or contact distribution function. It is shown that the regularity condition can be efficiently checked in many cases in order to ensure that the obtained point processes are indeed locally finite and random sets have closed realisations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4305 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 |
container_issue |
1 |
title_short |
Regularity conditions in the realisability problem with applications to point processes and random closed sets |
url |
http://dx.doi.org/10.1214/13-AAP990 http://search.proquest.com/docview/1644151656 http://arxiv.org/abs/1102.1950 http://projecteuclid.org/euclid.aoap/1418740181 |
remote_bool |
false |
author2 |
Ilya Molchanov |
author2Str |
Ilya Molchanov |
ppnlink |
130971227 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1214/13-AAP990 |
up_date |
2024-07-03T18:19:49.932Z |
_version_ |
1803583005591076864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1959666258</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714151811.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1214/13-AAP990</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1959666258</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1959666258</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a2695-595f0ed16ab5cbb5b2422cf9d108bc38d8f4f32f30b1e99a1bd65fa73204cc6f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0227692520150000025000100116regularityconditionsintherealisabilityproblemwitha</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Raphael Lachieze-Rey</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regularity conditions in the realisability problem with applications to point processes and random closed sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study existence of random elements with partially specified distributions. The technique relies on the existence of a positive extension for linear functionals accompanied by additional conditions that ensure the regularity of the extension needed for interpreting it as a probability measure. It is shown in which case the extension can be chosen to possess some invariance properties. The results are applied to the existence of point processes with given correlation measure and random closed sets with given two-point covering function or contact distribution function. It is shown that the regularity condition can be efficiently checked in many cases in order to ensure that the obtained point processes are indeed locally finite and random sets have closed realisations.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Copyright 2015 Institute of Mathematical Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Correlation analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random closed set</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-point covering probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">46A40</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">74A40</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">47B65</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">contact distribution function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">correlation measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">60D05</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Point process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">realisability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">28C05</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">60G55</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">82D30</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ilya Molchanov</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The annals of applied probability</subfield><subfield code="d">Cleveland, Ohio : Inst. of Mathematical Statistics, 1991</subfield><subfield code="g">25(2015), 1, Seite 116-149</subfield><subfield code="w">(DE-627)130971227</subfield><subfield code="w">(DE-600)1070890-X</subfield><subfield code="w">(DE-576)025191543</subfield><subfield code="x">1050-5164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:116-149</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1214/13-AAP990</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1644151656</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1102.1950</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://projecteuclid.org/euclid.aoap/1418740181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">116-149</subfield></datafield></record></collection>
|
score |
7.402545 |