Hessian Semi-Supervised Sparse Feature Selection Based on } -Matrix Norm

Semi-supervised sparse feature selection, which can exploit the small number labeled data and large number unlabeled data simultaneously, has become an important technique in many applications on large-scale web image owing to its high efficiency and effectiveness. Recently, graph Laplacian-based se...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Caijuan Shi [verfasserIn]

Qiuiqi Ruan

Gaoyun An

Ruizhen Zhao

Format:

Artikel

Sprache:

Englisch

Erschienen:

2015

Schlagwörter:

learning (artificial intelligence)

Laplace equations

Robustness

semi-supervised learning

image annotation task

Educational institutions

Hessian regularization

Training data

L 2

Information science

image segmentation

Hessian matrices

1/2}} -matrix norm

feature extraction

iterative methods

Manifolds

semisupervised learning

1/2 -matrix norm

web image annotation

iterative algorithm

Hessian semisupervised sparse feature selection

large-scale Web image

Internet

l_{2

sparse feature selection

Algorithms

Drafting

Production planning

Systematik:

Übergeordnetes Werk:

Enthalten in: IEEE transactions on multimedia - New York, NY : Institute of Electrical and Electronics Engineers, 1999, 17(2015), 1, Seite 16-28

Übergeordnetes Werk:

volume:17 ; year:2015 ; number:1 ; pages:16-28

Links:

Volltext
Link aufrufen
Link aufrufen

DOI / URN:

10.1109/TMM.2014.2375792

Katalog-ID:

OLC1960756486

Nicht das Richtige dabei?

Schreiben Sie uns!