Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images
Tumor response to treatment varies among patients. Patient-specific prediction of tumor evolution based on medical images during the treatment can help to build and adapt patient's treatment planning in a non-invasive way. Personalized tumor growth modeling allows patient-specific prediction by...
Ausführliche Beschreibung
Autor*in: |
Mi, Hongmei [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2015 Elsevier B.V. All rights reserved. |
---|
Übergeordnetes Werk: |
Enthalten in: Medical image analysis - Amsterdam [u.a.] : Elsevier, 1996, 23(2015), 1, Seite 84-91 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2015 ; number:1 ; pages:84-91 |
Links: |
---|
DOI / URN: |
10.1016/j.media.2015.04.016 |
---|
Katalog-ID: |
OLC1960853503 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1960853503 | ||
003 | DE-627 | ||
005 | 20230714153605.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.media.2015.04.016 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1960853503 | ||
035 | |a (DE-599)GBVOLC1960853503 | ||
035 | |a (PRQ)c1277-22817d8221aa15326491446ce162e7f032a54769a0efbcd773e1a19535fd50ec0 | ||
035 | |a (KEY)0392983320150000023000100084jointtumorgrowthpredictionandtumorsegmentationonth | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q ZDB |
100 | 1 | |a Mi, Hongmei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Tumor response to treatment varies among patients. Patient-specific prediction of tumor evolution based on medical images during the treatment can help to build and adapt patient's treatment planning in a non-invasive way. Personalized tumor growth modeling allows patient-specific prediction by estimating model parameters based on individual's images. The model parameters are often estimated by optimizing a cost function constructed based on the tumor delineations. In this paper, we propose a joint framework for tumor growth prediction and tumor segmentation in the context of patient's therapeutic follow ups. Throughout the treatment, a series of sequential positron emission tomography (PET) images are acquired for tumor response monitoring. We propose to take into account the predicted information, which is used in combination with the random walks (RW) algorithm, to develop an automatic tumor segmentation method on PET images. Moreover, we propose an iterative scheme of RW, making the segmentation more performant. Furthermore, the obtained segmentation is applied to the process of model parameter estimation so as to get the model based prediction of tumor evolution. We evaluate our methods on 7 lung tumor patients, totaling 29 PET exams, under radiotherapy by comparing the obtained tumor prediction and tumor segmentation with manual tumor delineation by expert. Our system produces promising results when compared to the state-of-the-art methods. | ||
540 | |a Nutzungsrecht: Copyright © 2015 Elsevier B.V. All rights reserved. | ||
700 | 1 | |a Petitjean, Caroline |4 oth | |
700 | 1 | |a Vera, Pierre |4 oth | |
700 | 1 | |a Ruan, Su |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Medical image analysis |d Amsterdam [u.a.] : Elsevier, 1996 |g 23(2015), 1, Seite 84-91 |w (DE-627)223260010 |w (DE-600)1356436-5 |w (DE-576)080160034 |x 1361-8415 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2015 |g number:1 |g pages:84-91 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.media.2015.04.016 |3 Volltext |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25988489 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_4219 | ||
951 | |a AR | ||
952 | |d 23 |j 2015 |e 1 |h 84-91 |
author_variant |
h m hm |
---|---|
matchkey_str |
article:13618415:2015----::ontmrrwhrdcinntmremnainnhrpu |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1016/j.media.2015.04.016 doi PQ20160617 (DE-627)OLC1960853503 (DE-599)GBVOLC1960853503 (PRQ)c1277-22817d8221aa15326491446ce162e7f032a54769a0efbcd773e1a19535fd50ec0 (KEY)0392983320150000023000100084jointtumorgrowthpredictionandtumorsegmentationonth DE-627 ger DE-627 rakwb eng 004 ZDB Mi, Hongmei verfasserin aut Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Tumor response to treatment varies among patients. Patient-specific prediction of tumor evolution based on medical images during the treatment can help to build and adapt patient's treatment planning in a non-invasive way. Personalized tumor growth modeling allows patient-specific prediction by estimating model parameters based on individual's images. The model parameters are often estimated by optimizing a cost function constructed based on the tumor delineations. In this paper, we propose a joint framework for tumor growth prediction and tumor segmentation in the context of patient's therapeutic follow ups. Throughout the treatment, a series of sequential positron emission tomography (PET) images are acquired for tumor response monitoring. We propose to take into account the predicted information, which is used in combination with the random walks (RW) algorithm, to develop an automatic tumor segmentation method on PET images. Moreover, we propose an iterative scheme of RW, making the segmentation more performant. Furthermore, the obtained segmentation is applied to the process of model parameter estimation so as to get the model based prediction of tumor evolution. We evaluate our methods on 7 lung tumor patients, totaling 29 PET exams, under radiotherapy by comparing the obtained tumor prediction and tumor segmentation with manual tumor delineation by expert. Our system produces promising results when compared to the state-of-the-art methods. Nutzungsrecht: Copyright © 2015 Elsevier B.V. All rights reserved. Petitjean, Caroline oth Vera, Pierre oth Ruan, Su oth Enthalten in Medical image analysis Amsterdam [u.a.] : Elsevier, 1996 23(2015), 1, Seite 84-91 (DE-627)223260010 (DE-600)1356436-5 (DE-576)080160034 1361-8415 nnns volume:23 year:2015 number:1 pages:84-91 http://dx.doi.org/10.1016/j.media.2015.04.016 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25988489 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_4219 AR 23 2015 1 84-91 |
spelling |
10.1016/j.media.2015.04.016 doi PQ20160617 (DE-627)OLC1960853503 (DE-599)GBVOLC1960853503 (PRQ)c1277-22817d8221aa15326491446ce162e7f032a54769a0efbcd773e1a19535fd50ec0 (KEY)0392983320150000023000100084jointtumorgrowthpredictionandtumorsegmentationonth DE-627 ger DE-627 rakwb eng 004 ZDB Mi, Hongmei verfasserin aut Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Tumor response to treatment varies among patients. Patient-specific prediction of tumor evolution based on medical images during the treatment can help to build and adapt patient's treatment planning in a non-invasive way. Personalized tumor growth modeling allows patient-specific prediction by estimating model parameters based on individual's images. The model parameters are often estimated by optimizing a cost function constructed based on the tumor delineations. In this paper, we propose a joint framework for tumor growth prediction and tumor segmentation in the context of patient's therapeutic follow ups. Throughout the treatment, a series of sequential positron emission tomography (PET) images are acquired for tumor response monitoring. We propose to take into account the predicted information, which is used in combination with the random walks (RW) algorithm, to develop an automatic tumor segmentation method on PET images. Moreover, we propose an iterative scheme of RW, making the segmentation more performant. Furthermore, the obtained segmentation is applied to the process of model parameter estimation so as to get the model based prediction of tumor evolution. We evaluate our methods on 7 lung tumor patients, totaling 29 PET exams, under radiotherapy by comparing the obtained tumor prediction and tumor segmentation with manual tumor delineation by expert. Our system produces promising results when compared to the state-of-the-art methods. Nutzungsrecht: Copyright © 2015 Elsevier B.V. All rights reserved. Petitjean, Caroline oth Vera, Pierre oth Ruan, Su oth Enthalten in Medical image analysis Amsterdam [u.a.] : Elsevier, 1996 23(2015), 1, Seite 84-91 (DE-627)223260010 (DE-600)1356436-5 (DE-576)080160034 1361-8415 nnns volume:23 year:2015 number:1 pages:84-91 http://dx.doi.org/10.1016/j.media.2015.04.016 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25988489 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_4219 AR 23 2015 1 84-91 |
allfields_unstemmed |
10.1016/j.media.2015.04.016 doi PQ20160617 (DE-627)OLC1960853503 (DE-599)GBVOLC1960853503 (PRQ)c1277-22817d8221aa15326491446ce162e7f032a54769a0efbcd773e1a19535fd50ec0 (KEY)0392983320150000023000100084jointtumorgrowthpredictionandtumorsegmentationonth DE-627 ger DE-627 rakwb eng 004 ZDB Mi, Hongmei verfasserin aut Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Tumor response to treatment varies among patients. Patient-specific prediction of tumor evolution based on medical images during the treatment can help to build and adapt patient's treatment planning in a non-invasive way. Personalized tumor growth modeling allows patient-specific prediction by estimating model parameters based on individual's images. The model parameters are often estimated by optimizing a cost function constructed based on the tumor delineations. In this paper, we propose a joint framework for tumor growth prediction and tumor segmentation in the context of patient's therapeutic follow ups. Throughout the treatment, a series of sequential positron emission tomography (PET) images are acquired for tumor response monitoring. We propose to take into account the predicted information, which is used in combination with the random walks (RW) algorithm, to develop an automatic tumor segmentation method on PET images. Moreover, we propose an iterative scheme of RW, making the segmentation more performant. Furthermore, the obtained segmentation is applied to the process of model parameter estimation so as to get the model based prediction of tumor evolution. We evaluate our methods on 7 lung tumor patients, totaling 29 PET exams, under radiotherapy by comparing the obtained tumor prediction and tumor segmentation with manual tumor delineation by expert. Our system produces promising results when compared to the state-of-the-art methods. Nutzungsrecht: Copyright © 2015 Elsevier B.V. All rights reserved. Petitjean, Caroline oth Vera, Pierre oth Ruan, Su oth Enthalten in Medical image analysis Amsterdam [u.a.] : Elsevier, 1996 23(2015), 1, Seite 84-91 (DE-627)223260010 (DE-600)1356436-5 (DE-576)080160034 1361-8415 nnns volume:23 year:2015 number:1 pages:84-91 http://dx.doi.org/10.1016/j.media.2015.04.016 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25988489 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_4219 AR 23 2015 1 84-91 |
allfieldsGer |
10.1016/j.media.2015.04.016 doi PQ20160617 (DE-627)OLC1960853503 (DE-599)GBVOLC1960853503 (PRQ)c1277-22817d8221aa15326491446ce162e7f032a54769a0efbcd773e1a19535fd50ec0 (KEY)0392983320150000023000100084jointtumorgrowthpredictionandtumorsegmentationonth DE-627 ger DE-627 rakwb eng 004 ZDB Mi, Hongmei verfasserin aut Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Tumor response to treatment varies among patients. Patient-specific prediction of tumor evolution based on medical images during the treatment can help to build and adapt patient's treatment planning in a non-invasive way. Personalized tumor growth modeling allows patient-specific prediction by estimating model parameters based on individual's images. The model parameters are often estimated by optimizing a cost function constructed based on the tumor delineations. In this paper, we propose a joint framework for tumor growth prediction and tumor segmentation in the context of patient's therapeutic follow ups. Throughout the treatment, a series of sequential positron emission tomography (PET) images are acquired for tumor response monitoring. We propose to take into account the predicted information, which is used in combination with the random walks (RW) algorithm, to develop an automatic tumor segmentation method on PET images. Moreover, we propose an iterative scheme of RW, making the segmentation more performant. Furthermore, the obtained segmentation is applied to the process of model parameter estimation so as to get the model based prediction of tumor evolution. We evaluate our methods on 7 lung tumor patients, totaling 29 PET exams, under radiotherapy by comparing the obtained tumor prediction and tumor segmentation with manual tumor delineation by expert. Our system produces promising results when compared to the state-of-the-art methods. Nutzungsrecht: Copyright © 2015 Elsevier B.V. All rights reserved. Petitjean, Caroline oth Vera, Pierre oth Ruan, Su oth Enthalten in Medical image analysis Amsterdam [u.a.] : Elsevier, 1996 23(2015), 1, Seite 84-91 (DE-627)223260010 (DE-600)1356436-5 (DE-576)080160034 1361-8415 nnns volume:23 year:2015 number:1 pages:84-91 http://dx.doi.org/10.1016/j.media.2015.04.016 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25988489 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_4219 AR 23 2015 1 84-91 |
allfieldsSound |
10.1016/j.media.2015.04.016 doi PQ20160617 (DE-627)OLC1960853503 (DE-599)GBVOLC1960853503 (PRQ)c1277-22817d8221aa15326491446ce162e7f032a54769a0efbcd773e1a19535fd50ec0 (KEY)0392983320150000023000100084jointtumorgrowthpredictionandtumorsegmentationonth DE-627 ger DE-627 rakwb eng 004 ZDB Mi, Hongmei verfasserin aut Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Tumor response to treatment varies among patients. Patient-specific prediction of tumor evolution based on medical images during the treatment can help to build and adapt patient's treatment planning in a non-invasive way. Personalized tumor growth modeling allows patient-specific prediction by estimating model parameters based on individual's images. The model parameters are often estimated by optimizing a cost function constructed based on the tumor delineations. In this paper, we propose a joint framework for tumor growth prediction and tumor segmentation in the context of patient's therapeutic follow ups. Throughout the treatment, a series of sequential positron emission tomography (PET) images are acquired for tumor response monitoring. We propose to take into account the predicted information, which is used in combination with the random walks (RW) algorithm, to develop an automatic tumor segmentation method on PET images. Moreover, we propose an iterative scheme of RW, making the segmentation more performant. Furthermore, the obtained segmentation is applied to the process of model parameter estimation so as to get the model based prediction of tumor evolution. We evaluate our methods on 7 lung tumor patients, totaling 29 PET exams, under radiotherapy by comparing the obtained tumor prediction and tumor segmentation with manual tumor delineation by expert. Our system produces promising results when compared to the state-of-the-art methods. Nutzungsrecht: Copyright © 2015 Elsevier B.V. All rights reserved. Petitjean, Caroline oth Vera, Pierre oth Ruan, Su oth Enthalten in Medical image analysis Amsterdam [u.a.] : Elsevier, 1996 23(2015), 1, Seite 84-91 (DE-627)223260010 (DE-600)1356436-5 (DE-576)080160034 1361-8415 nnns volume:23 year:2015 number:1 pages:84-91 http://dx.doi.org/10.1016/j.media.2015.04.016 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25988489 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_4219 AR 23 2015 1 84-91 |
language |
English |
source |
Enthalten in Medical image analysis 23(2015), 1, Seite 84-91 volume:23 year:2015 number:1 pages:84-91 |
sourceStr |
Enthalten in Medical image analysis 23(2015), 1, Seite 84-91 volume:23 year:2015 number:1 pages:84-91 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Medical image analysis |
authorswithroles_txt_mv |
Mi, Hongmei @@aut@@ Petitjean, Caroline @@oth@@ Vera, Pierre @@oth@@ Ruan, Su @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
223260010 |
dewey-sort |
14 |
id |
OLC1960853503 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1960853503</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714153605.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.media.2015.04.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1960853503</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1960853503</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1277-22817d8221aa15326491446ce162e7f032a54769a0efbcd773e1a19535fd50ec0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0392983320150000023000100084jointtumorgrowthpredictionandtumorsegmentationonth</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mi, Hongmei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tumor response to treatment varies among patients. Patient-specific prediction of tumor evolution based on medical images during the treatment can help to build and adapt patient's treatment planning in a non-invasive way. Personalized tumor growth modeling allows patient-specific prediction by estimating model parameters based on individual's images. The model parameters are often estimated by optimizing a cost function constructed based on the tumor delineations. In this paper, we propose a joint framework for tumor growth prediction and tumor segmentation in the context of patient's therapeutic follow ups. Throughout the treatment, a series of sequential positron emission tomography (PET) images are acquired for tumor response monitoring. We propose to take into account the predicted information, which is used in combination with the random walks (RW) algorithm, to develop an automatic tumor segmentation method on PET images. Moreover, we propose an iterative scheme of RW, making the segmentation more performant. Furthermore, the obtained segmentation is applied to the process of model parameter estimation so as to get the model based prediction of tumor evolution. We evaluate our methods on 7 lung tumor patients, totaling 29 PET exams, under radiotherapy by comparing the obtained tumor prediction and tumor segmentation with manual tumor delineation by expert. Our system produces promising results when compared to the state-of-the-art methods.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 Elsevier B.V. All rights reserved.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petitjean, Caroline</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vera, Pierre</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruan, Su</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Medical image analysis</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1996</subfield><subfield code="g">23(2015), 1, Seite 84-91</subfield><subfield code="w">(DE-627)223260010</subfield><subfield code="w">(DE-600)1356436-5</subfield><subfield code="w">(DE-576)080160034</subfield><subfield code="x">1361-8415</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:84-91</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.media.2015.04.016</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25988489</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">84-91</subfield></datafield></record></collection>
|
author |
Mi, Hongmei |
spellingShingle |
Mi, Hongmei ddc 004 Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images |
authorStr |
Mi, Hongmei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)223260010 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1361-8415 |
topic_title |
004 ZDB Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images |
topic |
ddc 004 |
topic_unstemmed |
ddc 004 |
topic_browse |
ddc 004 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
c p cp p v pv s r sr |
hierarchy_parent_title |
Medical image analysis |
hierarchy_parent_id |
223260010 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Medical image analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)223260010 (DE-600)1356436-5 (DE-576)080160034 |
title |
Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images |
ctrlnum |
(DE-627)OLC1960853503 (DE-599)GBVOLC1960853503 (PRQ)c1277-22817d8221aa15326491446ce162e7f032a54769a0efbcd773e1a19535fd50ec0 (KEY)0392983320150000023000100084jointtumorgrowthpredictionandtumorsegmentationonth |
title_full |
Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images |
author_sort |
Mi, Hongmei |
journal |
Medical image analysis |
journalStr |
Medical image analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
84 |
author_browse |
Mi, Hongmei |
container_volume |
23 |
class |
004 ZDB |
format_se |
Aufsätze |
author-letter |
Mi, Hongmei |
doi_str_mv |
10.1016/j.media.2015.04.016 |
dewey-full |
004 |
title_sort |
joint tumor growth prediction and tumor segmentation on therapeutic follow-up pet images |
title_auth |
Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images |
abstract |
Tumor response to treatment varies among patients. Patient-specific prediction of tumor evolution based on medical images during the treatment can help to build and adapt patient's treatment planning in a non-invasive way. Personalized tumor growth modeling allows patient-specific prediction by estimating model parameters based on individual's images. The model parameters are often estimated by optimizing a cost function constructed based on the tumor delineations. In this paper, we propose a joint framework for tumor growth prediction and tumor segmentation in the context of patient's therapeutic follow ups. Throughout the treatment, a series of sequential positron emission tomography (PET) images are acquired for tumor response monitoring. We propose to take into account the predicted information, which is used in combination with the random walks (RW) algorithm, to develop an automatic tumor segmentation method on PET images. Moreover, we propose an iterative scheme of RW, making the segmentation more performant. Furthermore, the obtained segmentation is applied to the process of model parameter estimation so as to get the model based prediction of tumor evolution. We evaluate our methods on 7 lung tumor patients, totaling 29 PET exams, under radiotherapy by comparing the obtained tumor prediction and tumor segmentation with manual tumor delineation by expert. Our system produces promising results when compared to the state-of-the-art methods. |
abstractGer |
Tumor response to treatment varies among patients. Patient-specific prediction of tumor evolution based on medical images during the treatment can help to build and adapt patient's treatment planning in a non-invasive way. Personalized tumor growth modeling allows patient-specific prediction by estimating model parameters based on individual's images. The model parameters are often estimated by optimizing a cost function constructed based on the tumor delineations. In this paper, we propose a joint framework for tumor growth prediction and tumor segmentation in the context of patient's therapeutic follow ups. Throughout the treatment, a series of sequential positron emission tomography (PET) images are acquired for tumor response monitoring. We propose to take into account the predicted information, which is used in combination with the random walks (RW) algorithm, to develop an automatic tumor segmentation method on PET images. Moreover, we propose an iterative scheme of RW, making the segmentation more performant. Furthermore, the obtained segmentation is applied to the process of model parameter estimation so as to get the model based prediction of tumor evolution. We evaluate our methods on 7 lung tumor patients, totaling 29 PET exams, under radiotherapy by comparing the obtained tumor prediction and tumor segmentation with manual tumor delineation by expert. Our system produces promising results when compared to the state-of-the-art methods. |
abstract_unstemmed |
Tumor response to treatment varies among patients. Patient-specific prediction of tumor evolution based on medical images during the treatment can help to build and adapt patient's treatment planning in a non-invasive way. Personalized tumor growth modeling allows patient-specific prediction by estimating model parameters based on individual's images. The model parameters are often estimated by optimizing a cost function constructed based on the tumor delineations. In this paper, we propose a joint framework for tumor growth prediction and tumor segmentation in the context of patient's therapeutic follow ups. Throughout the treatment, a series of sequential positron emission tomography (PET) images are acquired for tumor response monitoring. We propose to take into account the predicted information, which is used in combination with the random walks (RW) algorithm, to develop an automatic tumor segmentation method on PET images. Moreover, we propose an iterative scheme of RW, making the segmentation more performant. Furthermore, the obtained segmentation is applied to the process of model parameter estimation so as to get the model based prediction of tumor evolution. We evaluate our methods on 7 lung tumor patients, totaling 29 PET exams, under radiotherapy by comparing the obtained tumor prediction and tumor segmentation with manual tumor delineation by expert. Our system produces promising results when compared to the state-of-the-art methods. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_4219 |
container_issue |
1 |
title_short |
Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images |
url |
http://dx.doi.org/10.1016/j.media.2015.04.016 http://www.ncbi.nlm.nih.gov/pubmed/25988489 |
remote_bool |
false |
author2 |
Petitjean, Caroline Vera, Pierre Ruan, Su |
author2Str |
Petitjean, Caroline Vera, Pierre Ruan, Su |
ppnlink |
223260010 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.media.2015.04.016 |
up_date |
2024-07-03T22:51:45.531Z |
_version_ |
1803600113730322432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1960853503</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714153605.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.media.2015.04.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1960853503</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1960853503</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1277-22817d8221aa15326491446ce162e7f032a54769a0efbcd773e1a19535fd50ec0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0392983320150000023000100084jointtumorgrowthpredictionandtumorsegmentationonth</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mi, Hongmei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tumor response to treatment varies among patients. Patient-specific prediction of tumor evolution based on medical images during the treatment can help to build and adapt patient's treatment planning in a non-invasive way. Personalized tumor growth modeling allows patient-specific prediction by estimating model parameters based on individual's images. The model parameters are often estimated by optimizing a cost function constructed based on the tumor delineations. In this paper, we propose a joint framework for tumor growth prediction and tumor segmentation in the context of patient's therapeutic follow ups. Throughout the treatment, a series of sequential positron emission tomography (PET) images are acquired for tumor response monitoring. We propose to take into account the predicted information, which is used in combination with the random walks (RW) algorithm, to develop an automatic tumor segmentation method on PET images. Moreover, we propose an iterative scheme of RW, making the segmentation more performant. Furthermore, the obtained segmentation is applied to the process of model parameter estimation so as to get the model based prediction of tumor evolution. We evaluate our methods on 7 lung tumor patients, totaling 29 PET exams, under radiotherapy by comparing the obtained tumor prediction and tumor segmentation with manual tumor delineation by expert. Our system produces promising results when compared to the state-of-the-art methods.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 Elsevier B.V. All rights reserved.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petitjean, Caroline</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vera, Pierre</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruan, Su</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Medical image analysis</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1996</subfield><subfield code="g">23(2015), 1, Seite 84-91</subfield><subfield code="w">(DE-627)223260010</subfield><subfield code="w">(DE-600)1356436-5</subfield><subfield code="w">(DE-576)080160034</subfield><subfield code="x">1361-8415</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:84-91</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.media.2015.04.016</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25988489</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">84-91</subfield></datafield></record></collection>
|
score |
7.4028435 |