Material properties and operating configurations of membrane reactors for propane dehydrogenation
A modeling‐based approach is presented to understand physically realistic and technologically interesting material properties and operating configurations of packed‐bed membrane reactors (PBMRs) for propane dehydrogenation (PDH). PBMRs composed of microporous or mesoporous membranes combined with a...
Ausführliche Beschreibung
Autor*in: |
Choi, Seung‐Won [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2014 American Institute of Chemical Engineers |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: AIChE journal - Hoboken, NJ : Wiley-Blackwell, 1955, 61(2015), 3, Seite 922-935 |
---|---|
Übergeordnetes Werk: |
volume:61 ; year:2015 ; number:3 ; pages:922-935 |
Links: |
---|
DOI / URN: |
10.1002/aic.14700 |
---|
Katalog-ID: |
OLC196150863X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC196150863X | ||
003 | DE-627 | ||
005 | 20230508184314.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/aic.14700 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC196150863X | ||
035 | |a (DE-599)GBVOLC196150863X | ||
035 | |a (PRQ)c2506-cd77edf650e8ceecf6bd9f9a43154e56ce94c82787bdd5a9fbf282b8bff218a93 | ||
035 | |a (KEY)0553148920150000061000300922materialpropertiesandoperatingconfigurationsofmemb | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q DNB |
084 | |a 58.00 |2 bkl | ||
100 | 1 | |a Choi, Seung‐Won |e verfasserin |4 aut | |
245 | 1 | 0 | |a Material properties and operating configurations of membrane reactors for propane dehydrogenation |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A modeling‐based approach is presented to understand physically realistic and technologically interesting material properties and operating configurations of packed‐bed membrane reactors (PBMRs) for propane dehydrogenation (PDH). PBMRs composed of microporous or mesoporous membranes combined with a PDH catalyst are considered. The influence of reaction and membrane transport parameters, as well as operating parameters such as sweep flow and catalyst placement, are investigated to determine desired “operating windows” for isothermal and nonisothermal operation. Higher Damköhler (Da) and lower Péclet (Pe) numbers are generally helpful, but are much more beneficial with highly H 2 ‐selective membranes rather than higher‐flux, lower‐selectivity membranes. H 2 ‐selective membranes show a plateau region of conversion that can be overcome by a large sweep flow or countercurrent operation. The latter shows a complex trade‐off between kinetics and permeation, and is effective only in a limited window. H 2 ‐selective PBMRs will greatly benefit from the fabrication of thin (∼1 µm or less) membranes. © 2014 American Institute of Chemical Engineers AIChE J , 61: 922–935, 2015 | ||
540 | |a Nutzungsrecht: © 2014 American Institute of Chemical Engineers | ||
650 | 4 | |a propane dehydrogenation catalyst | |
650 | 4 | |a membrane reactor | |
650 | 4 | |a propane dehydrogenation | |
650 | 4 | |a zeolite membrane | |
650 | 4 | |a modeling | |
650 | 4 | |a Membrane reactors | |
650 | 4 | |a Reaction kinetics | |
650 | 4 | |a Catalysts | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Chemical reactions | |
650 | 4 | |a Dehydrogenases | |
700 | 1 | |a Jones, Christopher W |4 oth | |
700 | 1 | |a Nair, Sankar |4 oth | |
700 | 1 | |a Sholl, David S |4 oth | |
700 | 1 | |a Moore, Jason S |4 oth | |
700 | 1 | |a Liu, Yujun |4 oth | |
700 | 1 | |a Dixit, Ravindra S |4 oth | |
700 | 1 | |a Pendergast, John G |4 oth | |
773 | 0 | 8 | |i Enthalten in |t AIChE journal |d Hoboken, NJ : Wiley-Blackwell, 1955 |g 61(2015), 3, Seite 922-935 |w (DE-627)129590495 |w (DE-600)240008-X |w (DE-576)015082997 |x 0001-1541 |7 nnns |
773 | 1 | 8 | |g volume:61 |g year:2015 |g number:3 |g pages:922-935 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/aic.14700 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/aic.14700/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1657420337 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 58.00 |q AVZ |
951 | |a AR | ||
952 | |d 61 |j 2015 |e 3 |h 922-935 |
author_variant |
s c sc |
---|---|
matchkey_str |
article:00011541:2015----::aeilrprisnoeaigofgrtosfebaeecos |
hierarchy_sort_str |
2015 |
bklnumber |
58.00 |
publishDate |
2015 |
allfields |
10.1002/aic.14700 doi PQ20160617 (DE-627)OLC196150863X (DE-599)GBVOLC196150863X (PRQ)c2506-cd77edf650e8ceecf6bd9f9a43154e56ce94c82787bdd5a9fbf282b8bff218a93 (KEY)0553148920150000061000300922materialpropertiesandoperatingconfigurationsofmemb DE-627 ger DE-627 rakwb eng 660 DNB 58.00 bkl Choi, Seung‐Won verfasserin aut Material properties and operating configurations of membrane reactors for propane dehydrogenation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A modeling‐based approach is presented to understand physically realistic and technologically interesting material properties and operating configurations of packed‐bed membrane reactors (PBMRs) for propane dehydrogenation (PDH). PBMRs composed of microporous or mesoporous membranes combined with a PDH catalyst are considered. The influence of reaction and membrane transport parameters, as well as operating parameters such as sweep flow and catalyst placement, are investigated to determine desired “operating windows” for isothermal and nonisothermal operation. Higher Damköhler (Da) and lower Péclet (Pe) numbers are generally helpful, but are much more beneficial with highly H 2 ‐selective membranes rather than higher‐flux, lower‐selectivity membranes. H 2 ‐selective membranes show a plateau region of conversion that can be overcome by a large sweep flow or countercurrent operation. The latter shows a complex trade‐off between kinetics and permeation, and is effective only in a limited window. H 2 ‐selective PBMRs will greatly benefit from the fabrication of thin (∼1 µm or less) membranes. © 2014 American Institute of Chemical Engineers AIChE J , 61: 922–935, 2015 Nutzungsrecht: © 2014 American Institute of Chemical Engineers propane dehydrogenation catalyst membrane reactor propane dehydrogenation zeolite membrane modeling Membrane reactors Reaction kinetics Catalysts Mathematical models Chemical reactions Dehydrogenases Jones, Christopher W oth Nair, Sankar oth Sholl, David S oth Moore, Jason S oth Liu, Yujun oth Dixit, Ravindra S oth Pendergast, John G oth Enthalten in AIChE journal Hoboken, NJ : Wiley-Blackwell, 1955 61(2015), 3, Seite 922-935 (DE-627)129590495 (DE-600)240008-X (DE-576)015082997 0001-1541 nnns volume:61 year:2015 number:3 pages:922-935 http://dx.doi.org/10.1002/aic.14700 Volltext http://onlinelibrary.wiley.com/doi/10.1002/aic.14700/abstract http://search.proquest.com/docview/1657420337 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_70 GBV_ILN_2016 GBV_ILN_4700 58.00 AVZ AR 61 2015 3 922-935 |
spelling |
10.1002/aic.14700 doi PQ20160617 (DE-627)OLC196150863X (DE-599)GBVOLC196150863X (PRQ)c2506-cd77edf650e8ceecf6bd9f9a43154e56ce94c82787bdd5a9fbf282b8bff218a93 (KEY)0553148920150000061000300922materialpropertiesandoperatingconfigurationsofmemb DE-627 ger DE-627 rakwb eng 660 DNB 58.00 bkl Choi, Seung‐Won verfasserin aut Material properties and operating configurations of membrane reactors for propane dehydrogenation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A modeling‐based approach is presented to understand physically realistic and technologically interesting material properties and operating configurations of packed‐bed membrane reactors (PBMRs) for propane dehydrogenation (PDH). PBMRs composed of microporous or mesoporous membranes combined with a PDH catalyst are considered. The influence of reaction and membrane transport parameters, as well as operating parameters such as sweep flow and catalyst placement, are investigated to determine desired “operating windows” for isothermal and nonisothermal operation. Higher Damköhler (Da) and lower Péclet (Pe) numbers are generally helpful, but are much more beneficial with highly H 2 ‐selective membranes rather than higher‐flux, lower‐selectivity membranes. H 2 ‐selective membranes show a plateau region of conversion that can be overcome by a large sweep flow or countercurrent operation. The latter shows a complex trade‐off between kinetics and permeation, and is effective only in a limited window. H 2 ‐selective PBMRs will greatly benefit from the fabrication of thin (∼1 µm or less) membranes. © 2014 American Institute of Chemical Engineers AIChE J , 61: 922–935, 2015 Nutzungsrecht: © 2014 American Institute of Chemical Engineers propane dehydrogenation catalyst membrane reactor propane dehydrogenation zeolite membrane modeling Membrane reactors Reaction kinetics Catalysts Mathematical models Chemical reactions Dehydrogenases Jones, Christopher W oth Nair, Sankar oth Sholl, David S oth Moore, Jason S oth Liu, Yujun oth Dixit, Ravindra S oth Pendergast, John G oth Enthalten in AIChE journal Hoboken, NJ : Wiley-Blackwell, 1955 61(2015), 3, Seite 922-935 (DE-627)129590495 (DE-600)240008-X (DE-576)015082997 0001-1541 nnns volume:61 year:2015 number:3 pages:922-935 http://dx.doi.org/10.1002/aic.14700 Volltext http://onlinelibrary.wiley.com/doi/10.1002/aic.14700/abstract http://search.proquest.com/docview/1657420337 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_70 GBV_ILN_2016 GBV_ILN_4700 58.00 AVZ AR 61 2015 3 922-935 |
allfields_unstemmed |
10.1002/aic.14700 doi PQ20160617 (DE-627)OLC196150863X (DE-599)GBVOLC196150863X (PRQ)c2506-cd77edf650e8ceecf6bd9f9a43154e56ce94c82787bdd5a9fbf282b8bff218a93 (KEY)0553148920150000061000300922materialpropertiesandoperatingconfigurationsofmemb DE-627 ger DE-627 rakwb eng 660 DNB 58.00 bkl Choi, Seung‐Won verfasserin aut Material properties and operating configurations of membrane reactors for propane dehydrogenation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A modeling‐based approach is presented to understand physically realistic and technologically interesting material properties and operating configurations of packed‐bed membrane reactors (PBMRs) for propane dehydrogenation (PDH). PBMRs composed of microporous or mesoporous membranes combined with a PDH catalyst are considered. The influence of reaction and membrane transport parameters, as well as operating parameters such as sweep flow and catalyst placement, are investigated to determine desired “operating windows” for isothermal and nonisothermal operation. Higher Damköhler (Da) and lower Péclet (Pe) numbers are generally helpful, but are much more beneficial with highly H 2 ‐selective membranes rather than higher‐flux, lower‐selectivity membranes. H 2 ‐selective membranes show a plateau region of conversion that can be overcome by a large sweep flow or countercurrent operation. The latter shows a complex trade‐off between kinetics and permeation, and is effective only in a limited window. H 2 ‐selective PBMRs will greatly benefit from the fabrication of thin (∼1 µm or less) membranes. © 2014 American Institute of Chemical Engineers AIChE J , 61: 922–935, 2015 Nutzungsrecht: © 2014 American Institute of Chemical Engineers propane dehydrogenation catalyst membrane reactor propane dehydrogenation zeolite membrane modeling Membrane reactors Reaction kinetics Catalysts Mathematical models Chemical reactions Dehydrogenases Jones, Christopher W oth Nair, Sankar oth Sholl, David S oth Moore, Jason S oth Liu, Yujun oth Dixit, Ravindra S oth Pendergast, John G oth Enthalten in AIChE journal Hoboken, NJ : Wiley-Blackwell, 1955 61(2015), 3, Seite 922-935 (DE-627)129590495 (DE-600)240008-X (DE-576)015082997 0001-1541 nnns volume:61 year:2015 number:3 pages:922-935 http://dx.doi.org/10.1002/aic.14700 Volltext http://onlinelibrary.wiley.com/doi/10.1002/aic.14700/abstract http://search.proquest.com/docview/1657420337 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_70 GBV_ILN_2016 GBV_ILN_4700 58.00 AVZ AR 61 2015 3 922-935 |
allfieldsGer |
10.1002/aic.14700 doi PQ20160617 (DE-627)OLC196150863X (DE-599)GBVOLC196150863X (PRQ)c2506-cd77edf650e8ceecf6bd9f9a43154e56ce94c82787bdd5a9fbf282b8bff218a93 (KEY)0553148920150000061000300922materialpropertiesandoperatingconfigurationsofmemb DE-627 ger DE-627 rakwb eng 660 DNB 58.00 bkl Choi, Seung‐Won verfasserin aut Material properties and operating configurations of membrane reactors for propane dehydrogenation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A modeling‐based approach is presented to understand physically realistic and technologically interesting material properties and operating configurations of packed‐bed membrane reactors (PBMRs) for propane dehydrogenation (PDH). PBMRs composed of microporous or mesoporous membranes combined with a PDH catalyst are considered. The influence of reaction and membrane transport parameters, as well as operating parameters such as sweep flow and catalyst placement, are investigated to determine desired “operating windows” for isothermal and nonisothermal operation. Higher Damköhler (Da) and lower Péclet (Pe) numbers are generally helpful, but are much more beneficial with highly H 2 ‐selective membranes rather than higher‐flux, lower‐selectivity membranes. H 2 ‐selective membranes show a plateau region of conversion that can be overcome by a large sweep flow or countercurrent operation. The latter shows a complex trade‐off between kinetics and permeation, and is effective only in a limited window. H 2 ‐selective PBMRs will greatly benefit from the fabrication of thin (∼1 µm or less) membranes. © 2014 American Institute of Chemical Engineers AIChE J , 61: 922–935, 2015 Nutzungsrecht: © 2014 American Institute of Chemical Engineers propane dehydrogenation catalyst membrane reactor propane dehydrogenation zeolite membrane modeling Membrane reactors Reaction kinetics Catalysts Mathematical models Chemical reactions Dehydrogenases Jones, Christopher W oth Nair, Sankar oth Sholl, David S oth Moore, Jason S oth Liu, Yujun oth Dixit, Ravindra S oth Pendergast, John G oth Enthalten in AIChE journal Hoboken, NJ : Wiley-Blackwell, 1955 61(2015), 3, Seite 922-935 (DE-627)129590495 (DE-600)240008-X (DE-576)015082997 0001-1541 nnns volume:61 year:2015 number:3 pages:922-935 http://dx.doi.org/10.1002/aic.14700 Volltext http://onlinelibrary.wiley.com/doi/10.1002/aic.14700/abstract http://search.proquest.com/docview/1657420337 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_70 GBV_ILN_2016 GBV_ILN_4700 58.00 AVZ AR 61 2015 3 922-935 |
allfieldsSound |
10.1002/aic.14700 doi PQ20160617 (DE-627)OLC196150863X (DE-599)GBVOLC196150863X (PRQ)c2506-cd77edf650e8ceecf6bd9f9a43154e56ce94c82787bdd5a9fbf282b8bff218a93 (KEY)0553148920150000061000300922materialpropertiesandoperatingconfigurationsofmemb DE-627 ger DE-627 rakwb eng 660 DNB 58.00 bkl Choi, Seung‐Won verfasserin aut Material properties and operating configurations of membrane reactors for propane dehydrogenation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A modeling‐based approach is presented to understand physically realistic and technologically interesting material properties and operating configurations of packed‐bed membrane reactors (PBMRs) for propane dehydrogenation (PDH). PBMRs composed of microporous or mesoporous membranes combined with a PDH catalyst are considered. The influence of reaction and membrane transport parameters, as well as operating parameters such as sweep flow and catalyst placement, are investigated to determine desired “operating windows” for isothermal and nonisothermal operation. Higher Damköhler (Da) and lower Péclet (Pe) numbers are generally helpful, but are much more beneficial with highly H 2 ‐selective membranes rather than higher‐flux, lower‐selectivity membranes. H 2 ‐selective membranes show a plateau region of conversion that can be overcome by a large sweep flow or countercurrent operation. The latter shows a complex trade‐off between kinetics and permeation, and is effective only in a limited window. H 2 ‐selective PBMRs will greatly benefit from the fabrication of thin (∼1 µm or less) membranes. © 2014 American Institute of Chemical Engineers AIChE J , 61: 922–935, 2015 Nutzungsrecht: © 2014 American Institute of Chemical Engineers propane dehydrogenation catalyst membrane reactor propane dehydrogenation zeolite membrane modeling Membrane reactors Reaction kinetics Catalysts Mathematical models Chemical reactions Dehydrogenases Jones, Christopher W oth Nair, Sankar oth Sholl, David S oth Moore, Jason S oth Liu, Yujun oth Dixit, Ravindra S oth Pendergast, John G oth Enthalten in AIChE journal Hoboken, NJ : Wiley-Blackwell, 1955 61(2015), 3, Seite 922-935 (DE-627)129590495 (DE-600)240008-X (DE-576)015082997 0001-1541 nnns volume:61 year:2015 number:3 pages:922-935 http://dx.doi.org/10.1002/aic.14700 Volltext http://onlinelibrary.wiley.com/doi/10.1002/aic.14700/abstract http://search.proquest.com/docview/1657420337 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_70 GBV_ILN_2016 GBV_ILN_4700 58.00 AVZ AR 61 2015 3 922-935 |
language |
English |
source |
Enthalten in AIChE journal 61(2015), 3, Seite 922-935 volume:61 year:2015 number:3 pages:922-935 |
sourceStr |
Enthalten in AIChE journal 61(2015), 3, Seite 922-935 volume:61 year:2015 number:3 pages:922-935 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
propane dehydrogenation catalyst membrane reactor propane dehydrogenation zeolite membrane modeling Membrane reactors Reaction kinetics Catalysts Mathematical models Chemical reactions Dehydrogenases |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
AIChE journal |
authorswithroles_txt_mv |
Choi, Seung‐Won @@aut@@ Jones, Christopher W @@oth@@ Nair, Sankar @@oth@@ Sholl, David S @@oth@@ Moore, Jason S @@oth@@ Liu, Yujun @@oth@@ Dixit, Ravindra S @@oth@@ Pendergast, John G @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129590495 |
dewey-sort |
3660 |
id |
OLC196150863X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC196150863X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508184314.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/aic.14700</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC196150863X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC196150863X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2506-cd77edf650e8ceecf6bd9f9a43154e56ce94c82787bdd5a9fbf282b8bff218a93</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0553148920150000061000300922materialpropertiesandoperatingconfigurationsofmemb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Choi, Seung‐Won</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Material properties and operating configurations of membrane reactors for propane dehydrogenation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A modeling‐based approach is presented to understand physically realistic and technologically interesting material properties and operating configurations of packed‐bed membrane reactors (PBMRs) for propane dehydrogenation (PDH). PBMRs composed of microporous or mesoporous membranes combined with a PDH catalyst are considered. The influence of reaction and membrane transport parameters, as well as operating parameters such as sweep flow and catalyst placement, are investigated to determine desired “operating windows” for isothermal and nonisothermal operation. Higher Damköhler (Da) and lower Péclet (Pe) numbers are generally helpful, but are much more beneficial with highly H 2 ‐selective membranes rather than higher‐flux, lower‐selectivity membranes. H 2 ‐selective membranes show a plateau region of conversion that can be overcome by a large sweep flow or countercurrent operation. The latter shows a complex trade‐off between kinetics and permeation, and is effective only in a limited window. H 2 ‐selective PBMRs will greatly benefit from the fabrication of thin (∼1 µm or less) membranes. © 2014 American Institute of Chemical Engineers AIChE J , 61: 922–935, 2015</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2014 American Institute of Chemical Engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">propane dehydrogenation catalyst</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">membrane reactor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">propane dehydrogenation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">zeolite membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Membrane reactors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catalysts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical reactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dehydrogenases</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jones, Christopher W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nair, Sankar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sholl, David S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moore, Jason S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yujun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dixit, Ravindra S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pendergast, John G</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">AIChE journal</subfield><subfield code="d">Hoboken, NJ : Wiley-Blackwell, 1955</subfield><subfield code="g">61(2015), 3, Seite 922-935</subfield><subfield code="w">(DE-627)129590495</subfield><subfield code="w">(DE-600)240008-X</subfield><subfield code="w">(DE-576)015082997</subfield><subfield code="x">0001-1541</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:922-935</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/aic.14700</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/aic.14700/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1657420337</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">922-935</subfield></datafield></record></collection>
|
author |
Choi, Seung‐Won |
spellingShingle |
Choi, Seung‐Won ddc 660 bkl 58.00 misc propane dehydrogenation catalyst misc membrane reactor misc propane dehydrogenation misc zeolite membrane misc modeling misc Membrane reactors misc Reaction kinetics misc Catalysts misc Mathematical models misc Chemical reactions misc Dehydrogenases Material properties and operating configurations of membrane reactors for propane dehydrogenation |
authorStr |
Choi, Seung‐Won |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129590495 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-1541 |
topic_title |
660 DNB 58.00 bkl Material properties and operating configurations of membrane reactors for propane dehydrogenation propane dehydrogenation catalyst membrane reactor propane dehydrogenation zeolite membrane modeling Membrane reactors Reaction kinetics Catalysts Mathematical models Chemical reactions Dehydrogenases |
topic |
ddc 660 bkl 58.00 misc propane dehydrogenation catalyst misc membrane reactor misc propane dehydrogenation misc zeolite membrane misc modeling misc Membrane reactors misc Reaction kinetics misc Catalysts misc Mathematical models misc Chemical reactions misc Dehydrogenases |
topic_unstemmed |
ddc 660 bkl 58.00 misc propane dehydrogenation catalyst misc membrane reactor misc propane dehydrogenation misc zeolite membrane misc modeling misc Membrane reactors misc Reaction kinetics misc Catalysts misc Mathematical models misc Chemical reactions misc Dehydrogenases |
topic_browse |
ddc 660 bkl 58.00 misc propane dehydrogenation catalyst misc membrane reactor misc propane dehydrogenation misc zeolite membrane misc modeling misc Membrane reactors misc Reaction kinetics misc Catalysts misc Mathematical models misc Chemical reactions misc Dehydrogenases |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
c w j cw cwj s n sn d s s ds dss j s m js jsm y l yl r s d rs rsd j g p jg jgp |
hierarchy_parent_title |
AIChE journal |
hierarchy_parent_id |
129590495 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
AIChE journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129590495 (DE-600)240008-X (DE-576)015082997 |
title |
Material properties and operating configurations of membrane reactors for propane dehydrogenation |
ctrlnum |
(DE-627)OLC196150863X (DE-599)GBVOLC196150863X (PRQ)c2506-cd77edf650e8ceecf6bd9f9a43154e56ce94c82787bdd5a9fbf282b8bff218a93 (KEY)0553148920150000061000300922materialpropertiesandoperatingconfigurationsofmemb |
title_full |
Material properties and operating configurations of membrane reactors for propane dehydrogenation |
author_sort |
Choi, Seung‐Won |
journal |
AIChE journal |
journalStr |
AIChE journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
922 |
author_browse |
Choi, Seung‐Won |
container_volume |
61 |
class |
660 DNB 58.00 bkl |
format_se |
Aufsätze |
author-letter |
Choi, Seung‐Won |
doi_str_mv |
10.1002/aic.14700 |
dewey-full |
660 |
title_sort |
material properties and operating configurations of membrane reactors for propane dehydrogenation |
title_auth |
Material properties and operating configurations of membrane reactors for propane dehydrogenation |
abstract |
A modeling‐based approach is presented to understand physically realistic and technologically interesting material properties and operating configurations of packed‐bed membrane reactors (PBMRs) for propane dehydrogenation (PDH). PBMRs composed of microporous or mesoporous membranes combined with a PDH catalyst are considered. The influence of reaction and membrane transport parameters, as well as operating parameters such as sweep flow and catalyst placement, are investigated to determine desired “operating windows” for isothermal and nonisothermal operation. Higher Damköhler (Da) and lower Péclet (Pe) numbers are generally helpful, but are much more beneficial with highly H 2 ‐selective membranes rather than higher‐flux, lower‐selectivity membranes. H 2 ‐selective membranes show a plateau region of conversion that can be overcome by a large sweep flow or countercurrent operation. The latter shows a complex trade‐off between kinetics and permeation, and is effective only in a limited window. H 2 ‐selective PBMRs will greatly benefit from the fabrication of thin (∼1 µm or less) membranes. © 2014 American Institute of Chemical Engineers AIChE J , 61: 922–935, 2015 |
abstractGer |
A modeling‐based approach is presented to understand physically realistic and technologically interesting material properties and operating configurations of packed‐bed membrane reactors (PBMRs) for propane dehydrogenation (PDH). PBMRs composed of microporous or mesoporous membranes combined with a PDH catalyst are considered. The influence of reaction and membrane transport parameters, as well as operating parameters such as sweep flow and catalyst placement, are investigated to determine desired “operating windows” for isothermal and nonisothermal operation. Higher Damköhler (Da) and lower Péclet (Pe) numbers are generally helpful, but are much more beneficial with highly H 2 ‐selective membranes rather than higher‐flux, lower‐selectivity membranes. H 2 ‐selective membranes show a plateau region of conversion that can be overcome by a large sweep flow or countercurrent operation. The latter shows a complex trade‐off between kinetics and permeation, and is effective only in a limited window. H 2 ‐selective PBMRs will greatly benefit from the fabrication of thin (∼1 µm or less) membranes. © 2014 American Institute of Chemical Engineers AIChE J , 61: 922–935, 2015 |
abstract_unstemmed |
A modeling‐based approach is presented to understand physically realistic and technologically interesting material properties and operating configurations of packed‐bed membrane reactors (PBMRs) for propane dehydrogenation (PDH). PBMRs composed of microporous or mesoporous membranes combined with a PDH catalyst are considered. The influence of reaction and membrane transport parameters, as well as operating parameters such as sweep flow and catalyst placement, are investigated to determine desired “operating windows” for isothermal and nonisothermal operation. Higher Damköhler (Da) and lower Péclet (Pe) numbers are generally helpful, but are much more beneficial with highly H 2 ‐selective membranes rather than higher‐flux, lower‐selectivity membranes. H 2 ‐selective membranes show a plateau region of conversion that can be overcome by a large sweep flow or countercurrent operation. The latter shows a complex trade‐off between kinetics and permeation, and is effective only in a limited window. H 2 ‐selective PBMRs will greatly benefit from the fabrication of thin (∼1 µm or less) membranes. © 2014 American Institute of Chemical Engineers AIChE J , 61: 922–935, 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_70 GBV_ILN_2016 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Material properties and operating configurations of membrane reactors for propane dehydrogenation |
url |
http://dx.doi.org/10.1002/aic.14700 http://onlinelibrary.wiley.com/doi/10.1002/aic.14700/abstract http://search.proquest.com/docview/1657420337 |
remote_bool |
false |
author2 |
Jones, Christopher W Nair, Sankar Sholl, David S Moore, Jason S Liu, Yujun Dixit, Ravindra S Pendergast, John G |
author2Str |
Jones, Christopher W Nair, Sankar Sholl, David S Moore, Jason S Liu, Yujun Dixit, Ravindra S Pendergast, John G |
ppnlink |
129590495 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1002/aic.14700 |
up_date |
2024-07-04T01:23:40.096Z |
_version_ |
1803609671044431872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC196150863X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508184314.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/aic.14700</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC196150863X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC196150863X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2506-cd77edf650e8ceecf6bd9f9a43154e56ce94c82787bdd5a9fbf282b8bff218a93</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0553148920150000061000300922materialpropertiesandoperatingconfigurationsofmemb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Choi, Seung‐Won</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Material properties and operating configurations of membrane reactors for propane dehydrogenation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A modeling‐based approach is presented to understand physically realistic and technologically interesting material properties and operating configurations of packed‐bed membrane reactors (PBMRs) for propane dehydrogenation (PDH). PBMRs composed of microporous or mesoporous membranes combined with a PDH catalyst are considered. The influence of reaction and membrane transport parameters, as well as operating parameters such as sweep flow and catalyst placement, are investigated to determine desired “operating windows” for isothermal and nonisothermal operation. Higher Damköhler (Da) and lower Péclet (Pe) numbers are generally helpful, but are much more beneficial with highly H 2 ‐selective membranes rather than higher‐flux, lower‐selectivity membranes. H 2 ‐selective membranes show a plateau region of conversion that can be overcome by a large sweep flow or countercurrent operation. The latter shows a complex trade‐off between kinetics and permeation, and is effective only in a limited window. H 2 ‐selective PBMRs will greatly benefit from the fabrication of thin (∼1 µm or less) membranes. © 2014 American Institute of Chemical Engineers AIChE J , 61: 922–935, 2015</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2014 American Institute of Chemical Engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">propane dehydrogenation catalyst</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">membrane reactor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">propane dehydrogenation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">zeolite membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Membrane reactors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catalysts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical reactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dehydrogenases</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jones, Christopher W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nair, Sankar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sholl, David S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moore, Jason S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yujun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dixit, Ravindra S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pendergast, John G</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">AIChE journal</subfield><subfield code="d">Hoboken, NJ : Wiley-Blackwell, 1955</subfield><subfield code="g">61(2015), 3, Seite 922-935</subfield><subfield code="w">(DE-627)129590495</subfield><subfield code="w">(DE-600)240008-X</subfield><subfield code="w">(DE-576)015082997</subfield><subfield code="x">0001-1541</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:922-935</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/aic.14700</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/aic.14700/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1657420337</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">922-935</subfield></datafield></record></collection>
|
score |
7.40149 |