Hooking She3p onto She2p for myosin-mediated cytoplasmic mRNA transport
The segregation of approximately two dozen distinct mRNAs from yeast mother to daughter cell cytoplasm is a classical paradigm for eukaryotic mRNA transport. The information for transport resides in an mRNA element 40-100 nt in length, known as "zipcode." Targeted transport requires proper...
Ausführliche Beschreibung
Autor*in: |
Nimisha Singh [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences |
---|
Schlagwörter: |
Saccharomyces cerevisiae Proteins - chemistry RNA-Binding Proteins - metabolism RNA-Binding Proteins - chemistry |
---|
Übergeordnetes Werk: |
Enthalten in: Proceedings of the National Academy of Sciences of the United States of America - Washington, DC : NAS, 1877, 112(2015), 1, Seite 142-147 |
---|---|
Übergeordnetes Werk: |
volume:112 ; year:2015 ; number:1 ; pages:142-147 |
Links: |
---|
DOI / URN: |
10.1073/pnas.1423194112 |
---|
Katalog-ID: |
OLC1961710323 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1961710323 | ||
003 | DE-627 | ||
005 | 20230714154513.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1073/pnas.1423194112 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1961710323 | ||
035 | |a (DE-599)GBVOLC1961710323 | ||
035 | |a (PRQ)c2193-2bbc1b90d405ed37a711e446438a0b634d68cd24570991064f2fc309146e08d3 | ||
035 | |a (KEY)0583363920150000112000100142hookingshe3pontoshe2pformyosinmediatedcytoplasmicm | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |q DNB |
082 | 0 | 4 | |a 570 |q AVZ |
084 | |a LING |2 fid | ||
084 | |a BIODIV |2 fid | ||
100 | 0 | |a Nimisha Singh |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hooking She3p onto She2p for myosin-mediated cytoplasmic mRNA transport |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The segregation of approximately two dozen distinct mRNAs from yeast mother to daughter cell cytoplasm is a classical paradigm for eukaryotic mRNA transport. The information for transport resides in an mRNA element 40-100 nt in length, known as "zipcode." Targeted transport requires properly positioned actin filaments and cooperative loading of mRNA cargo to myosin. Cargo loading to myosin uses myosin 4 protein (Myo4p), swi5p-dependent HO expression 2 protein (She2p) and 3 protein (She3p), and zipcode. We previously determined a crystal structure of Myo4p and She3p, their 1:2 stoichiometry and interactome; we furthermore showed that the motor complex assembly requires two Myo4p⋅She3p heterotrimers, one She2p tetramer, and at least a single zipcode to yield a stable complex of [Myo4p⋅She3p⋅She2p⋅zipcode] in 2:4:4:1 stoichiometry in vitro. Here, we report a structure at 2.8-Å resolution of a cocrystal of a She2p tetramer bound to a segment of She3p. In this crystal structure, the She3p segment forms a striking hook that binds to a shallow hydrophobic pocket on the surface of each She2p subunit of the tetramer. Both She3p hook and cognate She2p binding pocket are composed of highly conserved residues. We also discovered a highly conserved region of She3p upstream of its hook region. Because this region consists of basic and aromatic residues, it likely represents part of She3p's binding activity for zipcode. Because She2p also exhibits zipcode-binding activity, we suggest that "hooking" She3p onto She2p aligns each of their zipcode-binding activities into a high-affinity site, thereby linking motor assembly to zipcode. | ||
540 | |a Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences | ||
650 | 4 | |a Amino Acids - metabolism | |
650 | 4 | |a Myosins - metabolism | |
650 | 4 | |a Cytoplasm - metabolism | |
650 | 4 | |a RNA, Messenger - metabolism | |
650 | 4 | |a Saccharomyces cerevisiae Proteins - chemistry | |
650 | 4 | |a Peptides - chemistry | |
650 | 4 | |a RNA, Messenger - genetics | |
650 | 4 | |a RNA-Binding Proteins - metabolism | |
650 | 4 | |a Peptides - metabolism | |
650 | 4 | |a RNA-Binding Proteins - chemistry | |
650 | 4 | |a Saccharomyces cerevisiae Proteins - metabolism | |
650 | 4 | |a Biological transport, Active | |
650 | 4 | |a Observations | |
650 | 4 | |a Messenger RNA | |
650 | 4 | |a Cytoplasm | |
650 | 4 | |a Genetic aspects | |
650 | 4 | |a Physiological aspects | |
650 | 4 | |a RNA-protein interactions | |
650 | 4 | |a Hydrophobic surfaces | |
650 | 4 | |a Binding sites | |
650 | 4 | |a Crystal structure | |
650 | 4 | |a Crystallography | |
650 | 4 | |a Yeast | |
700 | 0 | |a Günter Blobel |4 oth | |
700 | 0 | |a Hang Shi |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Proceedings of the National Academy of Sciences of the United States of America |d Washington, DC : NAS, 1877 |g 112(2015), 1, Seite 142-147 |w (DE-627)129505269 |w (DE-600)209104-5 |w (DE-576)014909189 |x 0027-8424 |7 nnns |
773 | 1 | 8 | |g volume:112 |g year:2015 |g number:1 |g pages:142-147 |
856 | 4 | 1 | |u http://dx.doi.org/10.1073/pnas.1423194112 |3 Volltext |
856 | 4 | 2 | |u http://www.pnas.org/content/112/1/142.abstract |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25535369 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1645384934 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-LING | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_59 | ||
951 | |a AR | ||
952 | |d 112 |j 2015 |e 1 |h 142-147 |
author_variant |
n s ns |
---|---|
matchkey_str |
article:00278424:2015----::oknsepnoh2frysneitdyol |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1073/pnas.1423194112 doi PQ20160617 (DE-627)OLC1961710323 (DE-599)GBVOLC1961710323 (PRQ)c2193-2bbc1b90d405ed37a711e446438a0b634d68cd24570991064f2fc309146e08d3 (KEY)0583363920150000112000100142hookingshe3pontoshe2pformyosinmediatedcytoplasmicm DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Nimisha Singh verfasserin aut Hooking She3p onto She2p for myosin-mediated cytoplasmic mRNA transport 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The segregation of approximately two dozen distinct mRNAs from yeast mother to daughter cell cytoplasm is a classical paradigm for eukaryotic mRNA transport. The information for transport resides in an mRNA element 40-100 nt in length, known as "zipcode." Targeted transport requires properly positioned actin filaments and cooperative loading of mRNA cargo to myosin. Cargo loading to myosin uses myosin 4 protein (Myo4p), swi5p-dependent HO expression 2 protein (She2p) and 3 protein (She3p), and zipcode. We previously determined a crystal structure of Myo4p and She3p, their 1:2 stoichiometry and interactome; we furthermore showed that the motor complex assembly requires two Myo4p⋅She3p heterotrimers, one She2p tetramer, and at least a single zipcode to yield a stable complex of [Myo4p⋅She3p⋅She2p⋅zipcode] in 2:4:4:1 stoichiometry in vitro. Here, we report a structure at 2.8-Å resolution of a cocrystal of a She2p tetramer bound to a segment of She3p. In this crystal structure, the She3p segment forms a striking hook that binds to a shallow hydrophobic pocket on the surface of each She2p subunit of the tetramer. Both She3p hook and cognate She2p binding pocket are composed of highly conserved residues. We also discovered a highly conserved region of She3p upstream of its hook region. Because this region consists of basic and aromatic residues, it likely represents part of She3p's binding activity for zipcode. Because She2p also exhibits zipcode-binding activity, we suggest that "hooking" She3p onto She2p aligns each of their zipcode-binding activities into a high-affinity site, thereby linking motor assembly to zipcode. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Amino Acids - metabolism Myosins - metabolism Cytoplasm - metabolism RNA, Messenger - metabolism Saccharomyces cerevisiae Proteins - chemistry Peptides - chemistry RNA, Messenger - genetics RNA-Binding Proteins - metabolism Peptides - metabolism RNA-Binding Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Biological transport, Active Observations Messenger RNA Cytoplasm Genetic aspects Physiological aspects RNA-protein interactions Hydrophobic surfaces Binding sites Crystal structure Crystallography Yeast Günter Blobel oth Hang Shi oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 1, Seite 142-147 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:1 pages:142-147 http://dx.doi.org/10.1073/pnas.1423194112 Volltext http://www.pnas.org/content/112/1/142.abstract http://www.ncbi.nlm.nih.gov/pubmed/25535369 http://search.proquest.com/docview/1645384934 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 1 142-147 |
spelling |
10.1073/pnas.1423194112 doi PQ20160617 (DE-627)OLC1961710323 (DE-599)GBVOLC1961710323 (PRQ)c2193-2bbc1b90d405ed37a711e446438a0b634d68cd24570991064f2fc309146e08d3 (KEY)0583363920150000112000100142hookingshe3pontoshe2pformyosinmediatedcytoplasmicm DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Nimisha Singh verfasserin aut Hooking She3p onto She2p for myosin-mediated cytoplasmic mRNA transport 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The segregation of approximately two dozen distinct mRNAs from yeast mother to daughter cell cytoplasm is a classical paradigm for eukaryotic mRNA transport. The information for transport resides in an mRNA element 40-100 nt in length, known as "zipcode." Targeted transport requires properly positioned actin filaments and cooperative loading of mRNA cargo to myosin. Cargo loading to myosin uses myosin 4 protein (Myo4p), swi5p-dependent HO expression 2 protein (She2p) and 3 protein (She3p), and zipcode. We previously determined a crystal structure of Myo4p and She3p, their 1:2 stoichiometry and interactome; we furthermore showed that the motor complex assembly requires two Myo4p⋅She3p heterotrimers, one She2p tetramer, and at least a single zipcode to yield a stable complex of [Myo4p⋅She3p⋅She2p⋅zipcode] in 2:4:4:1 stoichiometry in vitro. Here, we report a structure at 2.8-Å resolution of a cocrystal of a She2p tetramer bound to a segment of She3p. In this crystal structure, the She3p segment forms a striking hook that binds to a shallow hydrophobic pocket on the surface of each She2p subunit of the tetramer. Both She3p hook and cognate She2p binding pocket are composed of highly conserved residues. We also discovered a highly conserved region of She3p upstream of its hook region. Because this region consists of basic and aromatic residues, it likely represents part of She3p's binding activity for zipcode. Because She2p also exhibits zipcode-binding activity, we suggest that "hooking" She3p onto She2p aligns each of their zipcode-binding activities into a high-affinity site, thereby linking motor assembly to zipcode. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Amino Acids - metabolism Myosins - metabolism Cytoplasm - metabolism RNA, Messenger - metabolism Saccharomyces cerevisiae Proteins - chemistry Peptides - chemistry RNA, Messenger - genetics RNA-Binding Proteins - metabolism Peptides - metabolism RNA-Binding Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Biological transport, Active Observations Messenger RNA Cytoplasm Genetic aspects Physiological aspects RNA-protein interactions Hydrophobic surfaces Binding sites Crystal structure Crystallography Yeast Günter Blobel oth Hang Shi oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 1, Seite 142-147 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:1 pages:142-147 http://dx.doi.org/10.1073/pnas.1423194112 Volltext http://www.pnas.org/content/112/1/142.abstract http://www.ncbi.nlm.nih.gov/pubmed/25535369 http://search.proquest.com/docview/1645384934 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 1 142-147 |
allfields_unstemmed |
10.1073/pnas.1423194112 doi PQ20160617 (DE-627)OLC1961710323 (DE-599)GBVOLC1961710323 (PRQ)c2193-2bbc1b90d405ed37a711e446438a0b634d68cd24570991064f2fc309146e08d3 (KEY)0583363920150000112000100142hookingshe3pontoshe2pformyosinmediatedcytoplasmicm DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Nimisha Singh verfasserin aut Hooking She3p onto She2p for myosin-mediated cytoplasmic mRNA transport 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The segregation of approximately two dozen distinct mRNAs from yeast mother to daughter cell cytoplasm is a classical paradigm for eukaryotic mRNA transport. The information for transport resides in an mRNA element 40-100 nt in length, known as "zipcode." Targeted transport requires properly positioned actin filaments and cooperative loading of mRNA cargo to myosin. Cargo loading to myosin uses myosin 4 protein (Myo4p), swi5p-dependent HO expression 2 protein (She2p) and 3 protein (She3p), and zipcode. We previously determined a crystal structure of Myo4p and She3p, their 1:2 stoichiometry and interactome; we furthermore showed that the motor complex assembly requires two Myo4p⋅She3p heterotrimers, one She2p tetramer, and at least a single zipcode to yield a stable complex of [Myo4p⋅She3p⋅She2p⋅zipcode] in 2:4:4:1 stoichiometry in vitro. Here, we report a structure at 2.8-Å resolution of a cocrystal of a She2p tetramer bound to a segment of She3p. In this crystal structure, the She3p segment forms a striking hook that binds to a shallow hydrophobic pocket on the surface of each She2p subunit of the tetramer. Both She3p hook and cognate She2p binding pocket are composed of highly conserved residues. We also discovered a highly conserved region of She3p upstream of its hook region. Because this region consists of basic and aromatic residues, it likely represents part of She3p's binding activity for zipcode. Because She2p also exhibits zipcode-binding activity, we suggest that "hooking" She3p onto She2p aligns each of their zipcode-binding activities into a high-affinity site, thereby linking motor assembly to zipcode. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Amino Acids - metabolism Myosins - metabolism Cytoplasm - metabolism RNA, Messenger - metabolism Saccharomyces cerevisiae Proteins - chemistry Peptides - chemistry RNA, Messenger - genetics RNA-Binding Proteins - metabolism Peptides - metabolism RNA-Binding Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Biological transport, Active Observations Messenger RNA Cytoplasm Genetic aspects Physiological aspects RNA-protein interactions Hydrophobic surfaces Binding sites Crystal structure Crystallography Yeast Günter Blobel oth Hang Shi oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 1, Seite 142-147 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:1 pages:142-147 http://dx.doi.org/10.1073/pnas.1423194112 Volltext http://www.pnas.org/content/112/1/142.abstract http://www.ncbi.nlm.nih.gov/pubmed/25535369 http://search.proquest.com/docview/1645384934 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 1 142-147 |
allfieldsGer |
10.1073/pnas.1423194112 doi PQ20160617 (DE-627)OLC1961710323 (DE-599)GBVOLC1961710323 (PRQ)c2193-2bbc1b90d405ed37a711e446438a0b634d68cd24570991064f2fc309146e08d3 (KEY)0583363920150000112000100142hookingshe3pontoshe2pformyosinmediatedcytoplasmicm DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Nimisha Singh verfasserin aut Hooking She3p onto She2p for myosin-mediated cytoplasmic mRNA transport 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The segregation of approximately two dozen distinct mRNAs from yeast mother to daughter cell cytoplasm is a classical paradigm for eukaryotic mRNA transport. The information for transport resides in an mRNA element 40-100 nt in length, known as "zipcode." Targeted transport requires properly positioned actin filaments and cooperative loading of mRNA cargo to myosin. Cargo loading to myosin uses myosin 4 protein (Myo4p), swi5p-dependent HO expression 2 protein (She2p) and 3 protein (She3p), and zipcode. We previously determined a crystal structure of Myo4p and She3p, their 1:2 stoichiometry and interactome; we furthermore showed that the motor complex assembly requires two Myo4p⋅She3p heterotrimers, one She2p tetramer, and at least a single zipcode to yield a stable complex of [Myo4p⋅She3p⋅She2p⋅zipcode] in 2:4:4:1 stoichiometry in vitro. Here, we report a structure at 2.8-Å resolution of a cocrystal of a She2p tetramer bound to a segment of She3p. In this crystal structure, the She3p segment forms a striking hook that binds to a shallow hydrophobic pocket on the surface of each She2p subunit of the tetramer. Both She3p hook and cognate She2p binding pocket are composed of highly conserved residues. We also discovered a highly conserved region of She3p upstream of its hook region. Because this region consists of basic and aromatic residues, it likely represents part of She3p's binding activity for zipcode. Because She2p also exhibits zipcode-binding activity, we suggest that "hooking" She3p onto She2p aligns each of their zipcode-binding activities into a high-affinity site, thereby linking motor assembly to zipcode. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Amino Acids - metabolism Myosins - metabolism Cytoplasm - metabolism RNA, Messenger - metabolism Saccharomyces cerevisiae Proteins - chemistry Peptides - chemistry RNA, Messenger - genetics RNA-Binding Proteins - metabolism Peptides - metabolism RNA-Binding Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Biological transport, Active Observations Messenger RNA Cytoplasm Genetic aspects Physiological aspects RNA-protein interactions Hydrophobic surfaces Binding sites Crystal structure Crystallography Yeast Günter Blobel oth Hang Shi oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 1, Seite 142-147 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:1 pages:142-147 http://dx.doi.org/10.1073/pnas.1423194112 Volltext http://www.pnas.org/content/112/1/142.abstract http://www.ncbi.nlm.nih.gov/pubmed/25535369 http://search.proquest.com/docview/1645384934 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 1 142-147 |
allfieldsSound |
10.1073/pnas.1423194112 doi PQ20160617 (DE-627)OLC1961710323 (DE-599)GBVOLC1961710323 (PRQ)c2193-2bbc1b90d405ed37a711e446438a0b634d68cd24570991064f2fc309146e08d3 (KEY)0583363920150000112000100142hookingshe3pontoshe2pformyosinmediatedcytoplasmicm DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Nimisha Singh verfasserin aut Hooking She3p onto She2p for myosin-mediated cytoplasmic mRNA transport 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The segregation of approximately two dozen distinct mRNAs from yeast mother to daughter cell cytoplasm is a classical paradigm for eukaryotic mRNA transport. The information for transport resides in an mRNA element 40-100 nt in length, known as "zipcode." Targeted transport requires properly positioned actin filaments and cooperative loading of mRNA cargo to myosin. Cargo loading to myosin uses myosin 4 protein (Myo4p), swi5p-dependent HO expression 2 protein (She2p) and 3 protein (She3p), and zipcode. We previously determined a crystal structure of Myo4p and She3p, their 1:2 stoichiometry and interactome; we furthermore showed that the motor complex assembly requires two Myo4p⋅She3p heterotrimers, one She2p tetramer, and at least a single zipcode to yield a stable complex of [Myo4p⋅She3p⋅She2p⋅zipcode] in 2:4:4:1 stoichiometry in vitro. Here, we report a structure at 2.8-Å resolution of a cocrystal of a She2p tetramer bound to a segment of She3p. In this crystal structure, the She3p segment forms a striking hook that binds to a shallow hydrophobic pocket on the surface of each She2p subunit of the tetramer. Both She3p hook and cognate She2p binding pocket are composed of highly conserved residues. We also discovered a highly conserved region of She3p upstream of its hook region. Because this region consists of basic and aromatic residues, it likely represents part of She3p's binding activity for zipcode. Because She2p also exhibits zipcode-binding activity, we suggest that "hooking" She3p onto She2p aligns each of their zipcode-binding activities into a high-affinity site, thereby linking motor assembly to zipcode. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Amino Acids - metabolism Myosins - metabolism Cytoplasm - metabolism RNA, Messenger - metabolism Saccharomyces cerevisiae Proteins - chemistry Peptides - chemistry RNA, Messenger - genetics RNA-Binding Proteins - metabolism Peptides - metabolism RNA-Binding Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Biological transport, Active Observations Messenger RNA Cytoplasm Genetic aspects Physiological aspects RNA-protein interactions Hydrophobic surfaces Binding sites Crystal structure Crystallography Yeast Günter Blobel oth Hang Shi oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 1, Seite 142-147 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:1 pages:142-147 http://dx.doi.org/10.1073/pnas.1423194112 Volltext http://www.pnas.org/content/112/1/142.abstract http://www.ncbi.nlm.nih.gov/pubmed/25535369 http://search.proquest.com/docview/1645384934 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 1 142-147 |
language |
English |
source |
Enthalten in Proceedings of the National Academy of Sciences of the United States of America 112(2015), 1, Seite 142-147 volume:112 year:2015 number:1 pages:142-147 |
sourceStr |
Enthalten in Proceedings of the National Academy of Sciences of the United States of America 112(2015), 1, Seite 142-147 volume:112 year:2015 number:1 pages:142-147 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Amino Acids - metabolism Myosins - metabolism Cytoplasm - metabolism RNA, Messenger - metabolism Saccharomyces cerevisiae Proteins - chemistry Peptides - chemistry RNA, Messenger - genetics RNA-Binding Proteins - metabolism Peptides - metabolism RNA-Binding Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Biological transport, Active Observations Messenger RNA Cytoplasm Genetic aspects Physiological aspects RNA-protein interactions Hydrophobic surfaces Binding sites Crystal structure Crystallography Yeast |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Proceedings of the National Academy of Sciences of the United States of America |
authorswithroles_txt_mv |
Nimisha Singh @@aut@@ Günter Blobel @@oth@@ Hang Shi @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129505269 |
dewey-sort |
3500 |
id |
OLC1961710323 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1961710323</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714154513.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1073/pnas.1423194112</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1961710323</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1961710323</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2193-2bbc1b90d405ed37a711e446438a0b634d68cd24570991064f2fc309146e08d3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0583363920150000112000100142hookingshe3pontoshe2pformyosinmediatedcytoplasmicm</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nimisha Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hooking She3p onto She2p for myosin-mediated cytoplasmic mRNA transport</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The segregation of approximately two dozen distinct mRNAs from yeast mother to daughter cell cytoplasm is a classical paradigm for eukaryotic mRNA transport. The information for transport resides in an mRNA element 40-100 nt in length, known as "zipcode." Targeted transport requires properly positioned actin filaments and cooperative loading of mRNA cargo to myosin. Cargo loading to myosin uses myosin 4 protein (Myo4p), swi5p-dependent HO expression 2 protein (She2p) and 3 protein (She3p), and zipcode. We previously determined a crystal structure of Myo4p and She3p, their 1:2 stoichiometry and interactome; we furthermore showed that the motor complex assembly requires two Myo4p⋅She3p heterotrimers, one She2p tetramer, and at least a single zipcode to yield a stable complex of [Myo4p⋅She3p⋅She2p⋅zipcode] in 2:4:4:1 stoichiometry in vitro. Here, we report a structure at 2.8-Å resolution of a cocrystal of a She2p tetramer bound to a segment of She3p. In this crystal structure, the She3p segment forms a striking hook that binds to a shallow hydrophobic pocket on the surface of each She2p subunit of the tetramer. Both She3p hook and cognate She2p binding pocket are composed of highly conserved residues. We also discovered a highly conserved region of She3p upstream of its hook region. Because this region consists of basic and aromatic residues, it likely represents part of She3p's binding activity for zipcode. Because She2p also exhibits zipcode-binding activity, we suggest that "hooking" She3p onto She2p aligns each of their zipcode-binding activities into a high-affinity site, thereby linking motor assembly to zipcode.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amino Acids - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Myosins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cytoplasm - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Messenger - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Saccharomyces cerevisiae Proteins - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peptides - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Messenger - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA-Binding Proteins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peptides - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA-Binding Proteins - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Saccharomyces cerevisiae Proteins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological transport, Active</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Observations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Messenger RNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cytoplasm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic aspects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physiological aspects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA-protein interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrophobic surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Binding sites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystal structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystallography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yeast</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Günter Blobel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hang Shi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the National Academy of Sciences of the United States of America</subfield><subfield code="d">Washington, DC : NAS, 1877</subfield><subfield code="g">112(2015), 1, Seite 142-147</subfield><subfield code="w">(DE-627)129505269</subfield><subfield code="w">(DE-600)209104-5</subfield><subfield code="w">(DE-576)014909189</subfield><subfield code="x">0027-8424</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:112</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:142-147</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1073/pnas.1423194112</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.pnas.org/content/112/1/142.abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25535369</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1645384934</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">112</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">142-147</subfield></datafield></record></collection>
|
author |
Nimisha Singh |
spellingShingle |
Nimisha Singh ddc 500 ddc 570 fid LING fid BIODIV misc Amino Acids - metabolism misc Myosins - metabolism misc Cytoplasm - metabolism misc RNA, Messenger - metabolism misc Saccharomyces cerevisiae Proteins - chemistry misc Peptides - chemistry misc RNA, Messenger - genetics misc RNA-Binding Proteins - metabolism misc Peptides - metabolism misc RNA-Binding Proteins - chemistry misc Saccharomyces cerevisiae Proteins - metabolism misc Biological transport, Active misc Observations misc Messenger RNA misc Cytoplasm misc Genetic aspects misc Physiological aspects misc RNA-protein interactions misc Hydrophobic surfaces misc Binding sites misc Crystal structure misc Crystallography misc Yeast Hooking She3p onto She2p for myosin-mediated cytoplasmic mRNA transport |
authorStr |
Nimisha Singh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129505269 |
format |
Article |
dewey-ones |
500 - Natural sciences & mathematics 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0027-8424 |
topic_title |
500 DNB 570 AVZ LING fid BIODIV fid Hooking She3p onto She2p for myosin-mediated cytoplasmic mRNA transport Amino Acids - metabolism Myosins - metabolism Cytoplasm - metabolism RNA, Messenger - metabolism Saccharomyces cerevisiae Proteins - chemistry Peptides - chemistry RNA, Messenger - genetics RNA-Binding Proteins - metabolism Peptides - metabolism RNA-Binding Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Biological transport, Active Observations Messenger RNA Cytoplasm Genetic aspects Physiological aspects RNA-protein interactions Hydrophobic surfaces Binding sites Crystal structure Crystallography Yeast |
topic |
ddc 500 ddc 570 fid LING fid BIODIV misc Amino Acids - metabolism misc Myosins - metabolism misc Cytoplasm - metabolism misc RNA, Messenger - metabolism misc Saccharomyces cerevisiae Proteins - chemistry misc Peptides - chemistry misc RNA, Messenger - genetics misc RNA-Binding Proteins - metabolism misc Peptides - metabolism misc RNA-Binding Proteins - chemistry misc Saccharomyces cerevisiae Proteins - metabolism misc Biological transport, Active misc Observations misc Messenger RNA misc Cytoplasm misc Genetic aspects misc Physiological aspects misc RNA-protein interactions misc Hydrophobic surfaces misc Binding sites misc Crystal structure misc Crystallography misc Yeast |
topic_unstemmed |
ddc 500 ddc 570 fid LING fid BIODIV misc Amino Acids - metabolism misc Myosins - metabolism misc Cytoplasm - metabolism misc RNA, Messenger - metabolism misc Saccharomyces cerevisiae Proteins - chemistry misc Peptides - chemistry misc RNA, Messenger - genetics misc RNA-Binding Proteins - metabolism misc Peptides - metabolism misc RNA-Binding Proteins - chemistry misc Saccharomyces cerevisiae Proteins - metabolism misc Biological transport, Active misc Observations misc Messenger RNA misc Cytoplasm misc Genetic aspects misc Physiological aspects misc RNA-protein interactions misc Hydrophobic surfaces misc Binding sites misc Crystal structure misc Crystallography misc Yeast |
topic_browse |
ddc 500 ddc 570 fid LING fid BIODIV misc Amino Acids - metabolism misc Myosins - metabolism misc Cytoplasm - metabolism misc RNA, Messenger - metabolism misc Saccharomyces cerevisiae Proteins - chemistry misc Peptides - chemistry misc RNA, Messenger - genetics misc RNA-Binding Proteins - metabolism misc Peptides - metabolism misc RNA-Binding Proteins - chemistry misc Saccharomyces cerevisiae Proteins - metabolism misc Biological transport, Active misc Observations misc Messenger RNA misc Cytoplasm misc Genetic aspects misc Physiological aspects misc RNA-protein interactions misc Hydrophobic surfaces misc Binding sites misc Crystal structure misc Crystallography misc Yeast |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
g b gb h s hs |
hierarchy_parent_title |
Proceedings of the National Academy of Sciences of the United States of America |
hierarchy_parent_id |
129505269 |
dewey-tens |
500 - Science 570 - Life sciences; biology |
hierarchy_top_title |
Proceedings of the National Academy of Sciences of the United States of America |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 |
title |
Hooking She3p onto She2p for myosin-mediated cytoplasmic mRNA transport |
ctrlnum |
(DE-627)OLC1961710323 (DE-599)GBVOLC1961710323 (PRQ)c2193-2bbc1b90d405ed37a711e446438a0b634d68cd24570991064f2fc309146e08d3 (KEY)0583363920150000112000100142hookingshe3pontoshe2pformyosinmediatedcytoplasmicm |
title_full |
Hooking She3p onto She2p for myosin-mediated cytoplasmic mRNA transport |
author_sort |
Nimisha Singh |
journal |
Proceedings of the National Academy of Sciences of the United States of America |
journalStr |
Proceedings of the National Academy of Sciences of the United States of America |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
142 |
author_browse |
Nimisha Singh |
container_volume |
112 |
class |
500 DNB 570 AVZ LING fid BIODIV fid |
format_se |
Aufsätze |
author-letter |
Nimisha Singh |
doi_str_mv |
10.1073/pnas.1423194112 |
dewey-full |
500 570 |
title_sort |
hooking she3p onto she2p for myosin-mediated cytoplasmic mrna transport |
title_auth |
Hooking She3p onto She2p for myosin-mediated cytoplasmic mRNA transport |
abstract |
The segregation of approximately two dozen distinct mRNAs from yeast mother to daughter cell cytoplasm is a classical paradigm for eukaryotic mRNA transport. The information for transport resides in an mRNA element 40-100 nt in length, known as "zipcode." Targeted transport requires properly positioned actin filaments and cooperative loading of mRNA cargo to myosin. Cargo loading to myosin uses myosin 4 protein (Myo4p), swi5p-dependent HO expression 2 protein (She2p) and 3 protein (She3p), and zipcode. We previously determined a crystal structure of Myo4p and She3p, their 1:2 stoichiometry and interactome; we furthermore showed that the motor complex assembly requires two Myo4p⋅She3p heterotrimers, one She2p tetramer, and at least a single zipcode to yield a stable complex of [Myo4p⋅She3p⋅She2p⋅zipcode] in 2:4:4:1 stoichiometry in vitro. Here, we report a structure at 2.8-Å resolution of a cocrystal of a She2p tetramer bound to a segment of She3p. In this crystal structure, the She3p segment forms a striking hook that binds to a shallow hydrophobic pocket on the surface of each She2p subunit of the tetramer. Both She3p hook and cognate She2p binding pocket are composed of highly conserved residues. We also discovered a highly conserved region of She3p upstream of its hook region. Because this region consists of basic and aromatic residues, it likely represents part of She3p's binding activity for zipcode. Because She2p also exhibits zipcode-binding activity, we suggest that "hooking" She3p onto She2p aligns each of their zipcode-binding activities into a high-affinity site, thereby linking motor assembly to zipcode. |
abstractGer |
The segregation of approximately two dozen distinct mRNAs from yeast mother to daughter cell cytoplasm is a classical paradigm for eukaryotic mRNA transport. The information for transport resides in an mRNA element 40-100 nt in length, known as "zipcode." Targeted transport requires properly positioned actin filaments and cooperative loading of mRNA cargo to myosin. Cargo loading to myosin uses myosin 4 protein (Myo4p), swi5p-dependent HO expression 2 protein (She2p) and 3 protein (She3p), and zipcode. We previously determined a crystal structure of Myo4p and She3p, their 1:2 stoichiometry and interactome; we furthermore showed that the motor complex assembly requires two Myo4p⋅She3p heterotrimers, one She2p tetramer, and at least a single zipcode to yield a stable complex of [Myo4p⋅She3p⋅She2p⋅zipcode] in 2:4:4:1 stoichiometry in vitro. Here, we report a structure at 2.8-Å resolution of a cocrystal of a She2p tetramer bound to a segment of She3p. In this crystal structure, the She3p segment forms a striking hook that binds to a shallow hydrophobic pocket on the surface of each She2p subunit of the tetramer. Both She3p hook and cognate She2p binding pocket are composed of highly conserved residues. We also discovered a highly conserved region of She3p upstream of its hook region. Because this region consists of basic and aromatic residues, it likely represents part of She3p's binding activity for zipcode. Because She2p also exhibits zipcode-binding activity, we suggest that "hooking" She3p onto She2p aligns each of their zipcode-binding activities into a high-affinity site, thereby linking motor assembly to zipcode. |
abstract_unstemmed |
The segregation of approximately two dozen distinct mRNAs from yeast mother to daughter cell cytoplasm is a classical paradigm for eukaryotic mRNA transport. The information for transport resides in an mRNA element 40-100 nt in length, known as "zipcode." Targeted transport requires properly positioned actin filaments and cooperative loading of mRNA cargo to myosin. Cargo loading to myosin uses myosin 4 protein (Myo4p), swi5p-dependent HO expression 2 protein (She2p) and 3 protein (She3p), and zipcode. We previously determined a crystal structure of Myo4p and She3p, their 1:2 stoichiometry and interactome; we furthermore showed that the motor complex assembly requires two Myo4p⋅She3p heterotrimers, one She2p tetramer, and at least a single zipcode to yield a stable complex of [Myo4p⋅She3p⋅She2p⋅zipcode] in 2:4:4:1 stoichiometry in vitro. Here, we report a structure at 2.8-Å resolution of a cocrystal of a She2p tetramer bound to a segment of She3p. In this crystal structure, the She3p segment forms a striking hook that binds to a shallow hydrophobic pocket on the surface of each She2p subunit of the tetramer. Both She3p hook and cognate She2p binding pocket are composed of highly conserved residues. We also discovered a highly conserved region of She3p upstream of its hook region. Because this region consists of basic and aromatic residues, it likely represents part of She3p's binding activity for zipcode. Because She2p also exhibits zipcode-binding activity, we suggest that "hooking" She3p onto She2p aligns each of their zipcode-binding activities into a high-affinity site, thereby linking motor assembly to zipcode. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 |
container_issue |
1 |
title_short |
Hooking She3p onto She2p for myosin-mediated cytoplasmic mRNA transport |
url |
http://dx.doi.org/10.1073/pnas.1423194112 http://www.pnas.org/content/112/1/142.abstract http://www.ncbi.nlm.nih.gov/pubmed/25535369 http://search.proquest.com/docview/1645384934 |
remote_bool |
false |
author2 |
Günter Blobel Hang Shi |
author2Str |
Günter Blobel Hang Shi |
ppnlink |
129505269 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1073/pnas.1423194112 |
up_date |
2024-07-04T01:57:38.601Z |
_version_ |
1803611808572899328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1961710323</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714154513.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1073/pnas.1423194112</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1961710323</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1961710323</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2193-2bbc1b90d405ed37a711e446438a0b634d68cd24570991064f2fc309146e08d3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0583363920150000112000100142hookingshe3pontoshe2pformyosinmediatedcytoplasmicm</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nimisha Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hooking She3p onto She2p for myosin-mediated cytoplasmic mRNA transport</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The segregation of approximately two dozen distinct mRNAs from yeast mother to daughter cell cytoplasm is a classical paradigm for eukaryotic mRNA transport. The information for transport resides in an mRNA element 40-100 nt in length, known as "zipcode." Targeted transport requires properly positioned actin filaments and cooperative loading of mRNA cargo to myosin. Cargo loading to myosin uses myosin 4 protein (Myo4p), swi5p-dependent HO expression 2 protein (She2p) and 3 protein (She3p), and zipcode. We previously determined a crystal structure of Myo4p and She3p, their 1:2 stoichiometry and interactome; we furthermore showed that the motor complex assembly requires two Myo4p⋅She3p heterotrimers, one She2p tetramer, and at least a single zipcode to yield a stable complex of [Myo4p⋅She3p⋅She2p⋅zipcode] in 2:4:4:1 stoichiometry in vitro. Here, we report a structure at 2.8-Å resolution of a cocrystal of a She2p tetramer bound to a segment of She3p. In this crystal structure, the She3p segment forms a striking hook that binds to a shallow hydrophobic pocket on the surface of each She2p subunit of the tetramer. Both She3p hook and cognate She2p binding pocket are composed of highly conserved residues. We also discovered a highly conserved region of She3p upstream of its hook region. Because this region consists of basic and aromatic residues, it likely represents part of She3p's binding activity for zipcode. Because She2p also exhibits zipcode-binding activity, we suggest that "hooking" She3p onto She2p aligns each of their zipcode-binding activities into a high-affinity site, thereby linking motor assembly to zipcode.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amino Acids - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Myosins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cytoplasm - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Messenger - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Saccharomyces cerevisiae Proteins - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peptides - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Messenger - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA-Binding Proteins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peptides - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA-Binding Proteins - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Saccharomyces cerevisiae Proteins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological transport, Active</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Observations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Messenger RNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cytoplasm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic aspects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physiological aspects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA-protein interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrophobic surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Binding sites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystal structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystallography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yeast</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Günter Blobel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hang Shi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the National Academy of Sciences of the United States of America</subfield><subfield code="d">Washington, DC : NAS, 1877</subfield><subfield code="g">112(2015), 1, Seite 142-147</subfield><subfield code="w">(DE-627)129505269</subfield><subfield code="w">(DE-600)209104-5</subfield><subfield code="w">(DE-576)014909189</subfield><subfield code="x">0027-8424</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:112</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:142-147</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1073/pnas.1423194112</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.pnas.org/content/112/1/142.abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25535369</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1645384934</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">112</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">142-147</subfield></datafield></record></collection>
|
score |
7.4011183 |