Measurements on the reality of the wavefunction
Quantum mechanics is an outstandingly successful description of nature, underpinning fields from biology through chemistry to physics. At its heart is the quantum wavefunction, the central tool for describing quantum systems. Yet it is still unclear what the wavefunction actually is: does it merely...
Ausführliche Beschreibung
Autor*in: |
M Ringbauer [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Nature physics - Basingstoke : Nature Publishing Group, 2005, 11(2015), 3, Seite 249-254 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2015 ; number:3 ; pages:249-254 |
Links: |
---|
DOI / URN: |
10.1038/nphys3233 |
---|
Katalog-ID: |
OLC1961721988 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1961721988 | ||
003 | DE-627 | ||
005 | 20220219182728.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1038/nphys3233 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1961721988 | ||
035 | |a (DE-599)GBVOLC1961721988 | ||
035 | |a (PRQ)a2407-3ce96ab93c6376a3cf030ef14457efdae536134da66fa94ba16eda338c8e48260 | ||
035 | |a (KEY)0590766720150000011000300249measurementsontherealityofthewavefunction | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DNB |
084 | |a 33.00 |2 bkl | ||
100 | 0 | |a M Ringbauer |e verfasserin |4 aut | |
245 | 1 | 0 | |a Measurements on the reality of the wavefunction |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Quantum mechanics is an outstandingly successful description of nature, underpinning fields from biology through chemistry to physics. At its heart is the quantum wavefunction, the central tool for describing quantum systems. Yet it is still unclear what the wavefunction actually is: does it merely represent our limited knowledge of a system, or is it in direct correspondence to reality? Recent no-go theorems argued that if there was any objective reality, then the wavefunction must be real. However, that conclusion relied on debatable assumptions. Here we follow a different approach without these assumptions and experimentally bound the degree to which knowledge interpretations can explain quantum phenomena. Using single photons, we find that no knowledge interpretation can fully explain the limited distinguishability of non-orthogonal quantum states in three and four dimensions. Assuming that a notion of objective reality exists, our results thus strengthen the view that the wavefunction should directly correspond to this reality. | ||
650 | 4 | |a Quantum physics | |
650 | 4 | |a Quantum Physics | |
700 | 0 | |a B Duffus |4 oth | |
700 | 0 | |a C Branciard |4 oth | |
700 | 0 | |a E G Cavalcanti |4 oth | |
700 | 0 | |a A G White |4 oth | |
700 | 0 | |a A Fedrizzi |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Nature physics |d Basingstoke : Nature Publishing Group, 2005 |g 11(2015), 3, Seite 249-254 |w (DE-627)503328537 |w (DE-600)2210466-5 |w (DE-576)251841693 |x 1745-2473 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2015 |g number:3 |g pages:249-254 |
856 | 4 | 1 | |u http://dx.doi.org/10.1038/nphys3233 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1660149434 |
856 | 4 | 2 | |u http://arxiv.org/abs/1412.6213 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2185 | ||
936 | b | k | |a 33.00 |q AVZ |
951 | |a AR | ||
952 | |d 11 |j 2015 |e 3 |h 249-254 |
author_variant |
m r mr |
---|---|
matchkey_str |
article:17452473:2015----::esrmnsnhraiyfhw |
hierarchy_sort_str |
2015 |
bklnumber |
33.00 |
publishDate |
2015 |
allfields |
10.1038/nphys3233 doi PQ20160617 (DE-627)OLC1961721988 (DE-599)GBVOLC1961721988 (PRQ)a2407-3ce96ab93c6376a3cf030ef14457efdae536134da66fa94ba16eda338c8e48260 (KEY)0590766720150000011000300249measurementsontherealityofthewavefunction DE-627 ger DE-627 rakwb eng 530 DNB 33.00 bkl M Ringbauer verfasserin aut Measurements on the reality of the wavefunction 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Quantum mechanics is an outstandingly successful description of nature, underpinning fields from biology through chemistry to physics. At its heart is the quantum wavefunction, the central tool for describing quantum systems. Yet it is still unclear what the wavefunction actually is: does it merely represent our limited knowledge of a system, or is it in direct correspondence to reality? Recent no-go theorems argued that if there was any objective reality, then the wavefunction must be real. However, that conclusion relied on debatable assumptions. Here we follow a different approach without these assumptions and experimentally bound the degree to which knowledge interpretations can explain quantum phenomena. Using single photons, we find that no knowledge interpretation can fully explain the limited distinguishability of non-orthogonal quantum states in three and four dimensions. Assuming that a notion of objective reality exists, our results thus strengthen the view that the wavefunction should directly correspond to this reality. Quantum physics Quantum Physics B Duffus oth C Branciard oth E G Cavalcanti oth A G White oth A Fedrizzi oth Enthalten in Nature physics Basingstoke : Nature Publishing Group, 2005 11(2015), 3, Seite 249-254 (DE-627)503328537 (DE-600)2210466-5 (DE-576)251841693 1745-2473 nnns volume:11 year:2015 number:3 pages:249-254 http://dx.doi.org/10.1038/nphys3233 Volltext http://search.proquest.com/docview/1660149434 http://arxiv.org/abs/1412.6213 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 33.00 AVZ AR 11 2015 3 249-254 |
spelling |
10.1038/nphys3233 doi PQ20160617 (DE-627)OLC1961721988 (DE-599)GBVOLC1961721988 (PRQ)a2407-3ce96ab93c6376a3cf030ef14457efdae536134da66fa94ba16eda338c8e48260 (KEY)0590766720150000011000300249measurementsontherealityofthewavefunction DE-627 ger DE-627 rakwb eng 530 DNB 33.00 bkl M Ringbauer verfasserin aut Measurements on the reality of the wavefunction 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Quantum mechanics is an outstandingly successful description of nature, underpinning fields from biology through chemistry to physics. At its heart is the quantum wavefunction, the central tool for describing quantum systems. Yet it is still unclear what the wavefunction actually is: does it merely represent our limited knowledge of a system, or is it in direct correspondence to reality? Recent no-go theorems argued that if there was any objective reality, then the wavefunction must be real. However, that conclusion relied on debatable assumptions. Here we follow a different approach without these assumptions and experimentally bound the degree to which knowledge interpretations can explain quantum phenomena. Using single photons, we find that no knowledge interpretation can fully explain the limited distinguishability of non-orthogonal quantum states in three and four dimensions. Assuming that a notion of objective reality exists, our results thus strengthen the view that the wavefunction should directly correspond to this reality. Quantum physics Quantum Physics B Duffus oth C Branciard oth E G Cavalcanti oth A G White oth A Fedrizzi oth Enthalten in Nature physics Basingstoke : Nature Publishing Group, 2005 11(2015), 3, Seite 249-254 (DE-627)503328537 (DE-600)2210466-5 (DE-576)251841693 1745-2473 nnns volume:11 year:2015 number:3 pages:249-254 http://dx.doi.org/10.1038/nphys3233 Volltext http://search.proquest.com/docview/1660149434 http://arxiv.org/abs/1412.6213 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 33.00 AVZ AR 11 2015 3 249-254 |
allfields_unstemmed |
10.1038/nphys3233 doi PQ20160617 (DE-627)OLC1961721988 (DE-599)GBVOLC1961721988 (PRQ)a2407-3ce96ab93c6376a3cf030ef14457efdae536134da66fa94ba16eda338c8e48260 (KEY)0590766720150000011000300249measurementsontherealityofthewavefunction DE-627 ger DE-627 rakwb eng 530 DNB 33.00 bkl M Ringbauer verfasserin aut Measurements on the reality of the wavefunction 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Quantum mechanics is an outstandingly successful description of nature, underpinning fields from biology through chemistry to physics. At its heart is the quantum wavefunction, the central tool for describing quantum systems. Yet it is still unclear what the wavefunction actually is: does it merely represent our limited knowledge of a system, or is it in direct correspondence to reality? Recent no-go theorems argued that if there was any objective reality, then the wavefunction must be real. However, that conclusion relied on debatable assumptions. Here we follow a different approach without these assumptions and experimentally bound the degree to which knowledge interpretations can explain quantum phenomena. Using single photons, we find that no knowledge interpretation can fully explain the limited distinguishability of non-orthogonal quantum states in three and four dimensions. Assuming that a notion of objective reality exists, our results thus strengthen the view that the wavefunction should directly correspond to this reality. Quantum physics Quantum Physics B Duffus oth C Branciard oth E G Cavalcanti oth A G White oth A Fedrizzi oth Enthalten in Nature physics Basingstoke : Nature Publishing Group, 2005 11(2015), 3, Seite 249-254 (DE-627)503328537 (DE-600)2210466-5 (DE-576)251841693 1745-2473 nnns volume:11 year:2015 number:3 pages:249-254 http://dx.doi.org/10.1038/nphys3233 Volltext http://search.proquest.com/docview/1660149434 http://arxiv.org/abs/1412.6213 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 33.00 AVZ AR 11 2015 3 249-254 |
allfieldsGer |
10.1038/nphys3233 doi PQ20160617 (DE-627)OLC1961721988 (DE-599)GBVOLC1961721988 (PRQ)a2407-3ce96ab93c6376a3cf030ef14457efdae536134da66fa94ba16eda338c8e48260 (KEY)0590766720150000011000300249measurementsontherealityofthewavefunction DE-627 ger DE-627 rakwb eng 530 DNB 33.00 bkl M Ringbauer verfasserin aut Measurements on the reality of the wavefunction 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Quantum mechanics is an outstandingly successful description of nature, underpinning fields from biology through chemistry to physics. At its heart is the quantum wavefunction, the central tool for describing quantum systems. Yet it is still unclear what the wavefunction actually is: does it merely represent our limited knowledge of a system, or is it in direct correspondence to reality? Recent no-go theorems argued that if there was any objective reality, then the wavefunction must be real. However, that conclusion relied on debatable assumptions. Here we follow a different approach without these assumptions and experimentally bound the degree to which knowledge interpretations can explain quantum phenomena. Using single photons, we find that no knowledge interpretation can fully explain the limited distinguishability of non-orthogonal quantum states in three and four dimensions. Assuming that a notion of objective reality exists, our results thus strengthen the view that the wavefunction should directly correspond to this reality. Quantum physics Quantum Physics B Duffus oth C Branciard oth E G Cavalcanti oth A G White oth A Fedrizzi oth Enthalten in Nature physics Basingstoke : Nature Publishing Group, 2005 11(2015), 3, Seite 249-254 (DE-627)503328537 (DE-600)2210466-5 (DE-576)251841693 1745-2473 nnns volume:11 year:2015 number:3 pages:249-254 http://dx.doi.org/10.1038/nphys3233 Volltext http://search.proquest.com/docview/1660149434 http://arxiv.org/abs/1412.6213 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 33.00 AVZ AR 11 2015 3 249-254 |
allfieldsSound |
10.1038/nphys3233 doi PQ20160617 (DE-627)OLC1961721988 (DE-599)GBVOLC1961721988 (PRQ)a2407-3ce96ab93c6376a3cf030ef14457efdae536134da66fa94ba16eda338c8e48260 (KEY)0590766720150000011000300249measurementsontherealityofthewavefunction DE-627 ger DE-627 rakwb eng 530 DNB 33.00 bkl M Ringbauer verfasserin aut Measurements on the reality of the wavefunction 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Quantum mechanics is an outstandingly successful description of nature, underpinning fields from biology through chemistry to physics. At its heart is the quantum wavefunction, the central tool for describing quantum systems. Yet it is still unclear what the wavefunction actually is: does it merely represent our limited knowledge of a system, or is it in direct correspondence to reality? Recent no-go theorems argued that if there was any objective reality, then the wavefunction must be real. However, that conclusion relied on debatable assumptions. Here we follow a different approach without these assumptions and experimentally bound the degree to which knowledge interpretations can explain quantum phenomena. Using single photons, we find that no knowledge interpretation can fully explain the limited distinguishability of non-orthogonal quantum states in three and four dimensions. Assuming that a notion of objective reality exists, our results thus strengthen the view that the wavefunction should directly correspond to this reality. Quantum physics Quantum Physics B Duffus oth C Branciard oth E G Cavalcanti oth A G White oth A Fedrizzi oth Enthalten in Nature physics Basingstoke : Nature Publishing Group, 2005 11(2015), 3, Seite 249-254 (DE-627)503328537 (DE-600)2210466-5 (DE-576)251841693 1745-2473 nnns volume:11 year:2015 number:3 pages:249-254 http://dx.doi.org/10.1038/nphys3233 Volltext http://search.proquest.com/docview/1660149434 http://arxiv.org/abs/1412.6213 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 33.00 AVZ AR 11 2015 3 249-254 |
language |
English |
source |
Enthalten in Nature physics 11(2015), 3, Seite 249-254 volume:11 year:2015 number:3 pages:249-254 |
sourceStr |
Enthalten in Nature physics 11(2015), 3, Seite 249-254 volume:11 year:2015 number:3 pages:249-254 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quantum physics Quantum Physics |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Nature physics |
authorswithroles_txt_mv |
M Ringbauer @@aut@@ B Duffus @@oth@@ C Branciard @@oth@@ E G Cavalcanti @@oth@@ A G White @@oth@@ A Fedrizzi @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
503328537 |
dewey-sort |
3530 |
id |
OLC1961721988 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1961721988</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220219182728.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/nphys3233</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1961721988</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1961721988</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a2407-3ce96ab93c6376a3cf030ef14457efdae536134da66fa94ba16eda338c8e48260</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0590766720150000011000300249measurementsontherealityofthewavefunction</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M Ringbauer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measurements on the reality of the wavefunction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quantum mechanics is an outstandingly successful description of nature, underpinning fields from biology through chemistry to physics. At its heart is the quantum wavefunction, the central tool for describing quantum systems. Yet it is still unclear what the wavefunction actually is: does it merely represent our limited knowledge of a system, or is it in direct correspondence to reality? Recent no-go theorems argued that if there was any objective reality, then the wavefunction must be real. However, that conclusion relied on debatable assumptions. Here we follow a different approach without these assumptions and experimentally bound the degree to which knowledge interpretations can explain quantum phenomena. Using single photons, we find that no knowledge interpretation can fully explain the limited distinguishability of non-orthogonal quantum states in three and four dimensions. Assuming that a notion of objective reality exists, our results thus strengthen the view that the wavefunction should directly correspond to this reality.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">B Duffus</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">C Branciard</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">E G Cavalcanti</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A G White</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A Fedrizzi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nature physics</subfield><subfield code="d">Basingstoke : Nature Publishing Group, 2005</subfield><subfield code="g">11(2015), 3, Seite 249-254</subfield><subfield code="w">(DE-627)503328537</subfield><subfield code="w">(DE-600)2210466-5</subfield><subfield code="w">(DE-576)251841693</subfield><subfield code="x">1745-2473</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:249-254</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1038/nphys3233</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1660149434</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1412.6213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2185</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">249-254</subfield></datafield></record></collection>
|
author |
M Ringbauer |
spellingShingle |
M Ringbauer ddc 530 bkl 33.00 misc Quantum physics misc Quantum Physics Measurements on the reality of the wavefunction |
authorStr |
M Ringbauer |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)503328537 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1745-2473 |
topic_title |
530 DNB 33.00 bkl Measurements on the reality of the wavefunction Quantum physics Quantum Physics |
topic |
ddc 530 bkl 33.00 misc Quantum physics misc Quantum Physics |
topic_unstemmed |
ddc 530 bkl 33.00 misc Quantum physics misc Quantum Physics |
topic_browse |
ddc 530 bkl 33.00 misc Quantum physics misc Quantum Physics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
b d bd c b cb e g c egc a g w agw a f af |
hierarchy_parent_title |
Nature physics |
hierarchy_parent_id |
503328537 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Nature physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)503328537 (DE-600)2210466-5 (DE-576)251841693 |
title |
Measurements on the reality of the wavefunction |
ctrlnum |
(DE-627)OLC1961721988 (DE-599)GBVOLC1961721988 (PRQ)a2407-3ce96ab93c6376a3cf030ef14457efdae536134da66fa94ba16eda338c8e48260 (KEY)0590766720150000011000300249measurementsontherealityofthewavefunction |
title_full |
Measurements on the reality of the wavefunction |
author_sort |
M Ringbauer |
journal |
Nature physics |
journalStr |
Nature physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
249 |
author_browse |
M Ringbauer |
container_volume |
11 |
class |
530 DNB 33.00 bkl |
format_se |
Aufsätze |
author-letter |
M Ringbauer |
doi_str_mv |
10.1038/nphys3233 |
dewey-full |
530 |
title_sort |
measurements on the reality of the wavefunction |
title_auth |
Measurements on the reality of the wavefunction |
abstract |
Quantum mechanics is an outstandingly successful description of nature, underpinning fields from biology through chemistry to physics. At its heart is the quantum wavefunction, the central tool for describing quantum systems. Yet it is still unclear what the wavefunction actually is: does it merely represent our limited knowledge of a system, or is it in direct correspondence to reality? Recent no-go theorems argued that if there was any objective reality, then the wavefunction must be real. However, that conclusion relied on debatable assumptions. Here we follow a different approach without these assumptions and experimentally bound the degree to which knowledge interpretations can explain quantum phenomena. Using single photons, we find that no knowledge interpretation can fully explain the limited distinguishability of non-orthogonal quantum states in three and four dimensions. Assuming that a notion of objective reality exists, our results thus strengthen the view that the wavefunction should directly correspond to this reality. |
abstractGer |
Quantum mechanics is an outstandingly successful description of nature, underpinning fields from biology through chemistry to physics. At its heart is the quantum wavefunction, the central tool for describing quantum systems. Yet it is still unclear what the wavefunction actually is: does it merely represent our limited knowledge of a system, or is it in direct correspondence to reality? Recent no-go theorems argued that if there was any objective reality, then the wavefunction must be real. However, that conclusion relied on debatable assumptions. Here we follow a different approach without these assumptions and experimentally bound the degree to which knowledge interpretations can explain quantum phenomena. Using single photons, we find that no knowledge interpretation can fully explain the limited distinguishability of non-orthogonal quantum states in three and four dimensions. Assuming that a notion of objective reality exists, our results thus strengthen the view that the wavefunction should directly correspond to this reality. |
abstract_unstemmed |
Quantum mechanics is an outstandingly successful description of nature, underpinning fields from biology through chemistry to physics. At its heart is the quantum wavefunction, the central tool for describing quantum systems. Yet it is still unclear what the wavefunction actually is: does it merely represent our limited knowledge of a system, or is it in direct correspondence to reality? Recent no-go theorems argued that if there was any objective reality, then the wavefunction must be real. However, that conclusion relied on debatable assumptions. Here we follow a different approach without these assumptions and experimentally bound the degree to which knowledge interpretations can explain quantum phenomena. Using single photons, we find that no knowledge interpretation can fully explain the limited distinguishability of non-orthogonal quantum states in three and four dimensions. Assuming that a notion of objective reality exists, our results thus strengthen the view that the wavefunction should directly correspond to this reality. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 |
container_issue |
3 |
title_short |
Measurements on the reality of the wavefunction |
url |
http://dx.doi.org/10.1038/nphys3233 http://search.proquest.com/docview/1660149434 http://arxiv.org/abs/1412.6213 |
remote_bool |
false |
author2 |
B Duffus C Branciard E G Cavalcanti A G White A Fedrizzi |
author2Str |
B Duffus C Branciard E G Cavalcanti A G White A Fedrizzi |
ppnlink |
503328537 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1038/nphys3233 |
up_date |
2024-07-04T01:59:46.639Z |
_version_ |
1803611942830473216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1961721988</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220219182728.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/nphys3233</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1961721988</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1961721988</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a2407-3ce96ab93c6376a3cf030ef14457efdae536134da66fa94ba16eda338c8e48260</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0590766720150000011000300249measurementsontherealityofthewavefunction</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M Ringbauer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measurements on the reality of the wavefunction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quantum mechanics is an outstandingly successful description of nature, underpinning fields from biology through chemistry to physics. At its heart is the quantum wavefunction, the central tool for describing quantum systems. Yet it is still unclear what the wavefunction actually is: does it merely represent our limited knowledge of a system, or is it in direct correspondence to reality? Recent no-go theorems argued that if there was any objective reality, then the wavefunction must be real. However, that conclusion relied on debatable assumptions. Here we follow a different approach without these assumptions and experimentally bound the degree to which knowledge interpretations can explain quantum phenomena. Using single photons, we find that no knowledge interpretation can fully explain the limited distinguishability of non-orthogonal quantum states in three and four dimensions. Assuming that a notion of objective reality exists, our results thus strengthen the view that the wavefunction should directly correspond to this reality.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">B Duffus</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">C Branciard</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">E G Cavalcanti</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A G White</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A Fedrizzi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nature physics</subfield><subfield code="d">Basingstoke : Nature Publishing Group, 2005</subfield><subfield code="g">11(2015), 3, Seite 249-254</subfield><subfield code="w">(DE-627)503328537</subfield><subfield code="w">(DE-600)2210466-5</subfield><subfield code="w">(DE-576)251841693</subfield><subfield code="x">1745-2473</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:249-254</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1038/nphys3233</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1660149434</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1412.6213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2185</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">249-254</subfield></datafield></record></collection>
|
score |
7.4015102 |