SO(N) restricted Schur polynomials
We focus on the 1/4-BPS sector of free super Yang-Mills theory with an SO(N) gauge group. This theory has an AdS/CFT (an equivalence between a conformal field theory in d-1 dimensions and type II string theory defined on an AdS space in d-dimensions) dual in the form of type IIB string theory with g...
Ausführliche Beschreibung
Autor*in: |
Garreth Kemp [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Journal of mathematical physics - Melville, NY : American Institute of Physics, 1960, 56(2015), 2, Seite 1 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2015 ; number:2 ; pages:1 |
Links: |
---|
DOI / URN: |
10.1063/1.4906904 |
---|
Katalog-ID: |
OLC1962175103 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1962175103 | ||
003 | DE-627 | ||
005 | 20220221225658.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1063/1.4906904 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1962175103 | ||
035 | |a (DE-599)GBVOLC1962175103 | ||
035 | |a (PRQ)a1779-ad6fc50d75df346ff34157daf6646173c0a77c35240761985b6040edfc6e6d5f0 | ||
035 | |a (KEY)0000548720150000056000200001sonrestrictedschurpolynomials | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q DNB |
084 | |a UA 4660 |q AVZ |2 rvk | ||
100 | 0 | |a Garreth Kemp |e verfasserin |4 aut | |
245 | 1 | 0 | |a SO(N) restricted Schur polynomials |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We focus on the 1/4-BPS sector of free super Yang-Mills theory with an SO(N) gauge group. This theory has an AdS/CFT (an equivalence between a conformal field theory in d-1 dimensions and type II string theory defined on an AdS space in d-dimensions) dual in the form of type IIB string theory with geometry. With the aim of studying excited giant graviton dynamics, we construct an orthogonal basis for this sector of the gauge theory in this work. First, we demonstrate that the counting of states, as given by the partition function, and the counting of restricted Schur polynomials match by restricting to a particular class of Young diagram labels. We then give an explicit construction of these gauge invariant operators and evaluate their two-point function exactly. This paves the way to studying the spectral problem of these operators and their D-brane duals. | ||
650 | 4 | |a Physics | |
650 | 4 | |a Geometry | |
650 | 4 | |a String theory | |
650 | 4 | |a Polynomials | |
650 | 4 | |a High Energy Physics | |
650 | 4 | |a Theory | |
773 | 0 | 8 | |i Enthalten in |t Journal of mathematical physics |d Melville, NY : American Institute of Physics, 1960 |g 56(2015), 2, Seite 1 |w (DE-627)129549703 |w (DE-600)219135-0 |w (DE-576)01500290X |x 0022-2488 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2015 |g number:2 |g pages:1 |
856 | 4 | 1 | |u http://dx.doi.org/10.1063/1.4906904 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1660759291 |
856 | 4 | 2 | |u http://arxiv.org/abs/1405.7017 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2192 | ||
912 | |a GBV_ILN_2279 | ||
936 | r | v | |a UA 4660 |
951 | |a AR | ||
952 | |d 56 |j 2015 |e 2 |h 1 |
author_variant |
g k gk |
---|---|
matchkey_str |
article:00222488:2015----::orsrceshro |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1063/1.4906904 doi PQ20160617 (DE-627)OLC1962175103 (DE-599)GBVOLC1962175103 (PRQ)a1779-ad6fc50d75df346ff34157daf6646173c0a77c35240761985b6040edfc6e6d5f0 (KEY)0000548720150000056000200001sonrestrictedschurpolynomials DE-627 ger DE-627 rakwb eng 530 510 DNB UA 4660 AVZ rvk Garreth Kemp verfasserin aut SO(N) restricted Schur polynomials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We focus on the 1/4-BPS sector of free super Yang-Mills theory with an SO(N) gauge group. This theory has an AdS/CFT (an equivalence between a conformal field theory in d-1 dimensions and type II string theory defined on an AdS space in d-dimensions) dual in the form of type IIB string theory with geometry. With the aim of studying excited giant graviton dynamics, we construct an orthogonal basis for this sector of the gauge theory in this work. First, we demonstrate that the counting of states, as given by the partition function, and the counting of restricted Schur polynomials match by restricting to a particular class of Young diagram labels. We then give an explicit construction of these gauge invariant operators and evaluate their two-point function exactly. This paves the way to studying the spectral problem of these operators and their D-brane duals. Physics Geometry String theory Polynomials High Energy Physics Theory Enthalten in Journal of mathematical physics Melville, NY : American Institute of Physics, 1960 56(2015), 2, Seite 1 (DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X 0022-2488 nnns volume:56 year:2015 number:2 pages:1 http://dx.doi.org/10.1063/1.4906904 Volltext http://search.proquest.com/docview/1660759291 http://arxiv.org/abs/1405.7017 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 UA 4660 AR 56 2015 2 1 |
spelling |
10.1063/1.4906904 doi PQ20160617 (DE-627)OLC1962175103 (DE-599)GBVOLC1962175103 (PRQ)a1779-ad6fc50d75df346ff34157daf6646173c0a77c35240761985b6040edfc6e6d5f0 (KEY)0000548720150000056000200001sonrestrictedschurpolynomials DE-627 ger DE-627 rakwb eng 530 510 DNB UA 4660 AVZ rvk Garreth Kemp verfasserin aut SO(N) restricted Schur polynomials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We focus on the 1/4-BPS sector of free super Yang-Mills theory with an SO(N) gauge group. This theory has an AdS/CFT (an equivalence between a conformal field theory in d-1 dimensions and type II string theory defined on an AdS space in d-dimensions) dual in the form of type IIB string theory with geometry. With the aim of studying excited giant graviton dynamics, we construct an orthogonal basis for this sector of the gauge theory in this work. First, we demonstrate that the counting of states, as given by the partition function, and the counting of restricted Schur polynomials match by restricting to a particular class of Young diagram labels. We then give an explicit construction of these gauge invariant operators and evaluate their two-point function exactly. This paves the way to studying the spectral problem of these operators and their D-brane duals. Physics Geometry String theory Polynomials High Energy Physics Theory Enthalten in Journal of mathematical physics Melville, NY : American Institute of Physics, 1960 56(2015), 2, Seite 1 (DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X 0022-2488 nnns volume:56 year:2015 number:2 pages:1 http://dx.doi.org/10.1063/1.4906904 Volltext http://search.proquest.com/docview/1660759291 http://arxiv.org/abs/1405.7017 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 UA 4660 AR 56 2015 2 1 |
allfields_unstemmed |
10.1063/1.4906904 doi PQ20160617 (DE-627)OLC1962175103 (DE-599)GBVOLC1962175103 (PRQ)a1779-ad6fc50d75df346ff34157daf6646173c0a77c35240761985b6040edfc6e6d5f0 (KEY)0000548720150000056000200001sonrestrictedschurpolynomials DE-627 ger DE-627 rakwb eng 530 510 DNB UA 4660 AVZ rvk Garreth Kemp verfasserin aut SO(N) restricted Schur polynomials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We focus on the 1/4-BPS sector of free super Yang-Mills theory with an SO(N) gauge group. This theory has an AdS/CFT (an equivalence between a conformal field theory in d-1 dimensions and type II string theory defined on an AdS space in d-dimensions) dual in the form of type IIB string theory with geometry. With the aim of studying excited giant graviton dynamics, we construct an orthogonal basis for this sector of the gauge theory in this work. First, we demonstrate that the counting of states, as given by the partition function, and the counting of restricted Schur polynomials match by restricting to a particular class of Young diagram labels. We then give an explicit construction of these gauge invariant operators and evaluate their two-point function exactly. This paves the way to studying the spectral problem of these operators and their D-brane duals. Physics Geometry String theory Polynomials High Energy Physics Theory Enthalten in Journal of mathematical physics Melville, NY : American Institute of Physics, 1960 56(2015), 2, Seite 1 (DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X 0022-2488 nnns volume:56 year:2015 number:2 pages:1 http://dx.doi.org/10.1063/1.4906904 Volltext http://search.proquest.com/docview/1660759291 http://arxiv.org/abs/1405.7017 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 UA 4660 AR 56 2015 2 1 |
allfieldsGer |
10.1063/1.4906904 doi PQ20160617 (DE-627)OLC1962175103 (DE-599)GBVOLC1962175103 (PRQ)a1779-ad6fc50d75df346ff34157daf6646173c0a77c35240761985b6040edfc6e6d5f0 (KEY)0000548720150000056000200001sonrestrictedschurpolynomials DE-627 ger DE-627 rakwb eng 530 510 DNB UA 4660 AVZ rvk Garreth Kemp verfasserin aut SO(N) restricted Schur polynomials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We focus on the 1/4-BPS sector of free super Yang-Mills theory with an SO(N) gauge group. This theory has an AdS/CFT (an equivalence between a conformal field theory in d-1 dimensions and type II string theory defined on an AdS space in d-dimensions) dual in the form of type IIB string theory with geometry. With the aim of studying excited giant graviton dynamics, we construct an orthogonal basis for this sector of the gauge theory in this work. First, we demonstrate that the counting of states, as given by the partition function, and the counting of restricted Schur polynomials match by restricting to a particular class of Young diagram labels. We then give an explicit construction of these gauge invariant operators and evaluate their two-point function exactly. This paves the way to studying the spectral problem of these operators and their D-brane duals. Physics Geometry String theory Polynomials High Energy Physics Theory Enthalten in Journal of mathematical physics Melville, NY : American Institute of Physics, 1960 56(2015), 2, Seite 1 (DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X 0022-2488 nnns volume:56 year:2015 number:2 pages:1 http://dx.doi.org/10.1063/1.4906904 Volltext http://search.proquest.com/docview/1660759291 http://arxiv.org/abs/1405.7017 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 UA 4660 AR 56 2015 2 1 |
allfieldsSound |
10.1063/1.4906904 doi PQ20160617 (DE-627)OLC1962175103 (DE-599)GBVOLC1962175103 (PRQ)a1779-ad6fc50d75df346ff34157daf6646173c0a77c35240761985b6040edfc6e6d5f0 (KEY)0000548720150000056000200001sonrestrictedschurpolynomials DE-627 ger DE-627 rakwb eng 530 510 DNB UA 4660 AVZ rvk Garreth Kemp verfasserin aut SO(N) restricted Schur polynomials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We focus on the 1/4-BPS sector of free super Yang-Mills theory with an SO(N) gauge group. This theory has an AdS/CFT (an equivalence between a conformal field theory in d-1 dimensions and type II string theory defined on an AdS space in d-dimensions) dual in the form of type IIB string theory with geometry. With the aim of studying excited giant graviton dynamics, we construct an orthogonal basis for this sector of the gauge theory in this work. First, we demonstrate that the counting of states, as given by the partition function, and the counting of restricted Schur polynomials match by restricting to a particular class of Young diagram labels. We then give an explicit construction of these gauge invariant operators and evaluate their two-point function exactly. This paves the way to studying the spectral problem of these operators and their D-brane duals. Physics Geometry String theory Polynomials High Energy Physics Theory Enthalten in Journal of mathematical physics Melville, NY : American Institute of Physics, 1960 56(2015), 2, Seite 1 (DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X 0022-2488 nnns volume:56 year:2015 number:2 pages:1 http://dx.doi.org/10.1063/1.4906904 Volltext http://search.proquest.com/docview/1660759291 http://arxiv.org/abs/1405.7017 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 UA 4660 AR 56 2015 2 1 |
language |
English |
source |
Enthalten in Journal of mathematical physics 56(2015), 2, Seite 1 volume:56 year:2015 number:2 pages:1 |
sourceStr |
Enthalten in Journal of mathematical physics 56(2015), 2, Seite 1 volume:56 year:2015 number:2 pages:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Physics Geometry String theory Polynomials High Energy Physics Theory |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of mathematical physics |
authorswithroles_txt_mv |
Garreth Kemp @@aut@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129549703 |
dewey-sort |
3530 |
id |
OLC1962175103 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1962175103</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221225658.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/1.4906904</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1962175103</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1962175103</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1779-ad6fc50d75df346ff34157daf6646173c0a77c35240761985b6040edfc6e6d5f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0000548720150000056000200001sonrestrictedschurpolynomials</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 4660</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Garreth Kemp</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">SO(N) restricted Schur polynomials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We focus on the 1/4-BPS sector of free super Yang-Mills theory with an SO(N) gauge group. This theory has an AdS/CFT (an equivalence between a conformal field theory in d-1 dimensions and type II string theory defined on an AdS space in d-dimensions) dual in the form of type IIB string theory with geometry. With the aim of studying excited giant graviton dynamics, we construct an orthogonal basis for this sector of the gauge theory in this work. First, we demonstrate that the counting of states, as given by the partition function, and the counting of restricted Schur polynomials match by restricting to a particular class of Young diagram labels. We then give an explicit construction of these gauge invariant operators and evaluate their two-point function exactly. This paves the way to studying the spectral problem of these operators and their D-brane duals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">String theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Energy Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical physics</subfield><subfield code="d">Melville, NY : American Institute of Physics, 1960</subfield><subfield code="g">56(2015), 2, Seite 1</subfield><subfield code="w">(DE-627)129549703</subfield><subfield code="w">(DE-600)219135-0</subfield><subfield code="w">(DE-576)01500290X</subfield><subfield code="x">0022-2488</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:1</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1063/1.4906904</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1660759291</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1405.7017</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 4660</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="h">1</subfield></datafield></record></collection>
|
author |
Garreth Kemp |
spellingShingle |
Garreth Kemp ddc 530 rvk UA 4660 misc Physics misc Geometry misc String theory misc Polynomials misc High Energy Physics misc Theory SO(N) restricted Schur polynomials |
authorStr |
Garreth Kemp |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129549703 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2488 |
topic_title |
530 510 DNB UA 4660 AVZ rvk SO(N) restricted Schur polynomials Physics Geometry String theory Polynomials High Energy Physics Theory |
topic |
ddc 530 rvk UA 4660 misc Physics misc Geometry misc String theory misc Polynomials misc High Energy Physics misc Theory |
topic_unstemmed |
ddc 530 rvk UA 4660 misc Physics misc Geometry misc String theory misc Polynomials misc High Energy Physics misc Theory |
topic_browse |
ddc 530 rvk UA 4660 misc Physics misc Geometry misc String theory misc Polynomials misc High Energy Physics misc Theory |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of mathematical physics |
hierarchy_parent_id |
129549703 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Journal of mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X |
title |
SO(N) restricted Schur polynomials |
ctrlnum |
(DE-627)OLC1962175103 (DE-599)GBVOLC1962175103 (PRQ)a1779-ad6fc50d75df346ff34157daf6646173c0a77c35240761985b6040edfc6e6d5f0 (KEY)0000548720150000056000200001sonrestrictedschurpolynomials |
title_full |
SO(N) restricted Schur polynomials |
author_sort |
Garreth Kemp |
journal |
Journal of mathematical physics |
journalStr |
Journal of mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Garreth Kemp |
container_volume |
56 |
class |
530 510 DNB UA 4660 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Garreth Kemp |
doi_str_mv |
10.1063/1.4906904 |
dewey-full |
530 510 |
title_sort |
so(n) restricted schur polynomials |
title_auth |
SO(N) restricted Schur polynomials |
abstract |
We focus on the 1/4-BPS sector of free super Yang-Mills theory with an SO(N) gauge group. This theory has an AdS/CFT (an equivalence between a conformal field theory in d-1 dimensions and type II string theory defined on an AdS space in d-dimensions) dual in the form of type IIB string theory with geometry. With the aim of studying excited giant graviton dynamics, we construct an orthogonal basis for this sector of the gauge theory in this work. First, we demonstrate that the counting of states, as given by the partition function, and the counting of restricted Schur polynomials match by restricting to a particular class of Young diagram labels. We then give an explicit construction of these gauge invariant operators and evaluate their two-point function exactly. This paves the way to studying the spectral problem of these operators and their D-brane duals. |
abstractGer |
We focus on the 1/4-BPS sector of free super Yang-Mills theory with an SO(N) gauge group. This theory has an AdS/CFT (an equivalence between a conformal field theory in d-1 dimensions and type II string theory defined on an AdS space in d-dimensions) dual in the form of type IIB string theory with geometry. With the aim of studying excited giant graviton dynamics, we construct an orthogonal basis for this sector of the gauge theory in this work. First, we demonstrate that the counting of states, as given by the partition function, and the counting of restricted Schur polynomials match by restricting to a particular class of Young diagram labels. We then give an explicit construction of these gauge invariant operators and evaluate their two-point function exactly. This paves the way to studying the spectral problem of these operators and their D-brane duals. |
abstract_unstemmed |
We focus on the 1/4-BPS sector of free super Yang-Mills theory with an SO(N) gauge group. This theory has an AdS/CFT (an equivalence between a conformal field theory in d-1 dimensions and type II string theory defined on an AdS space in d-dimensions) dual in the form of type IIB string theory with geometry. With the aim of studying excited giant graviton dynamics, we construct an orthogonal basis for this sector of the gauge theory in this work. First, we demonstrate that the counting of states, as given by the partition function, and the counting of restricted Schur polynomials match by restricting to a particular class of Young diagram labels. We then give an explicit construction of these gauge invariant operators and evaluate their two-point function exactly. This paves the way to studying the spectral problem of these operators and their D-brane duals. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 |
container_issue |
2 |
title_short |
SO(N) restricted Schur polynomials |
url |
http://dx.doi.org/10.1063/1.4906904 http://search.proquest.com/docview/1660759291 http://arxiv.org/abs/1405.7017 |
remote_bool |
false |
ppnlink |
129549703 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1063/1.4906904 |
up_date |
2024-07-04T02:58:18.631Z |
_version_ |
1803615625420996608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1962175103</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221225658.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/1.4906904</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1962175103</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1962175103</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1779-ad6fc50d75df346ff34157daf6646173c0a77c35240761985b6040edfc6e6d5f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0000548720150000056000200001sonrestrictedschurpolynomials</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 4660</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Garreth Kemp</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">SO(N) restricted Schur polynomials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We focus on the 1/4-BPS sector of free super Yang-Mills theory with an SO(N) gauge group. This theory has an AdS/CFT (an equivalence between a conformal field theory in d-1 dimensions and type II string theory defined on an AdS space in d-dimensions) dual in the form of type IIB string theory with geometry. With the aim of studying excited giant graviton dynamics, we construct an orthogonal basis for this sector of the gauge theory in this work. First, we demonstrate that the counting of states, as given by the partition function, and the counting of restricted Schur polynomials match by restricting to a particular class of Young diagram labels. We then give an explicit construction of these gauge invariant operators and evaluate their two-point function exactly. This paves the way to studying the spectral problem of these operators and their D-brane duals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">String theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Energy Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical physics</subfield><subfield code="d">Melville, NY : American Institute of Physics, 1960</subfield><subfield code="g">56(2015), 2, Seite 1</subfield><subfield code="w">(DE-627)129549703</subfield><subfield code="w">(DE-600)219135-0</subfield><subfield code="w">(DE-576)01500290X</subfield><subfield code="x">0022-2488</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:1</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1063/1.4906904</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1660759291</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1405.7017</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 4660</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="h">1</subfield></datafield></record></collection>
|
score |
7.4019136 |