Nanoparticle biointerfacing by platelet membrane cloaking
Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems1-3. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist fun...
Ausführliche Beschreibung
Autor*in: |
Che-Ming J Hu [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Nature - London : Macmillan Publishers Limited, part of Springer Nature, 1869, 526(2015), 7571, Seite 118-121 |
---|---|
Übergeordnetes Werk: |
volume:526 ; year:2015 ; number:7571 ; pages:118-121 |
Links: |
---|
DOI / URN: |
10.1038/nature15373 |
---|
Katalog-ID: |
OLC1962478211 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1962478211 | ||
003 | DE-627 | ||
005 | 20230714155600.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1038/nature15373 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1962478211 | ||
035 | |a (DE-599)GBVOLC1962478211 | ||
035 | |a (PRQ)c2941-92e181778a57aae9ec290aa3d0a63711967af14df8509066e867a3a2ba9bce210 | ||
035 | |a (KEY)0072945020150000526757100118nanoparticlebiointerfacingbyplateletmembranecloaki | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 500 |q DNB |
082 | 0 | 4 | |a 500 |q AVZ |
084 | |a BIODIV |2 fid | ||
100 | 0 | |a Che-Ming J Hu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nanoparticle biointerfacing by platelet membrane cloaking |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems1-3. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates4-7. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery. | ||
650 | 4 | |a Blood | |
650 | 4 | |a Blood platelets | |
650 | 4 | |a Membranes | |
650 | 4 | |a Staphylococcus infections | |
650 | 4 | |a Microorganisms | |
650 | 4 | |a Liver | |
650 | 4 | |a Veins & arteries | |
650 | 4 | |a Proteins | |
650 | 4 | |a Spleen | |
650 | 4 | |a Nanoparticles | |
650 | 4 | |a Immunoglobulins | |
650 | 4 | |a Collagen | |
650 | 4 | |a Taxoids - administration & dosage | |
650 | 4 | |a Nanoparticles - administration & dosage | |
650 | 4 | |a Drug Delivery Systems - methods | |
650 | 4 | |a Blood Platelets - cytology | |
650 | 4 | |a Staphylococcus aureus - cytology | |
650 | 4 | |a Coronary Restenosis - drug therapy | |
650 | 4 | |a Blood Vessels - cytology | |
650 | 4 | |a Unilamellar Liposomes - chemistry | |
650 | 4 | |a Staphylococcal Infections - drug therapy | |
650 | 4 | |a Macrophages - immunology | |
650 | 4 | |a Staphylococcal Infections - metabolism | |
650 | 4 | |a Anti-Bacterial Agents - administration & dosage | |
650 | 4 | |a Vancomycin - administration & dosage | |
650 | 4 | |a Collagen - immunology | |
650 | 4 | |a Coronary Restenosis - blood | |
650 | 4 | |a Polymers - chemistry | |
650 | 4 | |a Coronary Restenosis - metabolism | |
650 | 4 | |a Collagen - chemistry | |
650 | 4 | |a Cell Membrane - metabolism | |
650 | 4 | |a Anti-Bacterial Agents - pharmacokinetics | |
650 | 4 | |a Blood Vessels - pathology | |
650 | 4 | |a Vancomycin - pharmacokinetics | |
650 | 4 | |a Taxoids - pharmacokinetics | |
650 | 4 | |a Complement Activation - immunology | |
650 | 4 | |a Blood Vessels - metabolism | |
650 | 4 | |a Staphylococcal Infections - microbiology | |
650 | 4 | |a Staphylococcal Infections - blood | |
650 | 4 | |a Staphylococcus aureus - metabolism | |
650 | 4 | |a Nanoparticles - chemistry | |
650 | 4 | |a Properties | |
700 | 0 | |a Ronnie H Fang |4 oth | |
700 | 0 | |a Kuei-Chun Wang |4 oth | |
700 | 0 | |a Brian T Luk |4 oth | |
700 | 0 | |a Soracha Thamphiwatana |4 oth | |
700 | 0 | |a Diana Dehaini |4 oth | |
700 | 0 | |a Phu Nguyen |4 oth | |
700 | 0 | |a Pavimol Angsantikul |4 oth | |
700 | 0 | |a Cindy H Wen |4 oth | |
700 | 0 | |a Ashley V Kroll |4 oth | |
700 | 0 | |a Cody Carpenter |4 oth | |
700 | 0 | |a Manikantan Ramesh |4 oth | |
700 | 0 | |a Vivian Qu |4 oth | |
700 | 0 | |a Sherrina H Patel |4 oth | |
700 | 0 | |a Jie Zhu |4 oth | |
700 | 0 | |a William Shi |4 oth | |
700 | 0 | |a Florence M Hofman |4 oth | |
700 | 0 | |a Thomas C Chen |4 oth | |
700 | 0 | |a Weiwei Gao |4 oth | |
700 | 0 | |a Kang Zhang |4 oth | |
700 | 0 | |a Shu Chien |4 oth | |
700 | 0 | |a Liangfang Zhang |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Nature |d London : Macmillan Publishers Limited, part of Springer Nature, 1869 |g 526(2015), 7571, Seite 118-121 |w (DE-627)129292834 |w (DE-600)120714-3 |w (DE-576)014473941 |x 0028-0836 |7 nnns |
773 | 1 | 8 | |g volume:526 |g year:2015 |g number:7571 |g pages:118-121 |
856 | 4 | 1 | |u http://dx.doi.org/10.1038/nature15373 |3 Volltext |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/26374997 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1719458642 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-SPO | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_55 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_160 | ||
912 | |a GBV_ILN_168 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_211 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_290 | ||
912 | |a GBV_ILN_294 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_754 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2095 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2120 | ||
912 | |a GBV_ILN_2121 | ||
912 | |a GBV_ILN_2173 | ||
912 | |a GBV_ILN_2219 | ||
912 | |a GBV_ILN_2221 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2286 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4302 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4320 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 526 |j 2015 |e 7571 |h 118-121 |
author_variant |
c m j h cmjh |
---|---|
matchkey_str |
article:00280836:2015----::aoatceiitraigyltlte |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1038/nature15373 doi PQ20160617 (DE-627)OLC1962478211 (DE-599)GBVOLC1962478211 (PRQ)c2941-92e181778a57aae9ec290aa3d0a63711967af14df8509066e867a3a2ba9bce210 (KEY)0072945020150000526757100118nanoparticlebiointerfacingbyplateletmembranecloaki DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Che-Ming J Hu verfasserin aut Nanoparticle biointerfacing by platelet membrane cloaking 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems1-3. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates4-7. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery. Blood Blood platelets Membranes Staphylococcus infections Microorganisms Liver Veins & arteries Proteins Spleen Nanoparticles Immunoglobulins Collagen Taxoids - administration & dosage Nanoparticles - administration & dosage Drug Delivery Systems - methods Blood Platelets - cytology Staphylococcus aureus - cytology Coronary Restenosis - drug therapy Blood Vessels - cytology Unilamellar Liposomes - chemistry Staphylococcal Infections - drug therapy Macrophages - immunology Staphylococcal Infections - metabolism Anti-Bacterial Agents - administration & dosage Vancomycin - administration & dosage Collagen - immunology Coronary Restenosis - blood Polymers - chemistry Coronary Restenosis - metabolism Collagen - chemistry Cell Membrane - metabolism Anti-Bacterial Agents - pharmacokinetics Blood Vessels - pathology Vancomycin - pharmacokinetics Taxoids - pharmacokinetics Complement Activation - immunology Blood Vessels - metabolism Staphylococcal Infections - microbiology Staphylococcal Infections - blood Staphylococcus aureus - metabolism Nanoparticles - chemistry Properties Ronnie H Fang oth Kuei-Chun Wang oth Brian T Luk oth Soracha Thamphiwatana oth Diana Dehaini oth Phu Nguyen oth Pavimol Angsantikul oth Cindy H Wen oth Ashley V Kroll oth Cody Carpenter oth Manikantan Ramesh oth Vivian Qu oth Sherrina H Patel oth Jie Zhu oth William Shi oth Florence M Hofman oth Thomas C Chen oth Weiwei Gao oth Kang Zhang oth Shu Chien oth Liangfang Zhang oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 526(2015), 7571, Seite 118-121 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:526 year:2015 number:7571 pages:118-121 http://dx.doi.org/10.1038/nature15373 Volltext http://www.ncbi.nlm.nih.gov/pubmed/26374997 http://search.proquest.com/docview/1719458642 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 526 2015 7571 118-121 |
spelling |
10.1038/nature15373 doi PQ20160617 (DE-627)OLC1962478211 (DE-599)GBVOLC1962478211 (PRQ)c2941-92e181778a57aae9ec290aa3d0a63711967af14df8509066e867a3a2ba9bce210 (KEY)0072945020150000526757100118nanoparticlebiointerfacingbyplateletmembranecloaki DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Che-Ming J Hu verfasserin aut Nanoparticle biointerfacing by platelet membrane cloaking 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems1-3. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates4-7. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery. Blood Blood platelets Membranes Staphylococcus infections Microorganisms Liver Veins & arteries Proteins Spleen Nanoparticles Immunoglobulins Collagen Taxoids - administration & dosage Nanoparticles - administration & dosage Drug Delivery Systems - methods Blood Platelets - cytology Staphylococcus aureus - cytology Coronary Restenosis - drug therapy Blood Vessels - cytology Unilamellar Liposomes - chemistry Staphylococcal Infections - drug therapy Macrophages - immunology Staphylococcal Infections - metabolism Anti-Bacterial Agents - administration & dosage Vancomycin - administration & dosage Collagen - immunology Coronary Restenosis - blood Polymers - chemistry Coronary Restenosis - metabolism Collagen - chemistry Cell Membrane - metabolism Anti-Bacterial Agents - pharmacokinetics Blood Vessels - pathology Vancomycin - pharmacokinetics Taxoids - pharmacokinetics Complement Activation - immunology Blood Vessels - metabolism Staphylococcal Infections - microbiology Staphylococcal Infections - blood Staphylococcus aureus - metabolism Nanoparticles - chemistry Properties Ronnie H Fang oth Kuei-Chun Wang oth Brian T Luk oth Soracha Thamphiwatana oth Diana Dehaini oth Phu Nguyen oth Pavimol Angsantikul oth Cindy H Wen oth Ashley V Kroll oth Cody Carpenter oth Manikantan Ramesh oth Vivian Qu oth Sherrina H Patel oth Jie Zhu oth William Shi oth Florence M Hofman oth Thomas C Chen oth Weiwei Gao oth Kang Zhang oth Shu Chien oth Liangfang Zhang oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 526(2015), 7571, Seite 118-121 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:526 year:2015 number:7571 pages:118-121 http://dx.doi.org/10.1038/nature15373 Volltext http://www.ncbi.nlm.nih.gov/pubmed/26374997 http://search.proquest.com/docview/1719458642 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 526 2015 7571 118-121 |
allfields_unstemmed |
10.1038/nature15373 doi PQ20160617 (DE-627)OLC1962478211 (DE-599)GBVOLC1962478211 (PRQ)c2941-92e181778a57aae9ec290aa3d0a63711967af14df8509066e867a3a2ba9bce210 (KEY)0072945020150000526757100118nanoparticlebiointerfacingbyplateletmembranecloaki DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Che-Ming J Hu verfasserin aut Nanoparticle biointerfacing by platelet membrane cloaking 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems1-3. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates4-7. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery. Blood Blood platelets Membranes Staphylococcus infections Microorganisms Liver Veins & arteries Proteins Spleen Nanoparticles Immunoglobulins Collagen Taxoids - administration & dosage Nanoparticles - administration & dosage Drug Delivery Systems - methods Blood Platelets - cytology Staphylococcus aureus - cytology Coronary Restenosis - drug therapy Blood Vessels - cytology Unilamellar Liposomes - chemistry Staphylococcal Infections - drug therapy Macrophages - immunology Staphylococcal Infections - metabolism Anti-Bacterial Agents - administration & dosage Vancomycin - administration & dosage Collagen - immunology Coronary Restenosis - blood Polymers - chemistry Coronary Restenosis - metabolism Collagen - chemistry Cell Membrane - metabolism Anti-Bacterial Agents - pharmacokinetics Blood Vessels - pathology Vancomycin - pharmacokinetics Taxoids - pharmacokinetics Complement Activation - immunology Blood Vessels - metabolism Staphylococcal Infections - microbiology Staphylococcal Infections - blood Staphylococcus aureus - metabolism Nanoparticles - chemistry Properties Ronnie H Fang oth Kuei-Chun Wang oth Brian T Luk oth Soracha Thamphiwatana oth Diana Dehaini oth Phu Nguyen oth Pavimol Angsantikul oth Cindy H Wen oth Ashley V Kroll oth Cody Carpenter oth Manikantan Ramesh oth Vivian Qu oth Sherrina H Patel oth Jie Zhu oth William Shi oth Florence M Hofman oth Thomas C Chen oth Weiwei Gao oth Kang Zhang oth Shu Chien oth Liangfang Zhang oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 526(2015), 7571, Seite 118-121 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:526 year:2015 number:7571 pages:118-121 http://dx.doi.org/10.1038/nature15373 Volltext http://www.ncbi.nlm.nih.gov/pubmed/26374997 http://search.proquest.com/docview/1719458642 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 526 2015 7571 118-121 |
allfieldsGer |
10.1038/nature15373 doi PQ20160617 (DE-627)OLC1962478211 (DE-599)GBVOLC1962478211 (PRQ)c2941-92e181778a57aae9ec290aa3d0a63711967af14df8509066e867a3a2ba9bce210 (KEY)0072945020150000526757100118nanoparticlebiointerfacingbyplateletmembranecloaki DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Che-Ming J Hu verfasserin aut Nanoparticle biointerfacing by platelet membrane cloaking 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems1-3. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates4-7. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery. Blood Blood platelets Membranes Staphylococcus infections Microorganisms Liver Veins & arteries Proteins Spleen Nanoparticles Immunoglobulins Collagen Taxoids - administration & dosage Nanoparticles - administration & dosage Drug Delivery Systems - methods Blood Platelets - cytology Staphylococcus aureus - cytology Coronary Restenosis - drug therapy Blood Vessels - cytology Unilamellar Liposomes - chemistry Staphylococcal Infections - drug therapy Macrophages - immunology Staphylococcal Infections - metabolism Anti-Bacterial Agents - administration & dosage Vancomycin - administration & dosage Collagen - immunology Coronary Restenosis - blood Polymers - chemistry Coronary Restenosis - metabolism Collagen - chemistry Cell Membrane - metabolism Anti-Bacterial Agents - pharmacokinetics Blood Vessels - pathology Vancomycin - pharmacokinetics Taxoids - pharmacokinetics Complement Activation - immunology Blood Vessels - metabolism Staphylococcal Infections - microbiology Staphylococcal Infections - blood Staphylococcus aureus - metabolism Nanoparticles - chemistry Properties Ronnie H Fang oth Kuei-Chun Wang oth Brian T Luk oth Soracha Thamphiwatana oth Diana Dehaini oth Phu Nguyen oth Pavimol Angsantikul oth Cindy H Wen oth Ashley V Kroll oth Cody Carpenter oth Manikantan Ramesh oth Vivian Qu oth Sherrina H Patel oth Jie Zhu oth William Shi oth Florence M Hofman oth Thomas C Chen oth Weiwei Gao oth Kang Zhang oth Shu Chien oth Liangfang Zhang oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 526(2015), 7571, Seite 118-121 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:526 year:2015 number:7571 pages:118-121 http://dx.doi.org/10.1038/nature15373 Volltext http://www.ncbi.nlm.nih.gov/pubmed/26374997 http://search.proquest.com/docview/1719458642 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 526 2015 7571 118-121 |
allfieldsSound |
10.1038/nature15373 doi PQ20160617 (DE-627)OLC1962478211 (DE-599)GBVOLC1962478211 (PRQ)c2941-92e181778a57aae9ec290aa3d0a63711967af14df8509066e867a3a2ba9bce210 (KEY)0072945020150000526757100118nanoparticlebiointerfacingbyplateletmembranecloaki DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Che-Ming J Hu verfasserin aut Nanoparticle biointerfacing by platelet membrane cloaking 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems1-3. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates4-7. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery. Blood Blood platelets Membranes Staphylococcus infections Microorganisms Liver Veins & arteries Proteins Spleen Nanoparticles Immunoglobulins Collagen Taxoids - administration & dosage Nanoparticles - administration & dosage Drug Delivery Systems - methods Blood Platelets - cytology Staphylococcus aureus - cytology Coronary Restenosis - drug therapy Blood Vessels - cytology Unilamellar Liposomes - chemistry Staphylococcal Infections - drug therapy Macrophages - immunology Staphylococcal Infections - metabolism Anti-Bacterial Agents - administration & dosage Vancomycin - administration & dosage Collagen - immunology Coronary Restenosis - blood Polymers - chemistry Coronary Restenosis - metabolism Collagen - chemistry Cell Membrane - metabolism Anti-Bacterial Agents - pharmacokinetics Blood Vessels - pathology Vancomycin - pharmacokinetics Taxoids - pharmacokinetics Complement Activation - immunology Blood Vessels - metabolism Staphylococcal Infections - microbiology Staphylococcal Infections - blood Staphylococcus aureus - metabolism Nanoparticles - chemistry Properties Ronnie H Fang oth Kuei-Chun Wang oth Brian T Luk oth Soracha Thamphiwatana oth Diana Dehaini oth Phu Nguyen oth Pavimol Angsantikul oth Cindy H Wen oth Ashley V Kroll oth Cody Carpenter oth Manikantan Ramesh oth Vivian Qu oth Sherrina H Patel oth Jie Zhu oth William Shi oth Florence M Hofman oth Thomas C Chen oth Weiwei Gao oth Kang Zhang oth Shu Chien oth Liangfang Zhang oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 526(2015), 7571, Seite 118-121 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:526 year:2015 number:7571 pages:118-121 http://dx.doi.org/10.1038/nature15373 Volltext http://www.ncbi.nlm.nih.gov/pubmed/26374997 http://search.proquest.com/docview/1719458642 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 526 2015 7571 118-121 |
language |
English |
source |
Enthalten in Nature 526(2015), 7571, Seite 118-121 volume:526 year:2015 number:7571 pages:118-121 |
sourceStr |
Enthalten in Nature 526(2015), 7571, Seite 118-121 volume:526 year:2015 number:7571 pages:118-121 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Blood Blood platelets Membranes Staphylococcus infections Microorganisms Liver Veins & arteries Proteins Spleen Nanoparticles Immunoglobulins Collagen Taxoids - administration & dosage Nanoparticles - administration & dosage Drug Delivery Systems - methods Blood Platelets - cytology Staphylococcus aureus - cytology Coronary Restenosis - drug therapy Blood Vessels - cytology Unilamellar Liposomes - chemistry Staphylococcal Infections - drug therapy Macrophages - immunology Staphylococcal Infections - metabolism Anti-Bacterial Agents - administration & dosage Vancomycin - administration & dosage Collagen - immunology Coronary Restenosis - blood Polymers - chemistry Coronary Restenosis - metabolism Collagen - chemistry Cell Membrane - metabolism Anti-Bacterial Agents - pharmacokinetics Blood Vessels - pathology Vancomycin - pharmacokinetics Taxoids - pharmacokinetics Complement Activation - immunology Blood Vessels - metabolism Staphylococcal Infections - microbiology Staphylococcal Infections - blood Staphylococcus aureus - metabolism Nanoparticles - chemistry Properties |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Nature |
authorswithroles_txt_mv |
Che-Ming J Hu @@aut@@ Ronnie H Fang @@oth@@ Kuei-Chun Wang @@oth@@ Brian T Luk @@oth@@ Soracha Thamphiwatana @@oth@@ Diana Dehaini @@oth@@ Phu Nguyen @@oth@@ Pavimol Angsantikul @@oth@@ Cindy H Wen @@oth@@ Ashley V Kroll @@oth@@ Cody Carpenter @@oth@@ Manikantan Ramesh @@oth@@ Vivian Qu @@oth@@ Sherrina H Patel @@oth@@ Jie Zhu @@oth@@ William Shi @@oth@@ Florence M Hofman @@oth@@ Thomas C Chen @@oth@@ Weiwei Gao @@oth@@ Kang Zhang @@oth@@ Shu Chien @@oth@@ Liangfang Zhang @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129292834 |
dewey-sort |
270 |
id |
OLC1962478211 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1962478211</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714155600.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/nature15373</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1962478211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1962478211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2941-92e181778a57aae9ec290aa3d0a63711967af14df8509066e867a3a2ba9bce210</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0072945020150000526757100118nanoparticlebiointerfacingbyplateletmembranecloaki</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Che-Ming J Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanoparticle biointerfacing by platelet membrane cloaking</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems1-3. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates4-7. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood platelets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Membranes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staphylococcus infections</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microorganisms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Veins & arteries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spleen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immunoglobulins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collagen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taxoids - administration & dosage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticles - administration & dosage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drug Delivery Systems - methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood Platelets - cytology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staphylococcus aureus - cytology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coronary Restenosis - drug therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood Vessels - cytology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unilamellar Liposomes - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staphylococcal Infections - drug therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Macrophages - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staphylococcal Infections - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-Bacterial Agents - administration & dosage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vancomycin - administration & dosage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collagen - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coronary Restenosis - blood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymers - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coronary Restenosis - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collagen - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell Membrane - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-Bacterial Agents - pharmacokinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood Vessels - pathology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vancomycin - pharmacokinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taxoids - pharmacokinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complement Activation - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood Vessels - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staphylococcal Infections - microbiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staphylococcal Infections - blood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staphylococcus aureus - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticles - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Properties</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ronnie H Fang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kuei-Chun Wang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Brian T Luk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Soracha Thamphiwatana</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Diana Dehaini</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Phu Nguyen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pavimol Angsantikul</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cindy H Wen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ashley V Kroll</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cody Carpenter</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Manikantan Ramesh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vivian Qu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sherrina H Patel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Zhu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">William Shi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Florence M Hofman</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas C Chen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weiwei Gao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kang Zhang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shu Chien</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liangfang Zhang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nature</subfield><subfield code="d">London : Macmillan Publishers Limited, part of Springer Nature, 1869</subfield><subfield code="g">526(2015), 7571, Seite 118-121</subfield><subfield code="w">(DE-627)129292834</subfield><subfield code="w">(DE-600)120714-3</subfield><subfield code="w">(DE-576)014473941</subfield><subfield code="x">0028-0836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:526</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7571</subfield><subfield code="g">pages:118-121</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1038/nature15373</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/26374997</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1719458642</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-SPO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_160</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_211</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_290</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_294</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_754</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2173</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2221</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">526</subfield><subfield code="j">2015</subfield><subfield code="e">7571</subfield><subfield code="h">118-121</subfield></datafield></record></collection>
|
author |
Che-Ming J Hu |
spellingShingle |
Che-Ming J Hu ddc 070 ddc 500 fid BIODIV misc Blood misc Blood platelets misc Membranes misc Staphylococcus infections misc Microorganisms misc Liver misc Veins & arteries misc Proteins misc Spleen misc Nanoparticles misc Immunoglobulins misc Collagen misc Taxoids - administration & dosage misc Nanoparticles - administration & dosage misc Drug Delivery Systems - methods misc Blood Platelets - cytology misc Staphylococcus aureus - cytology misc Coronary Restenosis - drug therapy misc Blood Vessels - cytology misc Unilamellar Liposomes - chemistry misc Staphylococcal Infections - drug therapy misc Macrophages - immunology misc Staphylococcal Infections - metabolism misc Anti-Bacterial Agents - administration & dosage misc Vancomycin - administration & dosage misc Collagen - immunology misc Coronary Restenosis - blood misc Polymers - chemistry misc Coronary Restenosis - metabolism misc Collagen - chemistry misc Cell Membrane - metabolism misc Anti-Bacterial Agents - pharmacokinetics misc Blood Vessels - pathology misc Vancomycin - pharmacokinetics misc Taxoids - pharmacokinetics misc Complement Activation - immunology misc Blood Vessels - metabolism misc Staphylococcal Infections - microbiology misc Staphylococcal Infections - blood misc Staphylococcus aureus - metabolism misc Nanoparticles - chemistry misc Properties Nanoparticle biointerfacing by platelet membrane cloaking |
authorStr |
Che-Ming J Hu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129292834 |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 500 - Natural sciences & mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0028-0836 |
topic_title |
070 500 DNB 500 AVZ BIODIV fid Nanoparticle biointerfacing by platelet membrane cloaking Blood Blood platelets Membranes Staphylococcus infections Microorganisms Liver Veins & arteries Proteins Spleen Nanoparticles Immunoglobulins Collagen Taxoids - administration & dosage Nanoparticles - administration & dosage Drug Delivery Systems - methods Blood Platelets - cytology Staphylococcus aureus - cytology Coronary Restenosis - drug therapy Blood Vessels - cytology Unilamellar Liposomes - chemistry Staphylococcal Infections - drug therapy Macrophages - immunology Staphylococcal Infections - metabolism Anti-Bacterial Agents - administration & dosage Vancomycin - administration & dosage Collagen - immunology Coronary Restenosis - blood Polymers - chemistry Coronary Restenosis - metabolism Collagen - chemistry Cell Membrane - metabolism Anti-Bacterial Agents - pharmacokinetics Blood Vessels - pathology Vancomycin - pharmacokinetics Taxoids - pharmacokinetics Complement Activation - immunology Blood Vessels - metabolism Staphylococcal Infections - microbiology Staphylococcal Infections - blood Staphylococcus aureus - metabolism Nanoparticles - chemistry Properties |
topic |
ddc 070 ddc 500 fid BIODIV misc Blood misc Blood platelets misc Membranes misc Staphylococcus infections misc Microorganisms misc Liver misc Veins & arteries misc Proteins misc Spleen misc Nanoparticles misc Immunoglobulins misc Collagen misc Taxoids - administration & dosage misc Nanoparticles - administration & dosage misc Drug Delivery Systems - methods misc Blood Platelets - cytology misc Staphylococcus aureus - cytology misc Coronary Restenosis - drug therapy misc Blood Vessels - cytology misc Unilamellar Liposomes - chemistry misc Staphylococcal Infections - drug therapy misc Macrophages - immunology misc Staphylococcal Infections - metabolism misc Anti-Bacterial Agents - administration & dosage misc Vancomycin - administration & dosage misc Collagen - immunology misc Coronary Restenosis - blood misc Polymers - chemistry misc Coronary Restenosis - metabolism misc Collagen - chemistry misc Cell Membrane - metabolism misc Anti-Bacterial Agents - pharmacokinetics misc Blood Vessels - pathology misc Vancomycin - pharmacokinetics misc Taxoids - pharmacokinetics misc Complement Activation - immunology misc Blood Vessels - metabolism misc Staphylococcal Infections - microbiology misc Staphylococcal Infections - blood misc Staphylococcus aureus - metabolism misc Nanoparticles - chemistry misc Properties |
topic_unstemmed |
ddc 070 ddc 500 fid BIODIV misc Blood misc Blood platelets misc Membranes misc Staphylococcus infections misc Microorganisms misc Liver misc Veins & arteries misc Proteins misc Spleen misc Nanoparticles misc Immunoglobulins misc Collagen misc Taxoids - administration & dosage misc Nanoparticles - administration & dosage misc Drug Delivery Systems - methods misc Blood Platelets - cytology misc Staphylococcus aureus - cytology misc Coronary Restenosis - drug therapy misc Blood Vessels - cytology misc Unilamellar Liposomes - chemistry misc Staphylococcal Infections - drug therapy misc Macrophages - immunology misc Staphylococcal Infections - metabolism misc Anti-Bacterial Agents - administration & dosage misc Vancomycin - administration & dosage misc Collagen - immunology misc Coronary Restenosis - blood misc Polymers - chemistry misc Coronary Restenosis - metabolism misc Collagen - chemistry misc Cell Membrane - metabolism misc Anti-Bacterial Agents - pharmacokinetics misc Blood Vessels - pathology misc Vancomycin - pharmacokinetics misc Taxoids - pharmacokinetics misc Complement Activation - immunology misc Blood Vessels - metabolism misc Staphylococcal Infections - microbiology misc Staphylococcal Infections - blood misc Staphylococcus aureus - metabolism misc Nanoparticles - chemistry misc Properties |
topic_browse |
ddc 070 ddc 500 fid BIODIV misc Blood misc Blood platelets misc Membranes misc Staphylococcus infections misc Microorganisms misc Liver misc Veins & arteries misc Proteins misc Spleen misc Nanoparticles misc Immunoglobulins misc Collagen misc Taxoids - administration & dosage misc Nanoparticles - administration & dosage misc Drug Delivery Systems - methods misc Blood Platelets - cytology misc Staphylococcus aureus - cytology misc Coronary Restenosis - drug therapy misc Blood Vessels - cytology misc Unilamellar Liposomes - chemistry misc Staphylococcal Infections - drug therapy misc Macrophages - immunology misc Staphylococcal Infections - metabolism misc Anti-Bacterial Agents - administration & dosage misc Vancomycin - administration & dosage misc Collagen - immunology misc Coronary Restenosis - blood misc Polymers - chemistry misc Coronary Restenosis - metabolism misc Collagen - chemistry misc Cell Membrane - metabolism misc Anti-Bacterial Agents - pharmacokinetics misc Blood Vessels - pathology misc Vancomycin - pharmacokinetics misc Taxoids - pharmacokinetics misc Complement Activation - immunology misc Blood Vessels - metabolism misc Staphylococcal Infections - microbiology misc Staphylococcal Infections - blood misc Staphylococcus aureus - metabolism misc Nanoparticles - chemistry misc Properties |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
r h f rhf k c w kcw b t l btl s t st d d dd p n pn p a pa c h w chw a v k avk c c cc m r mr v q vq s h p shp j z jz w s ws f m h fmh t c c tcc w g wg k z kz s c sc l z lz |
hierarchy_parent_title |
Nature |
hierarchy_parent_id |
129292834 |
dewey-tens |
070 - News media, journalism & publishing 500 - Science |
hierarchy_top_title |
Nature |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 |
title |
Nanoparticle biointerfacing by platelet membrane cloaking |
ctrlnum |
(DE-627)OLC1962478211 (DE-599)GBVOLC1962478211 (PRQ)c2941-92e181778a57aae9ec290aa3d0a63711967af14df8509066e867a3a2ba9bce210 (KEY)0072945020150000526757100118nanoparticlebiointerfacingbyplateletmembranecloaki |
title_full |
Nanoparticle biointerfacing by platelet membrane cloaking |
author_sort |
Che-Ming J Hu |
journal |
Nature |
journalStr |
Nature |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
118 |
author_browse |
Che-Ming J Hu |
container_volume |
526 |
class |
070 500 DNB 500 AVZ BIODIV fid |
format_se |
Aufsätze |
author-letter |
Che-Ming J Hu |
doi_str_mv |
10.1038/nature15373 |
dewey-full |
070 500 |
title_sort |
nanoparticle biointerfacing by platelet membrane cloaking |
title_auth |
Nanoparticle biointerfacing by platelet membrane cloaking |
abstract |
Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems1-3. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates4-7. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery. |
abstractGer |
Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems1-3. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates4-7. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery. |
abstract_unstemmed |
Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems1-3. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates4-7. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 |
container_issue |
7571 |
title_short |
Nanoparticle biointerfacing by platelet membrane cloaking |
url |
http://dx.doi.org/10.1038/nature15373 http://www.ncbi.nlm.nih.gov/pubmed/26374997 http://search.proquest.com/docview/1719458642 |
remote_bool |
false |
author2 |
Ronnie H Fang Kuei-Chun Wang Brian T Luk Soracha Thamphiwatana Diana Dehaini Phu Nguyen Pavimol Angsantikul Cindy H Wen Ashley V Kroll Cody Carpenter Manikantan Ramesh Vivian Qu Sherrina H Patel Jie Zhu William Shi Florence M Hofman Thomas C Chen Weiwei Gao Kang Zhang Shu Chien Liangfang Zhang |
author2Str |
Ronnie H Fang Kuei-Chun Wang Brian T Luk Soracha Thamphiwatana Diana Dehaini Phu Nguyen Pavimol Angsantikul Cindy H Wen Ashley V Kroll Cody Carpenter Manikantan Ramesh Vivian Qu Sherrina H Patel Jie Zhu William Shi Florence M Hofman Thomas C Chen Weiwei Gao Kang Zhang Shu Chien Liangfang Zhang |
ppnlink |
129292834 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1038/nature15373 |
up_date |
2024-07-04T03:40:41.861Z |
_version_ |
1803618292198277120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1962478211</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714155600.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/nature15373</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1962478211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1962478211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2941-92e181778a57aae9ec290aa3d0a63711967af14df8509066e867a3a2ba9bce210</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0072945020150000526757100118nanoparticlebiointerfacingbyplateletmembranecloaki</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Che-Ming J Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanoparticle biointerfacing by platelet membrane cloaking</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems1-3. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates4-7. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood platelets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Membranes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staphylococcus infections</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microorganisms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Veins & arteries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spleen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immunoglobulins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collagen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taxoids - administration & dosage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticles - administration & dosage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drug Delivery Systems - methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood Platelets - cytology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staphylococcus aureus - cytology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coronary Restenosis - drug therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood Vessels - cytology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unilamellar Liposomes - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staphylococcal Infections - drug therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Macrophages - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staphylococcal Infections - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-Bacterial Agents - administration & dosage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vancomycin - administration & dosage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collagen - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coronary Restenosis - blood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymers - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coronary Restenosis - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collagen - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell Membrane - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-Bacterial Agents - pharmacokinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood Vessels - pathology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vancomycin - pharmacokinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taxoids - pharmacokinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complement Activation - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood Vessels - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staphylococcal Infections - microbiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staphylococcal Infections - blood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staphylococcus aureus - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticles - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Properties</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ronnie H Fang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kuei-Chun Wang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Brian T Luk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Soracha Thamphiwatana</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Diana Dehaini</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Phu Nguyen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pavimol Angsantikul</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cindy H Wen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ashley V Kroll</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cody Carpenter</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Manikantan Ramesh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vivian Qu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sherrina H Patel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Zhu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">William Shi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Florence M Hofman</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas C Chen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weiwei Gao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kang Zhang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shu Chien</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liangfang Zhang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nature</subfield><subfield code="d">London : Macmillan Publishers Limited, part of Springer Nature, 1869</subfield><subfield code="g">526(2015), 7571, Seite 118-121</subfield><subfield code="w">(DE-627)129292834</subfield><subfield code="w">(DE-600)120714-3</subfield><subfield code="w">(DE-576)014473941</subfield><subfield code="x">0028-0836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:526</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7571</subfield><subfield code="g">pages:118-121</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1038/nature15373</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/26374997</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1719458642</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-SPO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_160</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_211</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_290</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_294</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_754</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2173</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2221</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">526</subfield><subfield code="j">2015</subfield><subfield code="e">7571</subfield><subfield code="h">118-121</subfield></datafield></record></collection>
|
score |
7.4000845 |