Complex archaea that bridge the gap between prokaryotes and eukaryotes
The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject...
Ausführliche Beschreibung
Autor*in: |
Anja Spang [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Nature - London : Macmillan Publishers Limited, part of Springer Nature, 1869, 521(2015), 7551, Seite 173-179 |
---|---|
Übergeordnetes Werk: |
volume:521 ; year:2015 ; number:7551 ; pages:173-179 |
Links: |
---|
DOI / URN: |
10.1038/nature14447 |
---|
Katalog-ID: |
OLC1962479862 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1962479862 | ||
003 | DE-627 | ||
005 | 20230714155604.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1038/nature14447 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1962479862 | ||
035 | |a (DE-599)GBVOLC1962479862 | ||
035 | |a (PRQ)c2369-b8c7ec2ef9966e1fe94bbb038c16928178bcbde58ebeb853ca154f5e8139361f0 | ||
035 | |a (KEY)0072945020150000521755100173complexarchaeathatbridgethegapbetweenprokaryotesan | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 500 |q DNB |
082 | 0 | 4 | |a 500 |q AVZ |
084 | |a BIODIV |2 fid | ||
100 | 0 | |a Anja Spang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Complex archaea that bridge the gap between prokaryotes and eukaryotes |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes. | ||
650 | 4 | |a Genomes | |
650 | 4 | |a Eukaryotes | |
650 | 4 | |a Bacteria | |
650 | 4 | |a Cell division | |
650 | 4 | |a Proteins | |
650 | 4 | |a Prokaryotes | |
650 | 4 | |a Evolution | |
650 | 4 | |a Genomics | |
650 | 4 | |a Eukaryota - classification | |
650 | 4 | |a Hydrothermal Vents - microbiology | |
650 | 4 | |a Monomeric GTP-Binding Proteins - metabolism | |
650 | 4 | |a Archaea - genetics | |
650 | 4 | |a Metagenome - genetics | |
650 | 4 | |a Actins - genetics | |
650 | 4 | |a Actins - metabolism | |
650 | 4 | |a Actin Cytoskeleton - metabolism | |
650 | 4 | |a Monomeric GTP-Binding Proteins - genetics | |
650 | 4 | |a Eukaryotic Cells - metabolism | |
650 | 4 | |a Proteome - isolation & purification | |
650 | 4 | |a Eukaryotic Cells - classification | |
650 | 4 | |a Eukaryota - metabolism | |
650 | 4 | |a Proteome - metabolism | |
650 | 4 | |a Archaea - classification | |
650 | 4 | |a Eukaryota - genetics | |
650 | 4 | |a Endosomal Sorting Complexes Required for Transport - metabolism | |
650 | 4 | |a Endosomal Sorting Complexes Required for Transport - genetics | |
650 | 4 | |a Prokaryotic Cells - classification | |
650 | 4 | |a Proteome - genetics | |
650 | 4 | |a Archaea - metabolism | |
700 | 0 | |a Jimmy H Saw |4 oth | |
700 | 0 | |a Steffen L Jørgensen |4 oth | |
700 | 0 | |a Katarzyna Zaremba-Niedzwiedzka |4 oth | |
700 | 0 | |a Joran Martijn |4 oth | |
700 | 0 | |a Anders E Lind |4 oth | |
700 | 0 | |a Roel van Eijk |4 oth | |
700 | 0 | |a Christa Schleper |4 oth | |
700 | 0 | |a Lionel Guy |4 oth | |
700 | 0 | |a Thijs J G Ettema |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Nature |d London : Macmillan Publishers Limited, part of Springer Nature, 1869 |g 521(2015), 7551, Seite 173-179 |w (DE-627)129292834 |w (DE-600)120714-3 |w (DE-576)014473941 |x 0028-0836 |7 nnns |
773 | 1 | 8 | |g volume:521 |g year:2015 |g number:7551 |g pages:173-179 |
856 | 4 | 1 | |u http://dx.doi.org/10.1038/nature14447 |3 Volltext |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25945739 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1681518266 |
856 | 4 | 2 | |u http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255067 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-SPO | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_55 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_160 | ||
912 | |a GBV_ILN_168 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_211 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_290 | ||
912 | |a GBV_ILN_294 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_754 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2095 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2120 | ||
912 | |a GBV_ILN_2121 | ||
912 | |a GBV_ILN_2173 | ||
912 | |a GBV_ILN_2219 | ||
912 | |a GBV_ILN_2221 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2286 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4302 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4320 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 521 |j 2015 |e 7551 |h 173-179 |
author_variant |
a s as |
---|---|
matchkey_str |
article:00280836:2015----::opeacaahtrdehgpewepoay |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1038/nature14447 doi PQ20160617 (DE-627)OLC1962479862 (DE-599)GBVOLC1962479862 (PRQ)c2369-b8c7ec2ef9966e1fe94bbb038c16928178bcbde58ebeb853ca154f5e8139361f0 (KEY)0072945020150000521755100173complexarchaeathatbridgethegapbetweenprokaryotesan DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Anja Spang verfasserin aut Complex archaea that bridge the gap between prokaryotes and eukaryotes 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes. Genomes Eukaryotes Bacteria Cell division Proteins Prokaryotes Evolution Genomics Eukaryota - classification Hydrothermal Vents - microbiology Monomeric GTP-Binding Proteins - metabolism Archaea - genetics Metagenome - genetics Actins - genetics Actins - metabolism Actin Cytoskeleton - metabolism Monomeric GTP-Binding Proteins - genetics Eukaryotic Cells - metabolism Proteome - isolation & purification Eukaryotic Cells - classification Eukaryota - metabolism Proteome - metabolism Archaea - classification Eukaryota - genetics Endosomal Sorting Complexes Required for Transport - metabolism Endosomal Sorting Complexes Required for Transport - genetics Prokaryotic Cells - classification Proteome - genetics Archaea - metabolism Jimmy H Saw oth Steffen L Jørgensen oth Katarzyna Zaremba-Niedzwiedzka oth Joran Martijn oth Anders E Lind oth Roel van Eijk oth Christa Schleper oth Lionel Guy oth Thijs J G Ettema oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 521(2015), 7551, Seite 173-179 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:521 year:2015 number:7551 pages:173-179 http://dx.doi.org/10.1038/nature14447 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25945739 http://search.proquest.com/docview/1681518266 http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255067 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 521 2015 7551 173-179 |
spelling |
10.1038/nature14447 doi PQ20160617 (DE-627)OLC1962479862 (DE-599)GBVOLC1962479862 (PRQ)c2369-b8c7ec2ef9966e1fe94bbb038c16928178bcbde58ebeb853ca154f5e8139361f0 (KEY)0072945020150000521755100173complexarchaeathatbridgethegapbetweenprokaryotesan DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Anja Spang verfasserin aut Complex archaea that bridge the gap between prokaryotes and eukaryotes 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes. Genomes Eukaryotes Bacteria Cell division Proteins Prokaryotes Evolution Genomics Eukaryota - classification Hydrothermal Vents - microbiology Monomeric GTP-Binding Proteins - metabolism Archaea - genetics Metagenome - genetics Actins - genetics Actins - metabolism Actin Cytoskeleton - metabolism Monomeric GTP-Binding Proteins - genetics Eukaryotic Cells - metabolism Proteome - isolation & purification Eukaryotic Cells - classification Eukaryota - metabolism Proteome - metabolism Archaea - classification Eukaryota - genetics Endosomal Sorting Complexes Required for Transport - metabolism Endosomal Sorting Complexes Required for Transport - genetics Prokaryotic Cells - classification Proteome - genetics Archaea - metabolism Jimmy H Saw oth Steffen L Jørgensen oth Katarzyna Zaremba-Niedzwiedzka oth Joran Martijn oth Anders E Lind oth Roel van Eijk oth Christa Schleper oth Lionel Guy oth Thijs J G Ettema oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 521(2015), 7551, Seite 173-179 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:521 year:2015 number:7551 pages:173-179 http://dx.doi.org/10.1038/nature14447 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25945739 http://search.proquest.com/docview/1681518266 http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255067 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 521 2015 7551 173-179 |
allfields_unstemmed |
10.1038/nature14447 doi PQ20160617 (DE-627)OLC1962479862 (DE-599)GBVOLC1962479862 (PRQ)c2369-b8c7ec2ef9966e1fe94bbb038c16928178bcbde58ebeb853ca154f5e8139361f0 (KEY)0072945020150000521755100173complexarchaeathatbridgethegapbetweenprokaryotesan DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Anja Spang verfasserin aut Complex archaea that bridge the gap between prokaryotes and eukaryotes 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes. Genomes Eukaryotes Bacteria Cell division Proteins Prokaryotes Evolution Genomics Eukaryota - classification Hydrothermal Vents - microbiology Monomeric GTP-Binding Proteins - metabolism Archaea - genetics Metagenome - genetics Actins - genetics Actins - metabolism Actin Cytoskeleton - metabolism Monomeric GTP-Binding Proteins - genetics Eukaryotic Cells - metabolism Proteome - isolation & purification Eukaryotic Cells - classification Eukaryota - metabolism Proteome - metabolism Archaea - classification Eukaryota - genetics Endosomal Sorting Complexes Required for Transport - metabolism Endosomal Sorting Complexes Required for Transport - genetics Prokaryotic Cells - classification Proteome - genetics Archaea - metabolism Jimmy H Saw oth Steffen L Jørgensen oth Katarzyna Zaremba-Niedzwiedzka oth Joran Martijn oth Anders E Lind oth Roel van Eijk oth Christa Schleper oth Lionel Guy oth Thijs J G Ettema oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 521(2015), 7551, Seite 173-179 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:521 year:2015 number:7551 pages:173-179 http://dx.doi.org/10.1038/nature14447 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25945739 http://search.proquest.com/docview/1681518266 http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255067 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 521 2015 7551 173-179 |
allfieldsGer |
10.1038/nature14447 doi PQ20160617 (DE-627)OLC1962479862 (DE-599)GBVOLC1962479862 (PRQ)c2369-b8c7ec2ef9966e1fe94bbb038c16928178bcbde58ebeb853ca154f5e8139361f0 (KEY)0072945020150000521755100173complexarchaeathatbridgethegapbetweenprokaryotesan DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Anja Spang verfasserin aut Complex archaea that bridge the gap between prokaryotes and eukaryotes 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes. Genomes Eukaryotes Bacteria Cell division Proteins Prokaryotes Evolution Genomics Eukaryota - classification Hydrothermal Vents - microbiology Monomeric GTP-Binding Proteins - metabolism Archaea - genetics Metagenome - genetics Actins - genetics Actins - metabolism Actin Cytoskeleton - metabolism Monomeric GTP-Binding Proteins - genetics Eukaryotic Cells - metabolism Proteome - isolation & purification Eukaryotic Cells - classification Eukaryota - metabolism Proteome - metabolism Archaea - classification Eukaryota - genetics Endosomal Sorting Complexes Required for Transport - metabolism Endosomal Sorting Complexes Required for Transport - genetics Prokaryotic Cells - classification Proteome - genetics Archaea - metabolism Jimmy H Saw oth Steffen L Jørgensen oth Katarzyna Zaremba-Niedzwiedzka oth Joran Martijn oth Anders E Lind oth Roel van Eijk oth Christa Schleper oth Lionel Guy oth Thijs J G Ettema oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 521(2015), 7551, Seite 173-179 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:521 year:2015 number:7551 pages:173-179 http://dx.doi.org/10.1038/nature14447 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25945739 http://search.proquest.com/docview/1681518266 http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255067 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 521 2015 7551 173-179 |
allfieldsSound |
10.1038/nature14447 doi PQ20160617 (DE-627)OLC1962479862 (DE-599)GBVOLC1962479862 (PRQ)c2369-b8c7ec2ef9966e1fe94bbb038c16928178bcbde58ebeb853ca154f5e8139361f0 (KEY)0072945020150000521755100173complexarchaeathatbridgethegapbetweenprokaryotesan DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Anja Spang verfasserin aut Complex archaea that bridge the gap between prokaryotes and eukaryotes 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes. Genomes Eukaryotes Bacteria Cell division Proteins Prokaryotes Evolution Genomics Eukaryota - classification Hydrothermal Vents - microbiology Monomeric GTP-Binding Proteins - metabolism Archaea - genetics Metagenome - genetics Actins - genetics Actins - metabolism Actin Cytoskeleton - metabolism Monomeric GTP-Binding Proteins - genetics Eukaryotic Cells - metabolism Proteome - isolation & purification Eukaryotic Cells - classification Eukaryota - metabolism Proteome - metabolism Archaea - classification Eukaryota - genetics Endosomal Sorting Complexes Required for Transport - metabolism Endosomal Sorting Complexes Required for Transport - genetics Prokaryotic Cells - classification Proteome - genetics Archaea - metabolism Jimmy H Saw oth Steffen L Jørgensen oth Katarzyna Zaremba-Niedzwiedzka oth Joran Martijn oth Anders E Lind oth Roel van Eijk oth Christa Schleper oth Lionel Guy oth Thijs J G Ettema oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 521(2015), 7551, Seite 173-179 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:521 year:2015 number:7551 pages:173-179 http://dx.doi.org/10.1038/nature14447 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25945739 http://search.proquest.com/docview/1681518266 http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255067 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 521 2015 7551 173-179 |
language |
English |
source |
Enthalten in Nature 521(2015), 7551, Seite 173-179 volume:521 year:2015 number:7551 pages:173-179 |
sourceStr |
Enthalten in Nature 521(2015), 7551, Seite 173-179 volume:521 year:2015 number:7551 pages:173-179 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Genomes Eukaryotes Bacteria Cell division Proteins Prokaryotes Evolution Genomics Eukaryota - classification Hydrothermal Vents - microbiology Monomeric GTP-Binding Proteins - metabolism Archaea - genetics Metagenome - genetics Actins - genetics Actins - metabolism Actin Cytoskeleton - metabolism Monomeric GTP-Binding Proteins - genetics Eukaryotic Cells - metabolism Proteome - isolation & purification Eukaryotic Cells - classification Eukaryota - metabolism Proteome - metabolism Archaea - classification Eukaryota - genetics Endosomal Sorting Complexes Required for Transport - metabolism Endosomal Sorting Complexes Required for Transport - genetics Prokaryotic Cells - classification Proteome - genetics Archaea - metabolism |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Nature |
authorswithroles_txt_mv |
Anja Spang @@aut@@ Jimmy H Saw @@oth@@ Steffen L Jørgensen @@oth@@ Katarzyna Zaremba-Niedzwiedzka @@oth@@ Joran Martijn @@oth@@ Anders E Lind @@oth@@ Roel van Eijk @@oth@@ Christa Schleper @@oth@@ Lionel Guy @@oth@@ Thijs J G Ettema @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129292834 |
dewey-sort |
270 |
id |
OLC1962479862 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1962479862</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714155604.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/nature14447</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1962479862</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1962479862</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2369-b8c7ec2ef9966e1fe94bbb038c16928178bcbde58ebeb853ca154f5e8139361f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0072945020150000521755100173complexarchaeathatbridgethegapbetweenprokaryotesan</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anja Spang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex archaea that bridge the gap between prokaryotes and eukaryotes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genomes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryotes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell division</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prokaryotes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryota - classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrothermal Vents - microbiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monomeric GTP-Binding Proteins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Archaea - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metagenome - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Actins - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Actins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Actin Cytoskeleton - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monomeric GTP-Binding Proteins - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryotic Cells - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteome - isolation & purification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryotic Cells - classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryota - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteome - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Archaea - classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryota - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endosomal Sorting Complexes Required for Transport - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endosomal Sorting Complexes Required for Transport - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prokaryotic Cells - classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteome - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Archaea - metabolism</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jimmy H Saw</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Steffen L Jørgensen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katarzyna Zaremba-Niedzwiedzka</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joran Martijn</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anders E Lind</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roel van Eijk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christa Schleper</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lionel Guy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thijs J G Ettema</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nature</subfield><subfield code="d">London : Macmillan Publishers Limited, part of Springer Nature, 1869</subfield><subfield code="g">521(2015), 7551, Seite 173-179</subfield><subfield code="w">(DE-627)129292834</subfield><subfield code="w">(DE-600)120714-3</subfield><subfield code="w">(DE-576)014473941</subfield><subfield code="x">0028-0836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:521</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7551</subfield><subfield code="g">pages:173-179</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1038/nature14447</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25945739</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1681518266</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255067</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-SPO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_160</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_211</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_290</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_294</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_754</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2173</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2221</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">521</subfield><subfield code="j">2015</subfield><subfield code="e">7551</subfield><subfield code="h">173-179</subfield></datafield></record></collection>
|
author |
Anja Spang |
spellingShingle |
Anja Spang ddc 070 ddc 500 fid BIODIV misc Genomes misc Eukaryotes misc Bacteria misc Cell division misc Proteins misc Prokaryotes misc Evolution misc Genomics misc Eukaryota - classification misc Hydrothermal Vents - microbiology misc Monomeric GTP-Binding Proteins - metabolism misc Archaea - genetics misc Metagenome - genetics misc Actins - genetics misc Actins - metabolism misc Actin Cytoskeleton - metabolism misc Monomeric GTP-Binding Proteins - genetics misc Eukaryotic Cells - metabolism misc Proteome - isolation & purification misc Eukaryotic Cells - classification misc Eukaryota - metabolism misc Proteome - metabolism misc Archaea - classification misc Eukaryota - genetics misc Endosomal Sorting Complexes Required for Transport - metabolism misc Endosomal Sorting Complexes Required for Transport - genetics misc Prokaryotic Cells - classification misc Proteome - genetics misc Archaea - metabolism Complex archaea that bridge the gap between prokaryotes and eukaryotes |
authorStr |
Anja Spang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129292834 |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 500 - Natural sciences & mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0028-0836 |
topic_title |
070 500 DNB 500 AVZ BIODIV fid Complex archaea that bridge the gap between prokaryotes and eukaryotes Genomes Eukaryotes Bacteria Cell division Proteins Prokaryotes Evolution Genomics Eukaryota - classification Hydrothermal Vents - microbiology Monomeric GTP-Binding Proteins - metabolism Archaea - genetics Metagenome - genetics Actins - genetics Actins - metabolism Actin Cytoskeleton - metabolism Monomeric GTP-Binding Proteins - genetics Eukaryotic Cells - metabolism Proteome - isolation & purification Eukaryotic Cells - classification Eukaryota - metabolism Proteome - metabolism Archaea - classification Eukaryota - genetics Endosomal Sorting Complexes Required for Transport - metabolism Endosomal Sorting Complexes Required for Transport - genetics Prokaryotic Cells - classification Proteome - genetics Archaea - metabolism |
topic |
ddc 070 ddc 500 fid BIODIV misc Genomes misc Eukaryotes misc Bacteria misc Cell division misc Proteins misc Prokaryotes misc Evolution misc Genomics misc Eukaryota - classification misc Hydrothermal Vents - microbiology misc Monomeric GTP-Binding Proteins - metabolism misc Archaea - genetics misc Metagenome - genetics misc Actins - genetics misc Actins - metabolism misc Actin Cytoskeleton - metabolism misc Monomeric GTP-Binding Proteins - genetics misc Eukaryotic Cells - metabolism misc Proteome - isolation & purification misc Eukaryotic Cells - classification misc Eukaryota - metabolism misc Proteome - metabolism misc Archaea - classification misc Eukaryota - genetics misc Endosomal Sorting Complexes Required for Transport - metabolism misc Endosomal Sorting Complexes Required for Transport - genetics misc Prokaryotic Cells - classification misc Proteome - genetics misc Archaea - metabolism |
topic_unstemmed |
ddc 070 ddc 500 fid BIODIV misc Genomes misc Eukaryotes misc Bacteria misc Cell division misc Proteins misc Prokaryotes misc Evolution misc Genomics misc Eukaryota - classification misc Hydrothermal Vents - microbiology misc Monomeric GTP-Binding Proteins - metabolism misc Archaea - genetics misc Metagenome - genetics misc Actins - genetics misc Actins - metabolism misc Actin Cytoskeleton - metabolism misc Monomeric GTP-Binding Proteins - genetics misc Eukaryotic Cells - metabolism misc Proteome - isolation & purification misc Eukaryotic Cells - classification misc Eukaryota - metabolism misc Proteome - metabolism misc Archaea - classification misc Eukaryota - genetics misc Endosomal Sorting Complexes Required for Transport - metabolism misc Endosomal Sorting Complexes Required for Transport - genetics misc Prokaryotic Cells - classification misc Proteome - genetics misc Archaea - metabolism |
topic_browse |
ddc 070 ddc 500 fid BIODIV misc Genomes misc Eukaryotes misc Bacteria misc Cell division misc Proteins misc Prokaryotes misc Evolution misc Genomics misc Eukaryota - classification misc Hydrothermal Vents - microbiology misc Monomeric GTP-Binding Proteins - metabolism misc Archaea - genetics misc Metagenome - genetics misc Actins - genetics misc Actins - metabolism misc Actin Cytoskeleton - metabolism misc Monomeric GTP-Binding Proteins - genetics misc Eukaryotic Cells - metabolism misc Proteome - isolation & purification misc Eukaryotic Cells - classification misc Eukaryota - metabolism misc Proteome - metabolism misc Archaea - classification misc Eukaryota - genetics misc Endosomal Sorting Complexes Required for Transport - metabolism misc Endosomal Sorting Complexes Required for Transport - genetics misc Prokaryotic Cells - classification misc Proteome - genetics misc Archaea - metabolism |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j h s jhs s l j slj k z n kzn j m jm a e l ael r v e rve c s cs l g lg t j g e tjge |
hierarchy_parent_title |
Nature |
hierarchy_parent_id |
129292834 |
dewey-tens |
070 - News media, journalism & publishing 500 - Science |
hierarchy_top_title |
Nature |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 |
title |
Complex archaea that bridge the gap between prokaryotes and eukaryotes |
ctrlnum |
(DE-627)OLC1962479862 (DE-599)GBVOLC1962479862 (PRQ)c2369-b8c7ec2ef9966e1fe94bbb038c16928178bcbde58ebeb853ca154f5e8139361f0 (KEY)0072945020150000521755100173complexarchaeathatbridgethegapbetweenprokaryotesan |
title_full |
Complex archaea that bridge the gap between prokaryotes and eukaryotes |
author_sort |
Anja Spang |
journal |
Nature |
journalStr |
Nature |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
173 |
author_browse |
Anja Spang |
container_volume |
521 |
class |
070 500 DNB 500 AVZ BIODIV fid |
format_se |
Aufsätze |
author-letter |
Anja Spang |
doi_str_mv |
10.1038/nature14447 |
dewey-full |
070 500 |
title_sort |
complex archaea that bridge the gap between prokaryotes and eukaryotes |
title_auth |
Complex archaea that bridge the gap between prokaryotes and eukaryotes |
abstract |
The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes. |
abstractGer |
The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes. |
abstract_unstemmed |
The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 |
container_issue |
7551 |
title_short |
Complex archaea that bridge the gap between prokaryotes and eukaryotes |
url |
http://dx.doi.org/10.1038/nature14447 http://www.ncbi.nlm.nih.gov/pubmed/25945739 http://search.proquest.com/docview/1681518266 http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255067 |
remote_bool |
false |
author2 |
Jimmy H Saw Steffen L Jørgensen Katarzyna Zaremba-Niedzwiedzka Joran Martijn Anders E Lind Roel van Eijk Christa Schleper Lionel Guy Thijs J G Ettema |
author2Str |
Jimmy H Saw Steffen L Jørgensen Katarzyna Zaremba-Niedzwiedzka Joran Martijn Anders E Lind Roel van Eijk Christa Schleper Lionel Guy Thijs J G Ettema |
ppnlink |
129292834 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth |
doi_str |
10.1038/nature14447 |
up_date |
2024-07-04T03:41:04.736Z |
_version_ |
1803618316183404544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1962479862</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714155604.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/nature14447</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1962479862</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1962479862</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2369-b8c7ec2ef9966e1fe94bbb038c16928178bcbde58ebeb853ca154f5e8139361f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0072945020150000521755100173complexarchaeathatbridgethegapbetweenprokaryotesan</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anja Spang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex archaea that bridge the gap between prokaryotes and eukaryotes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genomes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryotes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell division</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prokaryotes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryota - classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrothermal Vents - microbiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monomeric GTP-Binding Proteins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Archaea - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metagenome - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Actins - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Actins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Actin Cytoskeleton - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monomeric GTP-Binding Proteins - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryotic Cells - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteome - isolation & purification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryotic Cells - classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryota - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteome - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Archaea - classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryota - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endosomal Sorting Complexes Required for Transport - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endosomal Sorting Complexes Required for Transport - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prokaryotic Cells - classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteome - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Archaea - metabolism</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jimmy H Saw</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Steffen L Jørgensen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katarzyna Zaremba-Niedzwiedzka</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joran Martijn</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anders E Lind</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roel van Eijk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christa Schleper</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lionel Guy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thijs J G Ettema</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nature</subfield><subfield code="d">London : Macmillan Publishers Limited, part of Springer Nature, 1869</subfield><subfield code="g">521(2015), 7551, Seite 173-179</subfield><subfield code="w">(DE-627)129292834</subfield><subfield code="w">(DE-600)120714-3</subfield><subfield code="w">(DE-576)014473941</subfield><subfield code="x">0028-0836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:521</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7551</subfield><subfield code="g">pages:173-179</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1038/nature14447</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25945739</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1681518266</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255067</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-SPO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_160</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_211</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_290</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_294</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_754</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2173</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2221</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">521</subfield><subfield code="j">2015</subfield><subfield code="e">7551</subfield><subfield code="h">173-179</subfield></datafield></record></collection>
|
score |
7.4018087 |