Initiation of translation in bacteria by a structured eukaryotic IRES RNA
The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclu...
Ausführliche Beschreibung
Autor*in: |
Timothy M Colussi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
Peptide Chain Initiation, Translational - genetics Protein Biosynthesis - genetics |
---|
Übergeordnetes Werk: |
Enthalten in: Nature - London : Macmillan Publishers Limited, part of Springer Nature, 1869, 519(2015), 7541, Seite 110-113 |
---|---|
Übergeordnetes Werk: |
volume:519 ; year:2015 ; number:7541 ; pages:110-113 |
Links: |
---|
DOI / URN: |
10.1038/nature14219 |
---|
Katalog-ID: |
OLC1962484343 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1962484343 | ||
003 | DE-627 | ||
005 | 20230714155616.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1038/nature14219 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1962484343 | ||
035 | |a (DE-599)GBVOLC1962484343 | ||
035 | |a (PRQ)c2776-6a7571a500b2ac9c880e4a0007c5120ea9abd1fce461ce22387136a59fc8617a0 | ||
035 | |a (KEY)0072945020150000519754100110initiationoftranslationinbacteriabyastructuredeuka | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 500 |q DNB |
082 | 0 | 4 | |a 500 |q AVZ |
084 | |a BIODIV |2 fid | ||
100 | 0 | |a Timothy M Colussi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Initiation of translation in bacteria by a structured eukaryotic IRES RNA |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive^sup 1^. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life^sup 2^. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life. | ||
650 | 4 | |a Crystal structure | |
650 | 4 | |a Binding sites | |
650 | 4 | |a Gene expression | |
650 | 4 | |a Eukaryotes | |
650 | 4 | |a Ribonucleic acid--RNA | |
650 | 4 | |a Bacteria | |
650 | 4 | |a RNA - metabolism | |
650 | 4 | |a Conserved Sequence - genetics | |
650 | 4 | |a RNA, Viral - genetics | |
650 | 4 | |a RNA, Viral - metabolism | |
650 | 4 | |a RNA, Viral - chemistry | |
650 | 4 | |a RNA - chemistry | |
650 | 4 | |a Ribosomes - chemistry | |
650 | 4 | |a Peptide Chain Initiation, Translational - genetics | |
650 | 4 | |a RNA, Bacterial - metabolism | |
650 | 4 | |a RNA, Bacterial - chemistry | |
650 | 4 | |a RNA, Bacterial - genetics | |
650 | 4 | |a RNA - genetics | |
650 | 4 | |a Protein Biosynthesis - genetics | |
650 | 4 | |a Dicistroviridae - genetics | |
650 | 4 | |a Bacteria - genetics | |
650 | 4 | |a Eukaryota - genetics | |
650 | 4 | |a Ribosomes - metabolism | |
650 | 4 | |a Genetic translation | |
650 | 4 | |a Ribosomes | |
650 | 4 | |a Research | |
650 | 4 | |a Protein biosynthesis | |
650 | 4 | |a Analysis | |
650 | 4 | |a X-ray crystallography | |
650 | 4 | |a RNA structure | |
650 | 4 | |a bacterial initiation | |
650 | 4 | |a Internal ribosome entry site (IRES) | |
650 | 4 | |a 70S ribosome | |
700 | 0 | |a David A Costantino |4 oth | |
700 | 0 | |a Jianyu Zhu |4 oth | |
700 | 0 | |a John Paul Donohue |4 oth | |
700 | 0 | |a Andrei A Korostelev |4 oth | |
700 | 0 | |a Zane A Jaafar |4 oth | |
700 | 0 | |a Terra-Dawn M Plank |4 oth | |
700 | 0 | |a Harry F Noller |4 oth | |
700 | 0 | |a Jeffrey S Kieft |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Nature |d London : Macmillan Publishers Limited, part of Springer Nature, 1869 |g 519(2015), 7541, Seite 110-113 |w (DE-627)129292834 |w (DE-600)120714-3 |w (DE-576)014473941 |x 0028-0836 |7 nnns |
773 | 1 | 8 | |g volume:519 |g year:2015 |g number:7541 |g pages:110-113 |
856 | 4 | 1 | |u http://dx.doi.org/10.1038/nature14219 |3 Volltext |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25652826 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1662769846 |
856 | 4 | 2 | |u http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4352134&tool=pmcentrez&rendertype=abstract |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-SPO | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_55 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_160 | ||
912 | |a GBV_ILN_168 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_211 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_290 | ||
912 | |a GBV_ILN_294 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_754 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2095 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2120 | ||
912 | |a GBV_ILN_2121 | ||
912 | |a GBV_ILN_2173 | ||
912 | |a GBV_ILN_2219 | ||
912 | |a GBV_ILN_2221 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2286 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4302 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4320 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 519 |j 2015 |e 7541 |h 110-113 |
author_variant |
t m c tmc |
---|---|
matchkey_str |
article:00280836:2015----::ntainfrnltoibceibatutr |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1038/nature14219 doi PQ20160617 (DE-627)OLC1962484343 (DE-599)GBVOLC1962484343 (PRQ)c2776-6a7571a500b2ac9c880e4a0007c5120ea9abd1fce461ce22387136a59fc8617a0 (KEY)0072945020150000519754100110initiationoftranslationinbacteriabyastructuredeuka DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Timothy M Colussi verfasserin aut Initiation of translation in bacteria by a structured eukaryotic IRES RNA 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive^sup 1^. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life^sup 2^. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life. Crystal structure Binding sites Gene expression Eukaryotes Ribonucleic acid--RNA Bacteria RNA - metabolism Conserved Sequence - genetics RNA, Viral - genetics RNA, Viral - metabolism RNA, Viral - chemistry RNA - chemistry Ribosomes - chemistry Peptide Chain Initiation, Translational - genetics RNA, Bacterial - metabolism RNA, Bacterial - chemistry RNA, Bacterial - genetics RNA - genetics Protein Biosynthesis - genetics Dicistroviridae - genetics Bacteria - genetics Eukaryota - genetics Ribosomes - metabolism Genetic translation Ribosomes Research Protein biosynthesis Analysis X-ray crystallography RNA structure bacterial initiation Internal ribosome entry site (IRES) 70S ribosome David A Costantino oth Jianyu Zhu oth John Paul Donohue oth Andrei A Korostelev oth Zane A Jaafar oth Terra-Dawn M Plank oth Harry F Noller oth Jeffrey S Kieft oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 519(2015), 7541, Seite 110-113 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:519 year:2015 number:7541 pages:110-113 http://dx.doi.org/10.1038/nature14219 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25652826 http://search.proquest.com/docview/1662769846 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4352134&tool=pmcentrez&rendertype=abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 519 2015 7541 110-113 |
spelling |
10.1038/nature14219 doi PQ20160617 (DE-627)OLC1962484343 (DE-599)GBVOLC1962484343 (PRQ)c2776-6a7571a500b2ac9c880e4a0007c5120ea9abd1fce461ce22387136a59fc8617a0 (KEY)0072945020150000519754100110initiationoftranslationinbacteriabyastructuredeuka DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Timothy M Colussi verfasserin aut Initiation of translation in bacteria by a structured eukaryotic IRES RNA 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive^sup 1^. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life^sup 2^. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life. Crystal structure Binding sites Gene expression Eukaryotes Ribonucleic acid--RNA Bacteria RNA - metabolism Conserved Sequence - genetics RNA, Viral - genetics RNA, Viral - metabolism RNA, Viral - chemistry RNA - chemistry Ribosomes - chemistry Peptide Chain Initiation, Translational - genetics RNA, Bacterial - metabolism RNA, Bacterial - chemistry RNA, Bacterial - genetics RNA - genetics Protein Biosynthesis - genetics Dicistroviridae - genetics Bacteria - genetics Eukaryota - genetics Ribosomes - metabolism Genetic translation Ribosomes Research Protein biosynthesis Analysis X-ray crystallography RNA structure bacterial initiation Internal ribosome entry site (IRES) 70S ribosome David A Costantino oth Jianyu Zhu oth John Paul Donohue oth Andrei A Korostelev oth Zane A Jaafar oth Terra-Dawn M Plank oth Harry F Noller oth Jeffrey S Kieft oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 519(2015), 7541, Seite 110-113 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:519 year:2015 number:7541 pages:110-113 http://dx.doi.org/10.1038/nature14219 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25652826 http://search.proquest.com/docview/1662769846 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4352134&tool=pmcentrez&rendertype=abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 519 2015 7541 110-113 |
allfields_unstemmed |
10.1038/nature14219 doi PQ20160617 (DE-627)OLC1962484343 (DE-599)GBVOLC1962484343 (PRQ)c2776-6a7571a500b2ac9c880e4a0007c5120ea9abd1fce461ce22387136a59fc8617a0 (KEY)0072945020150000519754100110initiationoftranslationinbacteriabyastructuredeuka DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Timothy M Colussi verfasserin aut Initiation of translation in bacteria by a structured eukaryotic IRES RNA 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive^sup 1^. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life^sup 2^. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life. Crystal structure Binding sites Gene expression Eukaryotes Ribonucleic acid--RNA Bacteria RNA - metabolism Conserved Sequence - genetics RNA, Viral - genetics RNA, Viral - metabolism RNA, Viral - chemistry RNA - chemistry Ribosomes - chemistry Peptide Chain Initiation, Translational - genetics RNA, Bacterial - metabolism RNA, Bacterial - chemistry RNA, Bacterial - genetics RNA - genetics Protein Biosynthesis - genetics Dicistroviridae - genetics Bacteria - genetics Eukaryota - genetics Ribosomes - metabolism Genetic translation Ribosomes Research Protein biosynthesis Analysis X-ray crystallography RNA structure bacterial initiation Internal ribosome entry site (IRES) 70S ribosome David A Costantino oth Jianyu Zhu oth John Paul Donohue oth Andrei A Korostelev oth Zane A Jaafar oth Terra-Dawn M Plank oth Harry F Noller oth Jeffrey S Kieft oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 519(2015), 7541, Seite 110-113 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:519 year:2015 number:7541 pages:110-113 http://dx.doi.org/10.1038/nature14219 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25652826 http://search.proquest.com/docview/1662769846 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4352134&tool=pmcentrez&rendertype=abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 519 2015 7541 110-113 |
allfieldsGer |
10.1038/nature14219 doi PQ20160617 (DE-627)OLC1962484343 (DE-599)GBVOLC1962484343 (PRQ)c2776-6a7571a500b2ac9c880e4a0007c5120ea9abd1fce461ce22387136a59fc8617a0 (KEY)0072945020150000519754100110initiationoftranslationinbacteriabyastructuredeuka DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Timothy M Colussi verfasserin aut Initiation of translation in bacteria by a structured eukaryotic IRES RNA 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive^sup 1^. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life^sup 2^. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life. Crystal structure Binding sites Gene expression Eukaryotes Ribonucleic acid--RNA Bacteria RNA - metabolism Conserved Sequence - genetics RNA, Viral - genetics RNA, Viral - metabolism RNA, Viral - chemistry RNA - chemistry Ribosomes - chemistry Peptide Chain Initiation, Translational - genetics RNA, Bacterial - metabolism RNA, Bacterial - chemistry RNA, Bacterial - genetics RNA - genetics Protein Biosynthesis - genetics Dicistroviridae - genetics Bacteria - genetics Eukaryota - genetics Ribosomes - metabolism Genetic translation Ribosomes Research Protein biosynthesis Analysis X-ray crystallography RNA structure bacterial initiation Internal ribosome entry site (IRES) 70S ribosome David A Costantino oth Jianyu Zhu oth John Paul Donohue oth Andrei A Korostelev oth Zane A Jaafar oth Terra-Dawn M Plank oth Harry F Noller oth Jeffrey S Kieft oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 519(2015), 7541, Seite 110-113 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:519 year:2015 number:7541 pages:110-113 http://dx.doi.org/10.1038/nature14219 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25652826 http://search.proquest.com/docview/1662769846 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4352134&tool=pmcentrez&rendertype=abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 519 2015 7541 110-113 |
allfieldsSound |
10.1038/nature14219 doi PQ20160617 (DE-627)OLC1962484343 (DE-599)GBVOLC1962484343 (PRQ)c2776-6a7571a500b2ac9c880e4a0007c5120ea9abd1fce461ce22387136a59fc8617a0 (KEY)0072945020150000519754100110initiationoftranslationinbacteriabyastructuredeuka DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Timothy M Colussi verfasserin aut Initiation of translation in bacteria by a structured eukaryotic IRES RNA 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive^sup 1^. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life^sup 2^. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life. Crystal structure Binding sites Gene expression Eukaryotes Ribonucleic acid--RNA Bacteria RNA - metabolism Conserved Sequence - genetics RNA, Viral - genetics RNA, Viral - metabolism RNA, Viral - chemistry RNA - chemistry Ribosomes - chemistry Peptide Chain Initiation, Translational - genetics RNA, Bacterial - metabolism RNA, Bacterial - chemistry RNA, Bacterial - genetics RNA - genetics Protein Biosynthesis - genetics Dicistroviridae - genetics Bacteria - genetics Eukaryota - genetics Ribosomes - metabolism Genetic translation Ribosomes Research Protein biosynthesis Analysis X-ray crystallography RNA structure bacterial initiation Internal ribosome entry site (IRES) 70S ribosome David A Costantino oth Jianyu Zhu oth John Paul Donohue oth Andrei A Korostelev oth Zane A Jaafar oth Terra-Dawn M Plank oth Harry F Noller oth Jeffrey S Kieft oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 519(2015), 7541, Seite 110-113 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:519 year:2015 number:7541 pages:110-113 http://dx.doi.org/10.1038/nature14219 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25652826 http://search.proquest.com/docview/1662769846 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4352134&tool=pmcentrez&rendertype=abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 519 2015 7541 110-113 |
language |
English |
source |
Enthalten in Nature 519(2015), 7541, Seite 110-113 volume:519 year:2015 number:7541 pages:110-113 |
sourceStr |
Enthalten in Nature 519(2015), 7541, Seite 110-113 volume:519 year:2015 number:7541 pages:110-113 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Crystal structure Binding sites Gene expression Eukaryotes Ribonucleic acid--RNA Bacteria RNA - metabolism Conserved Sequence - genetics RNA, Viral - genetics RNA, Viral - metabolism RNA, Viral - chemistry RNA - chemistry Ribosomes - chemistry Peptide Chain Initiation, Translational - genetics RNA, Bacterial - metabolism RNA, Bacterial - chemistry RNA, Bacterial - genetics RNA - genetics Protein Biosynthesis - genetics Dicistroviridae - genetics Bacteria - genetics Eukaryota - genetics Ribosomes - metabolism Genetic translation Ribosomes Research Protein biosynthesis Analysis X-ray crystallography RNA structure bacterial initiation Internal ribosome entry site (IRES) 70S ribosome |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Nature |
authorswithroles_txt_mv |
Timothy M Colussi @@aut@@ David A Costantino @@oth@@ Jianyu Zhu @@oth@@ John Paul Donohue @@oth@@ Andrei A Korostelev @@oth@@ Zane A Jaafar @@oth@@ Terra-Dawn M Plank @@oth@@ Harry F Noller @@oth@@ Jeffrey S Kieft @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129292834 |
dewey-sort |
270 |
id |
OLC1962484343 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1962484343</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714155616.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/nature14219</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1962484343</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1962484343</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2776-6a7571a500b2ac9c880e4a0007c5120ea9abd1fce461ce22387136a59fc8617a0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0072945020150000519754100110initiationoftranslationinbacteriabyastructuredeuka</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Timothy M Colussi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Initiation of translation in bacteria by a structured eukaryotic IRES RNA</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive^sup 1^. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life^sup 2^. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystal structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Binding sites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene expression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryotes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ribonucleic acid--RNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conserved Sequence - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Viral - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Viral - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Viral - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ribosomes - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peptide Chain Initiation, Translational - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Bacterial - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Bacterial - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Bacterial - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protein Biosynthesis - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dicistroviridae - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacteria - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryota - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ribosomes - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic translation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ribosomes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protein biosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-ray crystallography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bacterial initiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internal ribosome entry site (IRES)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">70S ribosome</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David A Costantino</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianyu Zhu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John Paul Donohue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrei A Korostelev</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zane A Jaafar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Terra-Dawn M Plank</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Harry F Noller</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jeffrey S Kieft</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nature</subfield><subfield code="d">London : Macmillan Publishers Limited, part of Springer Nature, 1869</subfield><subfield code="g">519(2015), 7541, Seite 110-113</subfield><subfield code="w">(DE-627)129292834</subfield><subfield code="w">(DE-600)120714-3</subfield><subfield code="w">(DE-576)014473941</subfield><subfield code="x">0028-0836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:519</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7541</subfield><subfield code="g">pages:110-113</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1038/nature14219</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25652826</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1662769846</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4352134&tool=pmcentrez&rendertype=abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-SPO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_160</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_211</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_290</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_294</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_754</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2173</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2221</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">519</subfield><subfield code="j">2015</subfield><subfield code="e">7541</subfield><subfield code="h">110-113</subfield></datafield></record></collection>
|
author |
Timothy M Colussi |
spellingShingle |
Timothy M Colussi ddc 070 ddc 500 fid BIODIV misc Crystal structure misc Binding sites misc Gene expression misc Eukaryotes misc Ribonucleic acid--RNA misc Bacteria misc RNA - metabolism misc Conserved Sequence - genetics misc RNA, Viral - genetics misc RNA, Viral - metabolism misc RNA, Viral - chemistry misc RNA - chemistry misc Ribosomes - chemistry misc Peptide Chain Initiation, Translational - genetics misc RNA, Bacterial - metabolism misc RNA, Bacterial - chemistry misc RNA, Bacterial - genetics misc RNA - genetics misc Protein Biosynthesis - genetics misc Dicistroviridae - genetics misc Bacteria - genetics misc Eukaryota - genetics misc Ribosomes - metabolism misc Genetic translation misc Ribosomes misc Research misc Protein biosynthesis misc Analysis misc X-ray crystallography misc RNA structure misc bacterial initiation misc Internal ribosome entry site (IRES) misc 70S ribosome Initiation of translation in bacteria by a structured eukaryotic IRES RNA |
authorStr |
Timothy M Colussi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129292834 |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 500 - Natural sciences & mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0028-0836 |
topic_title |
070 500 DNB 500 AVZ BIODIV fid Initiation of translation in bacteria by a structured eukaryotic IRES RNA Crystal structure Binding sites Gene expression Eukaryotes Ribonucleic acid--RNA Bacteria RNA - metabolism Conserved Sequence - genetics RNA, Viral - genetics RNA, Viral - metabolism RNA, Viral - chemistry RNA - chemistry Ribosomes - chemistry Peptide Chain Initiation, Translational - genetics RNA, Bacterial - metabolism RNA, Bacterial - chemistry RNA, Bacterial - genetics RNA - genetics Protein Biosynthesis - genetics Dicistroviridae - genetics Bacteria - genetics Eukaryota - genetics Ribosomes - metabolism Genetic translation Ribosomes Research Protein biosynthesis Analysis X-ray crystallography RNA structure bacterial initiation Internal ribosome entry site (IRES) 70S ribosome |
topic |
ddc 070 ddc 500 fid BIODIV misc Crystal structure misc Binding sites misc Gene expression misc Eukaryotes misc Ribonucleic acid--RNA misc Bacteria misc RNA - metabolism misc Conserved Sequence - genetics misc RNA, Viral - genetics misc RNA, Viral - metabolism misc RNA, Viral - chemistry misc RNA - chemistry misc Ribosomes - chemistry misc Peptide Chain Initiation, Translational - genetics misc RNA, Bacterial - metabolism misc RNA, Bacterial - chemistry misc RNA, Bacterial - genetics misc RNA - genetics misc Protein Biosynthesis - genetics misc Dicistroviridae - genetics misc Bacteria - genetics misc Eukaryota - genetics misc Ribosomes - metabolism misc Genetic translation misc Ribosomes misc Research misc Protein biosynthesis misc Analysis misc X-ray crystallography misc RNA structure misc bacterial initiation misc Internal ribosome entry site (IRES) misc 70S ribosome |
topic_unstemmed |
ddc 070 ddc 500 fid BIODIV misc Crystal structure misc Binding sites misc Gene expression misc Eukaryotes misc Ribonucleic acid--RNA misc Bacteria misc RNA - metabolism misc Conserved Sequence - genetics misc RNA, Viral - genetics misc RNA, Viral - metabolism misc RNA, Viral - chemistry misc RNA - chemistry misc Ribosomes - chemistry misc Peptide Chain Initiation, Translational - genetics misc RNA, Bacterial - metabolism misc RNA, Bacterial - chemistry misc RNA, Bacterial - genetics misc RNA - genetics misc Protein Biosynthesis - genetics misc Dicistroviridae - genetics misc Bacteria - genetics misc Eukaryota - genetics misc Ribosomes - metabolism misc Genetic translation misc Ribosomes misc Research misc Protein biosynthesis misc Analysis misc X-ray crystallography misc RNA structure misc bacterial initiation misc Internal ribosome entry site (IRES) misc 70S ribosome |
topic_browse |
ddc 070 ddc 500 fid BIODIV misc Crystal structure misc Binding sites misc Gene expression misc Eukaryotes misc Ribonucleic acid--RNA misc Bacteria misc RNA - metabolism misc Conserved Sequence - genetics misc RNA, Viral - genetics misc RNA, Viral - metabolism misc RNA, Viral - chemistry misc RNA - chemistry misc Ribosomes - chemistry misc Peptide Chain Initiation, Translational - genetics misc RNA, Bacterial - metabolism misc RNA, Bacterial - chemistry misc RNA, Bacterial - genetics misc RNA - genetics misc Protein Biosynthesis - genetics misc Dicistroviridae - genetics misc Bacteria - genetics misc Eukaryota - genetics misc Ribosomes - metabolism misc Genetic translation misc Ribosomes misc Research misc Protein biosynthesis misc Analysis misc X-ray crystallography misc RNA structure misc bacterial initiation misc Internal ribosome entry site (IRES) misc 70S ribosome |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
d a c dac j z jz j p d jpd a a k aak z a j zaj t d m p tdmp h f n hfn j s k jsk |
hierarchy_parent_title |
Nature |
hierarchy_parent_id |
129292834 |
dewey-tens |
070 - News media, journalism & publishing 500 - Science |
hierarchy_top_title |
Nature |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 |
title |
Initiation of translation in bacteria by a structured eukaryotic IRES RNA |
ctrlnum |
(DE-627)OLC1962484343 (DE-599)GBVOLC1962484343 (PRQ)c2776-6a7571a500b2ac9c880e4a0007c5120ea9abd1fce461ce22387136a59fc8617a0 (KEY)0072945020150000519754100110initiationoftranslationinbacteriabyastructuredeuka |
title_full |
Initiation of translation in bacteria by a structured eukaryotic IRES RNA |
author_sort |
Timothy M Colussi |
journal |
Nature |
journalStr |
Nature |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
110 |
author_browse |
Timothy M Colussi |
container_volume |
519 |
class |
070 500 DNB 500 AVZ BIODIV fid |
format_se |
Aufsätze |
author-letter |
Timothy M Colussi |
doi_str_mv |
10.1038/nature14219 |
dewey-full |
070 500 |
title_sort |
initiation of translation in bacteria by a structured eukaryotic ires rna |
title_auth |
Initiation of translation in bacteria by a structured eukaryotic IRES RNA |
abstract |
The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive^sup 1^. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life^sup 2^. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life. |
abstractGer |
The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive^sup 1^. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life^sup 2^. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life. |
abstract_unstemmed |
The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive^sup 1^. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life^sup 2^. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 |
container_issue |
7541 |
title_short |
Initiation of translation in bacteria by a structured eukaryotic IRES RNA |
url |
http://dx.doi.org/10.1038/nature14219 http://www.ncbi.nlm.nih.gov/pubmed/25652826 http://search.proquest.com/docview/1662769846 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4352134&tool=pmcentrez&rendertype=abstract |
remote_bool |
false |
author2 |
David A Costantino Jianyu Zhu John Paul Donohue Andrei A Korostelev Zane A Jaafar Terra-Dawn M Plank Harry F Noller Jeffrey S Kieft |
author2Str |
David A Costantino Jianyu Zhu John Paul Donohue Andrei A Korostelev Zane A Jaafar Terra-Dawn M Plank Harry F Noller Jeffrey S Kieft |
ppnlink |
129292834 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth |
doi_str |
10.1038/nature14219 |
up_date |
2024-07-04T03:41:48.270Z |
_version_ |
1803618361833160704 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1962484343</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714155616.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/nature14219</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1962484343</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1962484343</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2776-6a7571a500b2ac9c880e4a0007c5120ea9abd1fce461ce22387136a59fc8617a0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0072945020150000519754100110initiationoftranslationinbacteriabyastructuredeuka</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Timothy M Colussi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Initiation of translation in bacteria by a structured eukaryotic IRES RNA</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive^sup 1^. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life^sup 2^. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystal structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Binding sites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene expression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryotes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ribonucleic acid--RNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conserved Sequence - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Viral - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Viral - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Viral - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ribosomes - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peptide Chain Initiation, Translational - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Bacterial - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Bacterial - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Bacterial - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protein Biosynthesis - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dicistroviridae - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacteria - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryota - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ribosomes - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic translation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ribosomes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protein biosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-ray crystallography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bacterial initiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internal ribosome entry site (IRES)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">70S ribosome</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David A Costantino</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianyu Zhu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John Paul Donohue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrei A Korostelev</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zane A Jaafar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Terra-Dawn M Plank</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Harry F Noller</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jeffrey S Kieft</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nature</subfield><subfield code="d">London : Macmillan Publishers Limited, part of Springer Nature, 1869</subfield><subfield code="g">519(2015), 7541, Seite 110-113</subfield><subfield code="w">(DE-627)129292834</subfield><subfield code="w">(DE-600)120714-3</subfield><subfield code="w">(DE-576)014473941</subfield><subfield code="x">0028-0836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:519</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7541</subfield><subfield code="g">pages:110-113</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1038/nature14219</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25652826</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1662769846</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4352134&tool=pmcentrez&rendertype=abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-SPO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_160</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_211</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_290</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_294</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_754</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2173</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2221</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">519</subfield><subfield code="j">2015</subfield><subfield code="e">7541</subfield><subfield code="h">110-113</subfield></datafield></record></collection>
|
score |
7.4013977 |