Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model
The design of closed-loop supply chain network is one of the important issues in supply chain management. This research proposes a multi-period, multi-product, multi-echelon closed-loop supply chain network design model under uncertainty. Because of its complexity, a solution framework which integra...
Ausführliche Beschreibung
Autor*in: |
Zhuo Dai [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: © COPYRIGHT 2015 Elsevier Science Publishers |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers & industrial engineering - Amsterdam [u.a.] : Elsevier, 1976, 88(2015), Seite 444 |
---|---|
Übergeordnetes Werk: |
volume:88 ; year:2015 ; pages:444 |
Links: |
---|
DOI / URN: |
10.1016/j.cie.2015.08.004 |
---|
Katalog-ID: |
OLC1963023722 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1963023722 | ||
003 | DE-627 | ||
005 | 20220217082838.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cie.2015.08.004 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1963023722 | ||
035 | |a (DE-599)GBVOLC1963023722 | ||
035 | |a (PRQ)c2414-834f43a1e3c6a87f827d88b37082a336bd3ff2f0638fb7175254f19dcd04c7db0 | ||
035 | |a (KEY)0011885020150000088000000444designofcloseloopsupplychainnetworkunderuncertaint | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DNB |
084 | |a 85.35 |2 bkl | ||
084 | |a 54.80 |2 bkl | ||
084 | |a 83.00 |2 bkl | ||
100 | 0 | |a Zhuo Dai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The design of closed-loop supply chain network is one of the important issues in supply chain management. This research proposes a multi-period, multi-product, multi-echelon closed-loop supply chain network design model under uncertainty. Because of its complexity, a solution framework which integrates Monte Carlo simulation embedded hybrid genetic algorithm, fuzzy programming and chance-constrained programming jointly deal with the issue. A fuzzy programming and chance-constrained programming approach take up the uncertainty issue. Monte Carlo simulation embedded hybrid genetic algorithm is employed to determine the configuration of CLSC network. Parameters of GA are chosen to balance two aims. One aim is that the best value is global optimum, that is, maximum profit. The other aim is that the computational time is as short as possible. Non-parametric test confirms the advantage of hybrid GA. Then, the validity of Monte Carlo simulation embedded hybrid genetic algorithm is verified. The impacts of uncertainty in disposed rates, demands, and capacities on the overall profit of CLSC network are studied through sensitivity analysis. The proposed model is effective in designing CLSC network under uncertain environment. | ||
540 | |a Nutzungsrecht: © COPYRIGHT 2015 Elsevier Science Publishers | ||
650 | 4 | |a Monte Carlo simulation | |
650 | 4 | |a Supply chain management | |
650 | 4 | |a Uncertainty | |
650 | 4 | |a Sensitivity analysis | |
650 | 4 | |a Studies | |
650 | 4 | |a Closed loop systems | |
650 | 4 | |a Genetic algorithms | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Monte Carlo method | |
650 | 4 | |a Logistics | |
700 | 0 | |a Xiaoting Zheng |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Computers & industrial engineering |d Amsterdam [u.a.] : Elsevier, 1976 |g 88(2015), Seite 444 |w (DE-627)129448982 |w (DE-600)196993-6 |w (DE-576)014814994 |x 0360-8352 |7 nnns |
773 | 1 | 8 | |g volume:88 |g year:2015 |g pages:444 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.cie.2015.08.004 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1713974449 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 85.35 |q AVZ |
936 | b | k | |a 54.80 |q AVZ |
936 | b | k | |a 83.00 |q AVZ |
951 | |a AR | ||
952 | |d 88 |j 2015 |h 444 |
author_variant |
z d zd |
---|---|
matchkey_str |
article:03608352:2015----::einflslosplcanewrudrnetituigyrdeeiagrtmfzynca |
hierarchy_sort_str |
2015 |
bklnumber |
85.35 54.80 83.00 |
publishDate |
2015 |
allfields |
10.1016/j.cie.2015.08.004 doi PQ20160617 (DE-627)OLC1963023722 (DE-599)GBVOLC1963023722 (PRQ)c2414-834f43a1e3c6a87f827d88b37082a336bd3ff2f0638fb7175254f19dcd04c7db0 (KEY)0011885020150000088000000444designofcloseloopsupplychainnetworkunderuncertaint DE-627 ger DE-627 rakwb eng 004 DNB 85.35 bkl 54.80 bkl 83.00 bkl Zhuo Dai verfasserin aut Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The design of closed-loop supply chain network is one of the important issues in supply chain management. This research proposes a multi-period, multi-product, multi-echelon closed-loop supply chain network design model under uncertainty. Because of its complexity, a solution framework which integrates Monte Carlo simulation embedded hybrid genetic algorithm, fuzzy programming and chance-constrained programming jointly deal with the issue. A fuzzy programming and chance-constrained programming approach take up the uncertainty issue. Monte Carlo simulation embedded hybrid genetic algorithm is employed to determine the configuration of CLSC network. Parameters of GA are chosen to balance two aims. One aim is that the best value is global optimum, that is, maximum profit. The other aim is that the computational time is as short as possible. Non-parametric test confirms the advantage of hybrid GA. Then, the validity of Monte Carlo simulation embedded hybrid genetic algorithm is verified. The impacts of uncertainty in disposed rates, demands, and capacities on the overall profit of CLSC network are studied through sensitivity analysis. The proposed model is effective in designing CLSC network under uncertain environment. Nutzungsrecht: © COPYRIGHT 2015 Elsevier Science Publishers Monte Carlo simulation Supply chain management Uncertainty Sensitivity analysis Studies Closed loop systems Genetic algorithms Algorithms Monte Carlo method Logistics Xiaoting Zheng oth Enthalten in Computers & industrial engineering Amsterdam [u.a.] : Elsevier, 1976 88(2015), Seite 444 (DE-627)129448982 (DE-600)196993-6 (DE-576)014814994 0360-8352 nnns volume:88 year:2015 pages:444 http://dx.doi.org/10.1016/j.cie.2015.08.004 Volltext http://search.proquest.com/docview/1713974449 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_70 85.35 AVZ 54.80 AVZ 83.00 AVZ AR 88 2015 444 |
spelling |
10.1016/j.cie.2015.08.004 doi PQ20160617 (DE-627)OLC1963023722 (DE-599)GBVOLC1963023722 (PRQ)c2414-834f43a1e3c6a87f827d88b37082a336bd3ff2f0638fb7175254f19dcd04c7db0 (KEY)0011885020150000088000000444designofcloseloopsupplychainnetworkunderuncertaint DE-627 ger DE-627 rakwb eng 004 DNB 85.35 bkl 54.80 bkl 83.00 bkl Zhuo Dai verfasserin aut Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The design of closed-loop supply chain network is one of the important issues in supply chain management. This research proposes a multi-period, multi-product, multi-echelon closed-loop supply chain network design model under uncertainty. Because of its complexity, a solution framework which integrates Monte Carlo simulation embedded hybrid genetic algorithm, fuzzy programming and chance-constrained programming jointly deal with the issue. A fuzzy programming and chance-constrained programming approach take up the uncertainty issue. Monte Carlo simulation embedded hybrid genetic algorithm is employed to determine the configuration of CLSC network. Parameters of GA are chosen to balance two aims. One aim is that the best value is global optimum, that is, maximum profit. The other aim is that the computational time is as short as possible. Non-parametric test confirms the advantage of hybrid GA. Then, the validity of Monte Carlo simulation embedded hybrid genetic algorithm is verified. The impacts of uncertainty in disposed rates, demands, and capacities on the overall profit of CLSC network are studied through sensitivity analysis. The proposed model is effective in designing CLSC network under uncertain environment. Nutzungsrecht: © COPYRIGHT 2015 Elsevier Science Publishers Monte Carlo simulation Supply chain management Uncertainty Sensitivity analysis Studies Closed loop systems Genetic algorithms Algorithms Monte Carlo method Logistics Xiaoting Zheng oth Enthalten in Computers & industrial engineering Amsterdam [u.a.] : Elsevier, 1976 88(2015), Seite 444 (DE-627)129448982 (DE-600)196993-6 (DE-576)014814994 0360-8352 nnns volume:88 year:2015 pages:444 http://dx.doi.org/10.1016/j.cie.2015.08.004 Volltext http://search.proquest.com/docview/1713974449 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_70 85.35 AVZ 54.80 AVZ 83.00 AVZ AR 88 2015 444 |
allfields_unstemmed |
10.1016/j.cie.2015.08.004 doi PQ20160617 (DE-627)OLC1963023722 (DE-599)GBVOLC1963023722 (PRQ)c2414-834f43a1e3c6a87f827d88b37082a336bd3ff2f0638fb7175254f19dcd04c7db0 (KEY)0011885020150000088000000444designofcloseloopsupplychainnetworkunderuncertaint DE-627 ger DE-627 rakwb eng 004 DNB 85.35 bkl 54.80 bkl 83.00 bkl Zhuo Dai verfasserin aut Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The design of closed-loop supply chain network is one of the important issues in supply chain management. This research proposes a multi-period, multi-product, multi-echelon closed-loop supply chain network design model under uncertainty. Because of its complexity, a solution framework which integrates Monte Carlo simulation embedded hybrid genetic algorithm, fuzzy programming and chance-constrained programming jointly deal with the issue. A fuzzy programming and chance-constrained programming approach take up the uncertainty issue. Monte Carlo simulation embedded hybrid genetic algorithm is employed to determine the configuration of CLSC network. Parameters of GA are chosen to balance two aims. One aim is that the best value is global optimum, that is, maximum profit. The other aim is that the computational time is as short as possible. Non-parametric test confirms the advantage of hybrid GA. Then, the validity of Monte Carlo simulation embedded hybrid genetic algorithm is verified. The impacts of uncertainty in disposed rates, demands, and capacities on the overall profit of CLSC network are studied through sensitivity analysis. The proposed model is effective in designing CLSC network under uncertain environment. Nutzungsrecht: © COPYRIGHT 2015 Elsevier Science Publishers Monte Carlo simulation Supply chain management Uncertainty Sensitivity analysis Studies Closed loop systems Genetic algorithms Algorithms Monte Carlo method Logistics Xiaoting Zheng oth Enthalten in Computers & industrial engineering Amsterdam [u.a.] : Elsevier, 1976 88(2015), Seite 444 (DE-627)129448982 (DE-600)196993-6 (DE-576)014814994 0360-8352 nnns volume:88 year:2015 pages:444 http://dx.doi.org/10.1016/j.cie.2015.08.004 Volltext http://search.proquest.com/docview/1713974449 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_70 85.35 AVZ 54.80 AVZ 83.00 AVZ AR 88 2015 444 |
allfieldsGer |
10.1016/j.cie.2015.08.004 doi PQ20160617 (DE-627)OLC1963023722 (DE-599)GBVOLC1963023722 (PRQ)c2414-834f43a1e3c6a87f827d88b37082a336bd3ff2f0638fb7175254f19dcd04c7db0 (KEY)0011885020150000088000000444designofcloseloopsupplychainnetworkunderuncertaint DE-627 ger DE-627 rakwb eng 004 DNB 85.35 bkl 54.80 bkl 83.00 bkl Zhuo Dai verfasserin aut Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The design of closed-loop supply chain network is one of the important issues in supply chain management. This research proposes a multi-period, multi-product, multi-echelon closed-loop supply chain network design model under uncertainty. Because of its complexity, a solution framework which integrates Monte Carlo simulation embedded hybrid genetic algorithm, fuzzy programming and chance-constrained programming jointly deal with the issue. A fuzzy programming and chance-constrained programming approach take up the uncertainty issue. Monte Carlo simulation embedded hybrid genetic algorithm is employed to determine the configuration of CLSC network. Parameters of GA are chosen to balance two aims. One aim is that the best value is global optimum, that is, maximum profit. The other aim is that the computational time is as short as possible. Non-parametric test confirms the advantage of hybrid GA. Then, the validity of Monte Carlo simulation embedded hybrid genetic algorithm is verified. The impacts of uncertainty in disposed rates, demands, and capacities on the overall profit of CLSC network are studied through sensitivity analysis. The proposed model is effective in designing CLSC network under uncertain environment. Nutzungsrecht: © COPYRIGHT 2015 Elsevier Science Publishers Monte Carlo simulation Supply chain management Uncertainty Sensitivity analysis Studies Closed loop systems Genetic algorithms Algorithms Monte Carlo method Logistics Xiaoting Zheng oth Enthalten in Computers & industrial engineering Amsterdam [u.a.] : Elsevier, 1976 88(2015), Seite 444 (DE-627)129448982 (DE-600)196993-6 (DE-576)014814994 0360-8352 nnns volume:88 year:2015 pages:444 http://dx.doi.org/10.1016/j.cie.2015.08.004 Volltext http://search.proquest.com/docview/1713974449 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_70 85.35 AVZ 54.80 AVZ 83.00 AVZ AR 88 2015 444 |
allfieldsSound |
10.1016/j.cie.2015.08.004 doi PQ20160617 (DE-627)OLC1963023722 (DE-599)GBVOLC1963023722 (PRQ)c2414-834f43a1e3c6a87f827d88b37082a336bd3ff2f0638fb7175254f19dcd04c7db0 (KEY)0011885020150000088000000444designofcloseloopsupplychainnetworkunderuncertaint DE-627 ger DE-627 rakwb eng 004 DNB 85.35 bkl 54.80 bkl 83.00 bkl Zhuo Dai verfasserin aut Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The design of closed-loop supply chain network is one of the important issues in supply chain management. This research proposes a multi-period, multi-product, multi-echelon closed-loop supply chain network design model under uncertainty. Because of its complexity, a solution framework which integrates Monte Carlo simulation embedded hybrid genetic algorithm, fuzzy programming and chance-constrained programming jointly deal with the issue. A fuzzy programming and chance-constrained programming approach take up the uncertainty issue. Monte Carlo simulation embedded hybrid genetic algorithm is employed to determine the configuration of CLSC network. Parameters of GA are chosen to balance two aims. One aim is that the best value is global optimum, that is, maximum profit. The other aim is that the computational time is as short as possible. Non-parametric test confirms the advantage of hybrid GA. Then, the validity of Monte Carlo simulation embedded hybrid genetic algorithm is verified. The impacts of uncertainty in disposed rates, demands, and capacities on the overall profit of CLSC network are studied through sensitivity analysis. The proposed model is effective in designing CLSC network under uncertain environment. Nutzungsrecht: © COPYRIGHT 2015 Elsevier Science Publishers Monte Carlo simulation Supply chain management Uncertainty Sensitivity analysis Studies Closed loop systems Genetic algorithms Algorithms Monte Carlo method Logistics Xiaoting Zheng oth Enthalten in Computers & industrial engineering Amsterdam [u.a.] : Elsevier, 1976 88(2015), Seite 444 (DE-627)129448982 (DE-600)196993-6 (DE-576)014814994 0360-8352 nnns volume:88 year:2015 pages:444 http://dx.doi.org/10.1016/j.cie.2015.08.004 Volltext http://search.proquest.com/docview/1713974449 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_70 85.35 AVZ 54.80 AVZ 83.00 AVZ AR 88 2015 444 |
language |
English |
source |
Enthalten in Computers & industrial engineering 88(2015), Seite 444 volume:88 year:2015 pages:444 |
sourceStr |
Enthalten in Computers & industrial engineering 88(2015), Seite 444 volume:88 year:2015 pages:444 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Monte Carlo simulation Supply chain management Uncertainty Sensitivity analysis Studies Closed loop systems Genetic algorithms Algorithms Monte Carlo method Logistics |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Computers & industrial engineering |
authorswithroles_txt_mv |
Zhuo Dai @@aut@@ Xiaoting Zheng @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129448982 |
dewey-sort |
14 |
id |
OLC1963023722 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963023722</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220217082838.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cie.2015.08.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963023722</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963023722</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2414-834f43a1e3c6a87f827d88b37082a336bd3ff2f0638fb7175254f19dcd04c7db0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0011885020150000088000000444designofcloseloopsupplychainnetworkunderuncertaint</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhuo Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The design of closed-loop supply chain network is one of the important issues in supply chain management. This research proposes a multi-period, multi-product, multi-echelon closed-loop supply chain network design model under uncertainty. Because of its complexity, a solution framework which integrates Monte Carlo simulation embedded hybrid genetic algorithm, fuzzy programming and chance-constrained programming jointly deal with the issue. A fuzzy programming and chance-constrained programming approach take up the uncertainty issue. Monte Carlo simulation embedded hybrid genetic algorithm is employed to determine the configuration of CLSC network. Parameters of GA are chosen to balance two aims. One aim is that the best value is global optimum, that is, maximum profit. The other aim is that the computational time is as short as possible. Non-parametric test confirms the advantage of hybrid GA. Then, the validity of Monte Carlo simulation embedded hybrid genetic algorithm is verified. The impacts of uncertainty in disposed rates, demands, and capacities on the overall profit of CLSC network are studied through sensitivity analysis. The proposed model is effective in designing CLSC network under uncertain environment.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © COPYRIGHT 2015 Elsevier Science Publishers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supply chain management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensitivity analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Closed loop systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logistics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoting Zheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & industrial engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1976</subfield><subfield code="g">88(2015), Seite 444</subfield><subfield code="w">(DE-627)129448982</subfield><subfield code="w">(DE-600)196993-6</subfield><subfield code="w">(DE-576)014814994</subfield><subfield code="x">0360-8352</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:444</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.cie.2015.08.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1713974449</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2015</subfield><subfield code="h">444</subfield></datafield></record></collection>
|
author |
Zhuo Dai |
spellingShingle |
Zhuo Dai ddc 004 bkl 85.35 bkl 54.80 bkl 83.00 misc Monte Carlo simulation misc Supply chain management misc Uncertainty misc Sensitivity analysis misc Studies misc Closed loop systems misc Genetic algorithms misc Algorithms misc Monte Carlo method misc Logistics Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model |
authorStr |
Zhuo Dai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129448982 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0360-8352 |
topic_title |
004 DNB 85.35 bkl 54.80 bkl 83.00 bkl Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model Monte Carlo simulation Supply chain management Uncertainty Sensitivity analysis Studies Closed loop systems Genetic algorithms Algorithms Monte Carlo method Logistics |
topic |
ddc 004 bkl 85.35 bkl 54.80 bkl 83.00 misc Monte Carlo simulation misc Supply chain management misc Uncertainty misc Sensitivity analysis misc Studies misc Closed loop systems misc Genetic algorithms misc Algorithms misc Monte Carlo method misc Logistics |
topic_unstemmed |
ddc 004 bkl 85.35 bkl 54.80 bkl 83.00 misc Monte Carlo simulation misc Supply chain management misc Uncertainty misc Sensitivity analysis misc Studies misc Closed loop systems misc Genetic algorithms misc Algorithms misc Monte Carlo method misc Logistics |
topic_browse |
ddc 004 bkl 85.35 bkl 54.80 bkl 83.00 misc Monte Carlo simulation misc Supply chain management misc Uncertainty misc Sensitivity analysis misc Studies misc Closed loop systems misc Genetic algorithms misc Algorithms misc Monte Carlo method misc Logistics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
x z xz |
hierarchy_parent_title |
Computers & industrial engineering |
hierarchy_parent_id |
129448982 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Computers & industrial engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129448982 (DE-600)196993-6 (DE-576)014814994 |
title |
Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model |
ctrlnum |
(DE-627)OLC1963023722 (DE-599)GBVOLC1963023722 (PRQ)c2414-834f43a1e3c6a87f827d88b37082a336bd3ff2f0638fb7175254f19dcd04c7db0 (KEY)0011885020150000088000000444designofcloseloopsupplychainnetworkunderuncertaint |
title_full |
Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model |
author_sort |
Zhuo Dai |
journal |
Computers & industrial engineering |
journalStr |
Computers & industrial engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
444 |
author_browse |
Zhuo Dai |
container_volume |
88 |
class |
004 DNB 85.35 bkl 54.80 bkl 83.00 bkl |
format_se |
Aufsätze |
author-letter |
Zhuo Dai |
doi_str_mv |
10.1016/j.cie.2015.08.004 |
dewey-full |
004 |
title_sort |
design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: a fuzzy and chance-constrained programming model |
title_auth |
Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model |
abstract |
The design of closed-loop supply chain network is one of the important issues in supply chain management. This research proposes a multi-period, multi-product, multi-echelon closed-loop supply chain network design model under uncertainty. Because of its complexity, a solution framework which integrates Monte Carlo simulation embedded hybrid genetic algorithm, fuzzy programming and chance-constrained programming jointly deal with the issue. A fuzzy programming and chance-constrained programming approach take up the uncertainty issue. Monte Carlo simulation embedded hybrid genetic algorithm is employed to determine the configuration of CLSC network. Parameters of GA are chosen to balance two aims. One aim is that the best value is global optimum, that is, maximum profit. The other aim is that the computational time is as short as possible. Non-parametric test confirms the advantage of hybrid GA. Then, the validity of Monte Carlo simulation embedded hybrid genetic algorithm is verified. The impacts of uncertainty in disposed rates, demands, and capacities on the overall profit of CLSC network are studied through sensitivity analysis. The proposed model is effective in designing CLSC network under uncertain environment. |
abstractGer |
The design of closed-loop supply chain network is one of the important issues in supply chain management. This research proposes a multi-period, multi-product, multi-echelon closed-loop supply chain network design model under uncertainty. Because of its complexity, a solution framework which integrates Monte Carlo simulation embedded hybrid genetic algorithm, fuzzy programming and chance-constrained programming jointly deal with the issue. A fuzzy programming and chance-constrained programming approach take up the uncertainty issue. Monte Carlo simulation embedded hybrid genetic algorithm is employed to determine the configuration of CLSC network. Parameters of GA are chosen to balance two aims. One aim is that the best value is global optimum, that is, maximum profit. The other aim is that the computational time is as short as possible. Non-parametric test confirms the advantage of hybrid GA. Then, the validity of Monte Carlo simulation embedded hybrid genetic algorithm is verified. The impacts of uncertainty in disposed rates, demands, and capacities on the overall profit of CLSC network are studied through sensitivity analysis. The proposed model is effective in designing CLSC network under uncertain environment. |
abstract_unstemmed |
The design of closed-loop supply chain network is one of the important issues in supply chain management. This research proposes a multi-period, multi-product, multi-echelon closed-loop supply chain network design model under uncertainty. Because of its complexity, a solution framework which integrates Monte Carlo simulation embedded hybrid genetic algorithm, fuzzy programming and chance-constrained programming jointly deal with the issue. A fuzzy programming and chance-constrained programming approach take up the uncertainty issue. Monte Carlo simulation embedded hybrid genetic algorithm is employed to determine the configuration of CLSC network. Parameters of GA are chosen to balance two aims. One aim is that the best value is global optimum, that is, maximum profit. The other aim is that the computational time is as short as possible. Non-parametric test confirms the advantage of hybrid GA. Then, the validity of Monte Carlo simulation embedded hybrid genetic algorithm is verified. The impacts of uncertainty in disposed rates, demands, and capacities on the overall profit of CLSC network are studied through sensitivity analysis. The proposed model is effective in designing CLSC network under uncertain environment. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_70 |
title_short |
Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model |
url |
http://dx.doi.org/10.1016/j.cie.2015.08.004 http://search.proquest.com/docview/1713974449 |
remote_bool |
false |
author2 |
Xiaoting Zheng |
author2Str |
Xiaoting Zheng |
ppnlink |
129448982 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.cie.2015.08.004 |
up_date |
2024-07-04T04:48:14.049Z |
_version_ |
1803622541207535616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963023722</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220217082838.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cie.2015.08.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963023722</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963023722</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2414-834f43a1e3c6a87f827d88b37082a336bd3ff2f0638fb7175254f19dcd04c7db0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0011885020150000088000000444designofcloseloopsupplychainnetworkunderuncertaint</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhuo Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The design of closed-loop supply chain network is one of the important issues in supply chain management. This research proposes a multi-period, multi-product, multi-echelon closed-loop supply chain network design model under uncertainty. Because of its complexity, a solution framework which integrates Monte Carlo simulation embedded hybrid genetic algorithm, fuzzy programming and chance-constrained programming jointly deal with the issue. A fuzzy programming and chance-constrained programming approach take up the uncertainty issue. Monte Carlo simulation embedded hybrid genetic algorithm is employed to determine the configuration of CLSC network. Parameters of GA are chosen to balance two aims. One aim is that the best value is global optimum, that is, maximum profit. The other aim is that the computational time is as short as possible. Non-parametric test confirms the advantage of hybrid GA. Then, the validity of Monte Carlo simulation embedded hybrid genetic algorithm is verified. The impacts of uncertainty in disposed rates, demands, and capacities on the overall profit of CLSC network are studied through sensitivity analysis. The proposed model is effective in designing CLSC network under uncertain environment.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © COPYRIGHT 2015 Elsevier Science Publishers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supply chain management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensitivity analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Closed loop systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logistics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoting Zheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & industrial engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1976</subfield><subfield code="g">88(2015), Seite 444</subfield><subfield code="w">(DE-627)129448982</subfield><subfield code="w">(DE-600)196993-6</subfield><subfield code="w">(DE-576)014814994</subfield><subfield code="x">0360-8352</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:444</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.cie.2015.08.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1713974449</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2015</subfield><subfield code="h">444</subfield></datafield></record></collection>
|
score |
7.4000645 |