Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water
The reactivity of nanoscale zero valent iron (nZVI) toward targeted contaminants is affected by the initial nZVI composition and the iron oxides formed during the aging process in aquatic systems. In this paper, the aging effects of nZVI, prepared using a borohydride reduction method in static water...
Ausführliche Beschreibung
Autor*in: |
Liu, Airong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved. |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Chemosphere - Kidlington, Oxford : Elsevier Science, 1972, 119(2015), Seite 1068-1074 |
---|---|
Übergeordnetes Werk: |
volume:119 ; year:2015 ; pages:1068-1074 |
Links: |
---|
DOI / URN: |
10.1016/j.chemosphere.2014.09.026 |
---|
Katalog-ID: |
OLC1963053362 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1963053362 | ||
003 | DE-627 | ||
005 | 20230508074850.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.chemosphere.2014.09.026 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1963053362 | ||
035 | |a (DE-599)GBVOLC1963053362 | ||
035 | |a (PRQ)c1625-4cb11405348d748f76a8ada59d6ed6578103edea2cf41cf46a1cd0c1b4d8095e0 | ||
035 | |a (KEY)0012464820150000119000001068transformationandcompositionevolutionofnanoscaleze | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |q DNB |
084 | |a AR 10100 |q AVZ |2 rvk | ||
084 | |a 38.32 |2 bkl | ||
084 | |a 35.00 |2 bkl | ||
100 | 1 | |a Liu, Airong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The reactivity of nanoscale zero valent iron (nZVI) toward targeted contaminants is affected by the initial nZVI composition and the iron oxides formed during the aging process in aquatic systems. In this paper, the aging effects of nZVI, prepared using a borohydride reduction method in static water over a period of 90 days (d), are investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy are used to characterize the corrosion products of nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging. The products of nZVI aged for 5 d in static water media are mainly magnetite (Fe3O4) and maghemite (γ-Fe2O3), accompanied by lepidocrocite (γ-FeOOH). For products aged 10 d, XRD data show the formation of ferrihydrite and lepidocrocite. When aged up to 90 d, the products are mainly γ-FeOOH mixed with small amounts of Fe3O4 and γ-Fe2O3. Transmission electronic microscopy (TEM) images show that the core-shell structure forms into a hollow spherical shape after 30 d of aging in aquatic media. The results indicate first that iron ions in the Fe(0) core diffuse outwardly toward the shell, and hollowed-out iron oxide shells emerge. Then, the iron oxide shell collapses and becomes a flaky, acicular-shaped structure. The type and the crystal phase of second iron oxide minerals are vastly different at various aging times. This study helps to explain the patterns of occurrence of specific iron oxides in different natural conditions. | ||
540 | |a Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved. | ||
650 | 4 | |a Water - chemistry | |
650 | 4 | |a Iron Compounds - chemistry | |
650 | 4 | |a Iron - chemistry | |
650 | 4 | |a Borohydrides - chemistry | |
700 | 1 | |a Liu, Jing |4 oth | |
700 | 1 | |a Zhang, Wei-Xian |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Chemosphere |d Kidlington, Oxford : Elsevier Science, 1972 |g 119(2015), Seite 1068-1074 |w (DE-627)129288586 |w (DE-600)120089-6 |w (DE-576)014470187 |x 0045-6535 |7 nnns |
773 | 1 | 8 | |g volume:119 |g year:2015 |g pages:1068-1074 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.chemosphere.2014.09.026 |3 Volltext |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25317915 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4012 | ||
936 | r | v | |a AR 10100 |
936 | b | k | |a 38.32 |q AVZ |
936 | b | k | |a 35.00 |q AVZ |
951 | |a AR | ||
952 | |d 119 |j 2015 |h 1068-1074 |
author_variant |
a l al |
---|---|
matchkey_str |
article:00456535:2015----::rnfrainncmoiinvltoonnsaeeoaetrnziyteiebbrh |
hierarchy_sort_str |
2015 |
bklnumber |
38.32 35.00 |
publishDate |
2015 |
allfields |
10.1016/j.chemosphere.2014.09.026 doi PQ20160617 (DE-627)OLC1963053362 (DE-599)GBVOLC1963053362 (PRQ)c1625-4cb11405348d748f76a8ada59d6ed6578103edea2cf41cf46a1cd0c1b4d8095e0 (KEY)0012464820150000119000001068transformationandcompositionevolutionofnanoscaleze DE-627 ger DE-627 rakwb eng 333.7 DNB AR 10100 AVZ rvk 38.32 bkl 35.00 bkl Liu, Airong verfasserin aut Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The reactivity of nanoscale zero valent iron (nZVI) toward targeted contaminants is affected by the initial nZVI composition and the iron oxides formed during the aging process in aquatic systems. In this paper, the aging effects of nZVI, prepared using a borohydride reduction method in static water over a period of 90 days (d), are investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy are used to characterize the corrosion products of nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging. The products of nZVI aged for 5 d in static water media are mainly magnetite (Fe3O4) and maghemite (γ-Fe2O3), accompanied by lepidocrocite (γ-FeOOH). For products aged 10 d, XRD data show the formation of ferrihydrite and lepidocrocite. When aged up to 90 d, the products are mainly γ-FeOOH mixed with small amounts of Fe3O4 and γ-Fe2O3. Transmission electronic microscopy (TEM) images show that the core-shell structure forms into a hollow spherical shape after 30 d of aging in aquatic media. The results indicate first that iron ions in the Fe(0) core diffuse outwardly toward the shell, and hollowed-out iron oxide shells emerge. Then, the iron oxide shell collapses and becomes a flaky, acicular-shaped structure. The type and the crystal phase of second iron oxide minerals are vastly different at various aging times. This study helps to explain the patterns of occurrence of specific iron oxides in different natural conditions. Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved. Water - chemistry Iron Compounds - chemistry Iron - chemistry Borohydrides - chemistry Liu, Jing oth Zhang, Wei-Xian oth Enthalten in Chemosphere Kidlington, Oxford : Elsevier Science, 1972 119(2015), Seite 1068-1074 (DE-627)129288586 (DE-600)120089-6 (DE-576)014470187 0045-6535 nnns volume:119 year:2015 pages:1068-1074 http://dx.doi.org/10.1016/j.chemosphere.2014.09.026 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25317915 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 AR 10100 38.32 AVZ 35.00 AVZ AR 119 2015 1068-1074 |
spelling |
10.1016/j.chemosphere.2014.09.026 doi PQ20160617 (DE-627)OLC1963053362 (DE-599)GBVOLC1963053362 (PRQ)c1625-4cb11405348d748f76a8ada59d6ed6578103edea2cf41cf46a1cd0c1b4d8095e0 (KEY)0012464820150000119000001068transformationandcompositionevolutionofnanoscaleze DE-627 ger DE-627 rakwb eng 333.7 DNB AR 10100 AVZ rvk 38.32 bkl 35.00 bkl Liu, Airong verfasserin aut Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The reactivity of nanoscale zero valent iron (nZVI) toward targeted contaminants is affected by the initial nZVI composition and the iron oxides formed during the aging process in aquatic systems. In this paper, the aging effects of nZVI, prepared using a borohydride reduction method in static water over a period of 90 days (d), are investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy are used to characterize the corrosion products of nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging. The products of nZVI aged for 5 d in static water media are mainly magnetite (Fe3O4) and maghemite (γ-Fe2O3), accompanied by lepidocrocite (γ-FeOOH). For products aged 10 d, XRD data show the formation of ferrihydrite and lepidocrocite. When aged up to 90 d, the products are mainly γ-FeOOH mixed with small amounts of Fe3O4 and γ-Fe2O3. Transmission electronic microscopy (TEM) images show that the core-shell structure forms into a hollow spherical shape after 30 d of aging in aquatic media. The results indicate first that iron ions in the Fe(0) core diffuse outwardly toward the shell, and hollowed-out iron oxide shells emerge. Then, the iron oxide shell collapses and becomes a flaky, acicular-shaped structure. The type and the crystal phase of second iron oxide minerals are vastly different at various aging times. This study helps to explain the patterns of occurrence of specific iron oxides in different natural conditions. Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved. Water - chemistry Iron Compounds - chemistry Iron - chemistry Borohydrides - chemistry Liu, Jing oth Zhang, Wei-Xian oth Enthalten in Chemosphere Kidlington, Oxford : Elsevier Science, 1972 119(2015), Seite 1068-1074 (DE-627)129288586 (DE-600)120089-6 (DE-576)014470187 0045-6535 nnns volume:119 year:2015 pages:1068-1074 http://dx.doi.org/10.1016/j.chemosphere.2014.09.026 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25317915 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 AR 10100 38.32 AVZ 35.00 AVZ AR 119 2015 1068-1074 |
allfields_unstemmed |
10.1016/j.chemosphere.2014.09.026 doi PQ20160617 (DE-627)OLC1963053362 (DE-599)GBVOLC1963053362 (PRQ)c1625-4cb11405348d748f76a8ada59d6ed6578103edea2cf41cf46a1cd0c1b4d8095e0 (KEY)0012464820150000119000001068transformationandcompositionevolutionofnanoscaleze DE-627 ger DE-627 rakwb eng 333.7 DNB AR 10100 AVZ rvk 38.32 bkl 35.00 bkl Liu, Airong verfasserin aut Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The reactivity of nanoscale zero valent iron (nZVI) toward targeted contaminants is affected by the initial nZVI composition and the iron oxides formed during the aging process in aquatic systems. In this paper, the aging effects of nZVI, prepared using a borohydride reduction method in static water over a period of 90 days (d), are investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy are used to characterize the corrosion products of nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging. The products of nZVI aged for 5 d in static water media are mainly magnetite (Fe3O4) and maghemite (γ-Fe2O3), accompanied by lepidocrocite (γ-FeOOH). For products aged 10 d, XRD data show the formation of ferrihydrite and lepidocrocite. When aged up to 90 d, the products are mainly γ-FeOOH mixed with small amounts of Fe3O4 and γ-Fe2O3. Transmission electronic microscopy (TEM) images show that the core-shell structure forms into a hollow spherical shape after 30 d of aging in aquatic media. The results indicate first that iron ions in the Fe(0) core diffuse outwardly toward the shell, and hollowed-out iron oxide shells emerge. Then, the iron oxide shell collapses and becomes a flaky, acicular-shaped structure. The type and the crystal phase of second iron oxide minerals are vastly different at various aging times. This study helps to explain the patterns of occurrence of specific iron oxides in different natural conditions. Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved. Water - chemistry Iron Compounds - chemistry Iron - chemistry Borohydrides - chemistry Liu, Jing oth Zhang, Wei-Xian oth Enthalten in Chemosphere Kidlington, Oxford : Elsevier Science, 1972 119(2015), Seite 1068-1074 (DE-627)129288586 (DE-600)120089-6 (DE-576)014470187 0045-6535 nnns volume:119 year:2015 pages:1068-1074 http://dx.doi.org/10.1016/j.chemosphere.2014.09.026 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25317915 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 AR 10100 38.32 AVZ 35.00 AVZ AR 119 2015 1068-1074 |
allfieldsGer |
10.1016/j.chemosphere.2014.09.026 doi PQ20160617 (DE-627)OLC1963053362 (DE-599)GBVOLC1963053362 (PRQ)c1625-4cb11405348d748f76a8ada59d6ed6578103edea2cf41cf46a1cd0c1b4d8095e0 (KEY)0012464820150000119000001068transformationandcompositionevolutionofnanoscaleze DE-627 ger DE-627 rakwb eng 333.7 DNB AR 10100 AVZ rvk 38.32 bkl 35.00 bkl Liu, Airong verfasserin aut Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The reactivity of nanoscale zero valent iron (nZVI) toward targeted contaminants is affected by the initial nZVI composition and the iron oxides formed during the aging process in aquatic systems. In this paper, the aging effects of nZVI, prepared using a borohydride reduction method in static water over a period of 90 days (d), are investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy are used to characterize the corrosion products of nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging. The products of nZVI aged for 5 d in static water media are mainly magnetite (Fe3O4) and maghemite (γ-Fe2O3), accompanied by lepidocrocite (γ-FeOOH). For products aged 10 d, XRD data show the formation of ferrihydrite and lepidocrocite. When aged up to 90 d, the products are mainly γ-FeOOH mixed with small amounts of Fe3O4 and γ-Fe2O3. Transmission electronic microscopy (TEM) images show that the core-shell structure forms into a hollow spherical shape after 30 d of aging in aquatic media. The results indicate first that iron ions in the Fe(0) core diffuse outwardly toward the shell, and hollowed-out iron oxide shells emerge. Then, the iron oxide shell collapses and becomes a flaky, acicular-shaped structure. The type and the crystal phase of second iron oxide minerals are vastly different at various aging times. This study helps to explain the patterns of occurrence of specific iron oxides in different natural conditions. Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved. Water - chemistry Iron Compounds - chemistry Iron - chemistry Borohydrides - chemistry Liu, Jing oth Zhang, Wei-Xian oth Enthalten in Chemosphere Kidlington, Oxford : Elsevier Science, 1972 119(2015), Seite 1068-1074 (DE-627)129288586 (DE-600)120089-6 (DE-576)014470187 0045-6535 nnns volume:119 year:2015 pages:1068-1074 http://dx.doi.org/10.1016/j.chemosphere.2014.09.026 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25317915 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 AR 10100 38.32 AVZ 35.00 AVZ AR 119 2015 1068-1074 |
allfieldsSound |
10.1016/j.chemosphere.2014.09.026 doi PQ20160617 (DE-627)OLC1963053362 (DE-599)GBVOLC1963053362 (PRQ)c1625-4cb11405348d748f76a8ada59d6ed6578103edea2cf41cf46a1cd0c1b4d8095e0 (KEY)0012464820150000119000001068transformationandcompositionevolutionofnanoscaleze DE-627 ger DE-627 rakwb eng 333.7 DNB AR 10100 AVZ rvk 38.32 bkl 35.00 bkl Liu, Airong verfasserin aut Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The reactivity of nanoscale zero valent iron (nZVI) toward targeted contaminants is affected by the initial nZVI composition and the iron oxides formed during the aging process in aquatic systems. In this paper, the aging effects of nZVI, prepared using a borohydride reduction method in static water over a period of 90 days (d), are investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy are used to characterize the corrosion products of nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging. The products of nZVI aged for 5 d in static water media are mainly magnetite (Fe3O4) and maghemite (γ-Fe2O3), accompanied by lepidocrocite (γ-FeOOH). For products aged 10 d, XRD data show the formation of ferrihydrite and lepidocrocite. When aged up to 90 d, the products are mainly γ-FeOOH mixed with small amounts of Fe3O4 and γ-Fe2O3. Transmission electronic microscopy (TEM) images show that the core-shell structure forms into a hollow spherical shape after 30 d of aging in aquatic media. The results indicate first that iron ions in the Fe(0) core diffuse outwardly toward the shell, and hollowed-out iron oxide shells emerge. Then, the iron oxide shell collapses and becomes a flaky, acicular-shaped structure. The type and the crystal phase of second iron oxide minerals are vastly different at various aging times. This study helps to explain the patterns of occurrence of specific iron oxides in different natural conditions. Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved. Water - chemistry Iron Compounds - chemistry Iron - chemistry Borohydrides - chemistry Liu, Jing oth Zhang, Wei-Xian oth Enthalten in Chemosphere Kidlington, Oxford : Elsevier Science, 1972 119(2015), Seite 1068-1074 (DE-627)129288586 (DE-600)120089-6 (DE-576)014470187 0045-6535 nnns volume:119 year:2015 pages:1068-1074 http://dx.doi.org/10.1016/j.chemosphere.2014.09.026 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25317915 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 AR 10100 38.32 AVZ 35.00 AVZ AR 119 2015 1068-1074 |
language |
English |
source |
Enthalten in Chemosphere 119(2015), Seite 1068-1074 volume:119 year:2015 pages:1068-1074 |
sourceStr |
Enthalten in Chemosphere 119(2015), Seite 1068-1074 volume:119 year:2015 pages:1068-1074 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Water - chemistry Iron Compounds - chemistry Iron - chemistry Borohydrides - chemistry |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Chemosphere |
authorswithroles_txt_mv |
Liu, Airong @@aut@@ Liu, Jing @@oth@@ Zhang, Wei-Xian @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129288586 |
dewey-sort |
3333.7 |
id |
OLC1963053362 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963053362</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508074850.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemosphere.2014.09.026</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963053362</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963053362</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1625-4cb11405348d748f76a8ada59d6ed6578103edea2cf41cf46a1cd0c1b4d8095e0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0012464820150000119000001068transformationandcompositionevolutionofnanoscaleze</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AR 10100</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Airong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The reactivity of nanoscale zero valent iron (nZVI) toward targeted contaminants is affected by the initial nZVI composition and the iron oxides formed during the aging process in aquatic systems. In this paper, the aging effects of nZVI, prepared using a borohydride reduction method in static water over a period of 90 days (d), are investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy are used to characterize the corrosion products of nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging. The products of nZVI aged for 5 d in static water media are mainly magnetite (Fe3O4) and maghemite (γ-Fe2O3), accompanied by lepidocrocite (γ-FeOOH). For products aged 10 d, XRD data show the formation of ferrihydrite and lepidocrocite. When aged up to 90 d, the products are mainly γ-FeOOH mixed with small amounts of Fe3O4 and γ-Fe2O3. Transmission electronic microscopy (TEM) images show that the core-shell structure forms into a hollow spherical shape after 30 d of aging in aquatic media. The results indicate first that iron ions in the Fe(0) core diffuse outwardly toward the shell, and hollowed-out iron oxide shells emerge. Then, the iron oxide shell collapses and becomes a flaky, acicular-shaped structure. The type and the crystal phase of second iron oxide minerals are vastly different at various aging times. This study helps to explain the patterns of occurrence of specific iron oxides in different natural conditions.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron Compounds - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Borohydrides - chemistry</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wei-Xian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemosphere</subfield><subfield code="d">Kidlington, Oxford : Elsevier Science, 1972</subfield><subfield code="g">119(2015), Seite 1068-1074</subfield><subfield code="w">(DE-627)129288586</subfield><subfield code="w">(DE-600)120089-6</subfield><subfield code="w">(DE-576)014470187</subfield><subfield code="x">0045-6535</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:119</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:1068-1074</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.chemosphere.2014.09.026</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25317915</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">AR 10100</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.32</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">119</subfield><subfield code="j">2015</subfield><subfield code="h">1068-1074</subfield></datafield></record></collection>
|
author |
Liu, Airong |
spellingShingle |
Liu, Airong ddc 333.7 rvk AR 10100 bkl 38.32 bkl 35.00 misc Water - chemistry misc Iron Compounds - chemistry misc Iron - chemistry misc Borohydrides - chemistry Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water |
authorStr |
Liu, Airong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129288586 |
format |
Article |
dewey-ones |
333 - Economics of land & energy |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0045-6535 |
topic_title |
333.7 DNB AR 10100 AVZ rvk 38.32 bkl 35.00 bkl Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water Water - chemistry Iron Compounds - chemistry Iron - chemistry Borohydrides - chemistry |
topic |
ddc 333.7 rvk AR 10100 bkl 38.32 bkl 35.00 misc Water - chemistry misc Iron Compounds - chemistry misc Iron - chemistry misc Borohydrides - chemistry |
topic_unstemmed |
ddc 333.7 rvk AR 10100 bkl 38.32 bkl 35.00 misc Water - chemistry misc Iron Compounds - chemistry misc Iron - chemistry misc Borohydrides - chemistry |
topic_browse |
ddc 333.7 rvk AR 10100 bkl 38.32 bkl 35.00 misc Water - chemistry misc Iron Compounds - chemistry misc Iron - chemistry misc Borohydrides - chemistry |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j l jl w x z wxz |
hierarchy_parent_title |
Chemosphere |
hierarchy_parent_id |
129288586 |
dewey-tens |
330 - Economics |
hierarchy_top_title |
Chemosphere |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129288586 (DE-600)120089-6 (DE-576)014470187 |
title |
Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water |
ctrlnum |
(DE-627)OLC1963053362 (DE-599)GBVOLC1963053362 (PRQ)c1625-4cb11405348d748f76a8ada59d6ed6578103edea2cf41cf46a1cd0c1b4d8095e0 (KEY)0012464820150000119000001068transformationandcompositionevolutionofnanoscaleze |
title_full |
Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water |
author_sort |
Liu, Airong |
journal |
Chemosphere |
journalStr |
Chemosphere |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1068 |
author_browse |
Liu, Airong |
container_volume |
119 |
class |
333.7 DNB AR 10100 AVZ rvk 38.32 bkl 35.00 bkl |
format_se |
Aufsätze |
author-letter |
Liu, Airong |
doi_str_mv |
10.1016/j.chemosphere.2014.09.026 |
dewey-full |
333.7 |
title_sort |
transformation and composition evolution of nanoscale zero valent iron (nzvi) synthesized by borohydride reduction in static water |
title_auth |
Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water |
abstract |
The reactivity of nanoscale zero valent iron (nZVI) toward targeted contaminants is affected by the initial nZVI composition and the iron oxides formed during the aging process in aquatic systems. In this paper, the aging effects of nZVI, prepared using a borohydride reduction method in static water over a period of 90 days (d), are investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy are used to characterize the corrosion products of nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging. The products of nZVI aged for 5 d in static water media are mainly magnetite (Fe3O4) and maghemite (γ-Fe2O3), accompanied by lepidocrocite (γ-FeOOH). For products aged 10 d, XRD data show the formation of ferrihydrite and lepidocrocite. When aged up to 90 d, the products are mainly γ-FeOOH mixed with small amounts of Fe3O4 and γ-Fe2O3. Transmission electronic microscopy (TEM) images show that the core-shell structure forms into a hollow spherical shape after 30 d of aging in aquatic media. The results indicate first that iron ions in the Fe(0) core diffuse outwardly toward the shell, and hollowed-out iron oxide shells emerge. Then, the iron oxide shell collapses and becomes a flaky, acicular-shaped structure. The type and the crystal phase of second iron oxide minerals are vastly different at various aging times. This study helps to explain the patterns of occurrence of specific iron oxides in different natural conditions. |
abstractGer |
The reactivity of nanoscale zero valent iron (nZVI) toward targeted contaminants is affected by the initial nZVI composition and the iron oxides formed during the aging process in aquatic systems. In this paper, the aging effects of nZVI, prepared using a borohydride reduction method in static water over a period of 90 days (d), are investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy are used to characterize the corrosion products of nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging. The products of nZVI aged for 5 d in static water media are mainly magnetite (Fe3O4) and maghemite (γ-Fe2O3), accompanied by lepidocrocite (γ-FeOOH). For products aged 10 d, XRD data show the formation of ferrihydrite and lepidocrocite. When aged up to 90 d, the products are mainly γ-FeOOH mixed with small amounts of Fe3O4 and γ-Fe2O3. Transmission electronic microscopy (TEM) images show that the core-shell structure forms into a hollow spherical shape after 30 d of aging in aquatic media. The results indicate first that iron ions in the Fe(0) core diffuse outwardly toward the shell, and hollowed-out iron oxide shells emerge. Then, the iron oxide shell collapses and becomes a flaky, acicular-shaped structure. The type and the crystal phase of second iron oxide minerals are vastly different at various aging times. This study helps to explain the patterns of occurrence of specific iron oxides in different natural conditions. |
abstract_unstemmed |
The reactivity of nanoscale zero valent iron (nZVI) toward targeted contaminants is affected by the initial nZVI composition and the iron oxides formed during the aging process in aquatic systems. In this paper, the aging effects of nZVI, prepared using a borohydride reduction method in static water over a period of 90 days (d), are investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy are used to characterize the corrosion products of nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging. The products of nZVI aged for 5 d in static water media are mainly magnetite (Fe3O4) and maghemite (γ-Fe2O3), accompanied by lepidocrocite (γ-FeOOH). For products aged 10 d, XRD data show the formation of ferrihydrite and lepidocrocite. When aged up to 90 d, the products are mainly γ-FeOOH mixed with small amounts of Fe3O4 and γ-Fe2O3. Transmission electronic microscopy (TEM) images show that the core-shell structure forms into a hollow spherical shape after 30 d of aging in aquatic media. The results indicate first that iron ions in the Fe(0) core diffuse outwardly toward the shell, and hollowed-out iron oxide shells emerge. Then, the iron oxide shell collapses and becomes a flaky, acicular-shaped structure. The type and the crystal phase of second iron oxide minerals are vastly different at various aging times. This study helps to explain the patterns of occurrence of specific iron oxides in different natural conditions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 |
title_short |
Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water |
url |
http://dx.doi.org/10.1016/j.chemosphere.2014.09.026 http://www.ncbi.nlm.nih.gov/pubmed/25317915 |
remote_bool |
false |
author2 |
Liu, Jing Zhang, Wei-Xian |
author2Str |
Liu, Jing Zhang, Wei-Xian |
ppnlink |
129288586 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.chemosphere.2014.09.026 |
up_date |
2024-07-04T04:52:04.614Z |
_version_ |
1803622782973509632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963053362</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508074850.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemosphere.2014.09.026</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963053362</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963053362</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1625-4cb11405348d748f76a8ada59d6ed6578103edea2cf41cf46a1cd0c1b4d8095e0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0012464820150000119000001068transformationandcompositionevolutionofnanoscaleze</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AR 10100</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Airong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The reactivity of nanoscale zero valent iron (nZVI) toward targeted contaminants is affected by the initial nZVI composition and the iron oxides formed during the aging process in aquatic systems. In this paper, the aging effects of nZVI, prepared using a borohydride reduction method in static water over a period of 90 days (d), are investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy are used to characterize the corrosion products of nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging. The products of nZVI aged for 5 d in static water media are mainly magnetite (Fe3O4) and maghemite (γ-Fe2O3), accompanied by lepidocrocite (γ-FeOOH). For products aged 10 d, XRD data show the formation of ferrihydrite and lepidocrocite. When aged up to 90 d, the products are mainly γ-FeOOH mixed with small amounts of Fe3O4 and γ-Fe2O3. Transmission electronic microscopy (TEM) images show that the core-shell structure forms into a hollow spherical shape after 30 d of aging in aquatic media. The results indicate first that iron ions in the Fe(0) core diffuse outwardly toward the shell, and hollowed-out iron oxide shells emerge. Then, the iron oxide shell collapses and becomes a flaky, acicular-shaped structure. The type and the crystal phase of second iron oxide minerals are vastly different at various aging times. This study helps to explain the patterns of occurrence of specific iron oxides in different natural conditions.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron Compounds - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Borohydrides - chemistry</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wei-Xian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemosphere</subfield><subfield code="d">Kidlington, Oxford : Elsevier Science, 1972</subfield><subfield code="g">119(2015), Seite 1068-1074</subfield><subfield code="w">(DE-627)129288586</subfield><subfield code="w">(DE-600)120089-6</subfield><subfield code="w">(DE-576)014470187</subfield><subfield code="x">0045-6535</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:119</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:1068-1074</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.chemosphere.2014.09.026</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25317915</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">AR 10100</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.32</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">119</subfield><subfield code="j">2015</subfield><subfield code="h">1068-1074</subfield></datafield></record></collection>
|
score |
7.4000645 |