Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging
Commercially-available shear wave imaging systems measure group shear wave speed (SWS) and often report stiffness parameters applying purely elastic material models. Soft tissues, however, are viscoelastic, and higher-order material models are necessary to characterize the dispersion associated with...
Ausführliche Beschreibung
Autor*in: |
Nightingale, Kathryn R [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on ultrasonics, ferroelectrics, and frequency control - New York, NY : IEEE, 1986, 62(2015), 1, Seite 165-175 |
---|---|
Übergeordnetes Werk: |
volume:62 ; year:2015 ; number:1 ; pages:165-175 |
Links: |
---|
DOI / URN: |
10.1109/TUFFC.2014.006653 |
---|
Katalog-ID: |
OLC196315049X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC196315049X | ||
003 | DE-627 | ||
005 | 20230515234708.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TUFFC.2014.006653 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC196315049X | ||
035 | |a (DE-599)GBVOLC196315049X | ||
035 | |a (PRQ)c2636-6c31ab936ca46561982e08f3827d9909fffd5a306d120b7865b51a1da4ef95220 | ||
035 | |a (KEY)0013324820150000062000100165derivationandanalysisofviscoelasticpropertiesinhum | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 520 |a 620 |a 530 |q DNB |
100 | 1 | |a Nightingale, Kathryn R |e verfasserin |4 aut | |
245 | 1 | 0 | |a Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Commercially-available shear wave imaging systems measure group shear wave speed (SWS) and often report stiffness parameters applying purely elastic material models. Soft tissues, however, are viscoelastic, and higher-order material models are necessary to characterize the dispersion associated with broadband shear waves. In this paper, we describe a robust, model-based algorithm and use a linear dispersion model to perform shear wave dispersion analysis in traditionally difficult-to-image subjects. In a cohort of 135 non-alcoholic fatty liver disease patients, we compare the performance of group SWS with dispersion analysis-derived phase velocity c(200 Hz) and dispersion slope dc/df parameters to stage hepatic fibrosis and steatosis. Area under the ROC curve (AUROC) analysis demonstrates correlation between all parameters [group SWS, c(200 Hz), and, to a lesser extent dc/df ] and fibrosis stage, whereas no correlation was observed between steatosis stage and any of the material parameters. Interestingly, optimal AUROC threshold SWS values separating advanced liver fibrosis (≥F3) from mild-to-moderate fibrosis (≤F2) were shown to be frequency-dependent, and to increase from 1.8 to 3.3 m/s over the 0 to 400 Hz shear wave frequency range. | ||
650 | 4 | |a dispersion slope parameters | |
650 | 4 | |a group shear wave speed performance | |
650 | 4 | |a Materials | |
650 | 4 | |a stiffness parameters | |
650 | 4 | |a hepatic steatosis staging | |
650 | 4 | |a soft tissues | |
650 | 4 | |a viscoelastic properties | |
650 | 4 | |a broadband shear waves | |
650 | 4 | |a elastic waves | |
650 | 4 | |a elastic constants | |
650 | 4 | |a optimal AUROC threshold shear wave speed | |
650 | 4 | |a higher-order material models | |
650 | 4 | |a model-based algorithm | |
650 | 4 | |a dispersion analysis-derived phase velocity | |
650 | 4 | |a shear wave dispersion analysis | |
650 | 4 | |a frequency 0 Hz to 400 Hz | |
650 | 4 | |a Data models | |
650 | 4 | |a Acoustics | |
650 | 4 | |a biomechanics | |
650 | 4 | |a shear wave imaging systems | |
650 | 4 | |a hepatic fibrosis staging | |
650 | 4 | |a viscoelasticity | |
650 | 4 | |a Frequency measurement | |
650 | 4 | |a human liver | |
650 | 4 | |a ROC curve | |
650 | 4 | |a shear wave frequency | |
650 | 4 | |a liver | |
650 | 4 | |a purely elastic material models | |
650 | 4 | |a Analytical models | |
650 | 4 | |a linear dispersion model | |
650 | 4 | |a non-alcoholic fatty liver disease patients | |
650 | 4 | |a Dispersion | |
650 | 4 | |a Medical research | |
650 | 4 | |a Liver cirrhosis | |
650 | 4 | |a Fatty Liver - physiopathology | |
650 | 4 | |a Elasticity Imaging Techniques - methods | |
650 | 4 | |a Liver Cirrhosis - ultrasonography | |
650 | 4 | |a Fatty Liver - ultrasonography | |
650 | 4 | |a Liver - ultrasonography | |
650 | 4 | |a Liver Cirrhosis - physiopathology | |
650 | 4 | |a Liver - physiology | |
650 | 4 | |a Elasticity - physiology | |
700 | 1 | |a Rouze, Ned C |4 oth | |
700 | 1 | |a Rosenzweig, Stephen J |4 oth | |
700 | 1 | |a Wang, Michael H |4 oth | |
700 | 1 | |a Abdelmalek, Manal F |4 oth | |
700 | 1 | |a Guy, Cynthia D |4 oth | |
700 | 1 | |a Palmeri, Mark L |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control |d New York, NY : IEEE, 1986 |g 62(2015), 1, Seite 165-175 |w (DE-627)129191442 |w (DE-600)53308-7 |w (DE-576)014456540 |x 0885-3010 |7 nnns |
773 | 1 | 8 | |g volume:62 |g year:2015 |g number:1 |g pages:165-175 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TUFFC.2014.006653 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7002935 |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25585400 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1645015444 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_95 | ||
951 | |a AR | ||
952 | |d 62 |j 2015 |e 1 |h 165-175 |
author_variant |
k r n kr krn |
---|---|
matchkey_str |
article:08853010:2015----::eiainnaayiovsolsipoeteihmnieipcofeuny |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1109/TUFFC.2014.006653 doi PQ20160617 (DE-627)OLC196315049X (DE-599)GBVOLC196315049X (PRQ)c2636-6c31ab936ca46561982e08f3827d9909fffd5a306d120b7865b51a1da4ef95220 (KEY)0013324820150000062000100165derivationandanalysisofviscoelasticpropertiesinhum DE-627 ger DE-627 rakwb eng 520 620 530 DNB Nightingale, Kathryn R verfasserin aut Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Commercially-available shear wave imaging systems measure group shear wave speed (SWS) and often report stiffness parameters applying purely elastic material models. Soft tissues, however, are viscoelastic, and higher-order material models are necessary to characterize the dispersion associated with broadband shear waves. In this paper, we describe a robust, model-based algorithm and use a linear dispersion model to perform shear wave dispersion analysis in traditionally difficult-to-image subjects. In a cohort of 135 non-alcoholic fatty liver disease patients, we compare the performance of group SWS with dispersion analysis-derived phase velocity c(200 Hz) and dispersion slope dc/df parameters to stage hepatic fibrosis and steatosis. Area under the ROC curve (AUROC) analysis demonstrates correlation between all parameters [group SWS, c(200 Hz), and, to a lesser extent dc/df ] and fibrosis stage, whereas no correlation was observed between steatosis stage and any of the material parameters. Interestingly, optimal AUROC threshold SWS values separating advanced liver fibrosis (≥F3) from mild-to-moderate fibrosis (≤F2) were shown to be frequency-dependent, and to increase from 1.8 to 3.3 m/s over the 0 to 400 Hz shear wave frequency range. dispersion slope parameters group shear wave speed performance Materials stiffness parameters hepatic steatosis staging soft tissues viscoelastic properties broadband shear waves elastic waves elastic constants optimal AUROC threshold shear wave speed higher-order material models model-based algorithm dispersion analysis-derived phase velocity shear wave dispersion analysis frequency 0 Hz to 400 Hz Data models Acoustics biomechanics shear wave imaging systems hepatic fibrosis staging viscoelasticity Frequency measurement human liver ROC curve shear wave frequency liver purely elastic material models Analytical models linear dispersion model non-alcoholic fatty liver disease patients Dispersion Medical research Liver cirrhosis Fatty Liver - physiopathology Elasticity Imaging Techniques - methods Liver Cirrhosis - ultrasonography Fatty Liver - ultrasonography Liver - ultrasonography Liver Cirrhosis - physiopathology Liver - physiology Elasticity - physiology Rouze, Ned C oth Rosenzweig, Stephen J oth Wang, Michael H oth Abdelmalek, Manal F oth Guy, Cynthia D oth Palmeri, Mark L oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 62(2015), 1, Seite 165-175 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:62 year:2015 number:1 pages:165-175 http://dx.doi.org/10.1109/TUFFC.2014.006653 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7002935 http://www.ncbi.nlm.nih.gov/pubmed/25585400 http://search.proquest.com/docview/1645015444 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_95 AR 62 2015 1 165-175 |
spelling |
10.1109/TUFFC.2014.006653 doi PQ20160617 (DE-627)OLC196315049X (DE-599)GBVOLC196315049X (PRQ)c2636-6c31ab936ca46561982e08f3827d9909fffd5a306d120b7865b51a1da4ef95220 (KEY)0013324820150000062000100165derivationandanalysisofviscoelasticpropertiesinhum DE-627 ger DE-627 rakwb eng 520 620 530 DNB Nightingale, Kathryn R verfasserin aut Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Commercially-available shear wave imaging systems measure group shear wave speed (SWS) and often report stiffness parameters applying purely elastic material models. Soft tissues, however, are viscoelastic, and higher-order material models are necessary to characterize the dispersion associated with broadband shear waves. In this paper, we describe a robust, model-based algorithm and use a linear dispersion model to perform shear wave dispersion analysis in traditionally difficult-to-image subjects. In a cohort of 135 non-alcoholic fatty liver disease patients, we compare the performance of group SWS with dispersion analysis-derived phase velocity c(200 Hz) and dispersion slope dc/df parameters to stage hepatic fibrosis and steatosis. Area under the ROC curve (AUROC) analysis demonstrates correlation between all parameters [group SWS, c(200 Hz), and, to a lesser extent dc/df ] and fibrosis stage, whereas no correlation was observed between steatosis stage and any of the material parameters. Interestingly, optimal AUROC threshold SWS values separating advanced liver fibrosis (≥F3) from mild-to-moderate fibrosis (≤F2) were shown to be frequency-dependent, and to increase from 1.8 to 3.3 m/s over the 0 to 400 Hz shear wave frequency range. dispersion slope parameters group shear wave speed performance Materials stiffness parameters hepatic steatosis staging soft tissues viscoelastic properties broadband shear waves elastic waves elastic constants optimal AUROC threshold shear wave speed higher-order material models model-based algorithm dispersion analysis-derived phase velocity shear wave dispersion analysis frequency 0 Hz to 400 Hz Data models Acoustics biomechanics shear wave imaging systems hepatic fibrosis staging viscoelasticity Frequency measurement human liver ROC curve shear wave frequency liver purely elastic material models Analytical models linear dispersion model non-alcoholic fatty liver disease patients Dispersion Medical research Liver cirrhosis Fatty Liver - physiopathology Elasticity Imaging Techniques - methods Liver Cirrhosis - ultrasonography Fatty Liver - ultrasonography Liver - ultrasonography Liver Cirrhosis - physiopathology Liver - physiology Elasticity - physiology Rouze, Ned C oth Rosenzweig, Stephen J oth Wang, Michael H oth Abdelmalek, Manal F oth Guy, Cynthia D oth Palmeri, Mark L oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 62(2015), 1, Seite 165-175 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:62 year:2015 number:1 pages:165-175 http://dx.doi.org/10.1109/TUFFC.2014.006653 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7002935 http://www.ncbi.nlm.nih.gov/pubmed/25585400 http://search.proquest.com/docview/1645015444 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_95 AR 62 2015 1 165-175 |
allfields_unstemmed |
10.1109/TUFFC.2014.006653 doi PQ20160617 (DE-627)OLC196315049X (DE-599)GBVOLC196315049X (PRQ)c2636-6c31ab936ca46561982e08f3827d9909fffd5a306d120b7865b51a1da4ef95220 (KEY)0013324820150000062000100165derivationandanalysisofviscoelasticpropertiesinhum DE-627 ger DE-627 rakwb eng 520 620 530 DNB Nightingale, Kathryn R verfasserin aut Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Commercially-available shear wave imaging systems measure group shear wave speed (SWS) and often report stiffness parameters applying purely elastic material models. Soft tissues, however, are viscoelastic, and higher-order material models are necessary to characterize the dispersion associated with broadband shear waves. In this paper, we describe a robust, model-based algorithm and use a linear dispersion model to perform shear wave dispersion analysis in traditionally difficult-to-image subjects. In a cohort of 135 non-alcoholic fatty liver disease patients, we compare the performance of group SWS with dispersion analysis-derived phase velocity c(200 Hz) and dispersion slope dc/df parameters to stage hepatic fibrosis and steatosis. Area under the ROC curve (AUROC) analysis demonstrates correlation between all parameters [group SWS, c(200 Hz), and, to a lesser extent dc/df ] and fibrosis stage, whereas no correlation was observed between steatosis stage and any of the material parameters. Interestingly, optimal AUROC threshold SWS values separating advanced liver fibrosis (≥F3) from mild-to-moderate fibrosis (≤F2) were shown to be frequency-dependent, and to increase from 1.8 to 3.3 m/s over the 0 to 400 Hz shear wave frequency range. dispersion slope parameters group shear wave speed performance Materials stiffness parameters hepatic steatosis staging soft tissues viscoelastic properties broadband shear waves elastic waves elastic constants optimal AUROC threshold shear wave speed higher-order material models model-based algorithm dispersion analysis-derived phase velocity shear wave dispersion analysis frequency 0 Hz to 400 Hz Data models Acoustics biomechanics shear wave imaging systems hepatic fibrosis staging viscoelasticity Frequency measurement human liver ROC curve shear wave frequency liver purely elastic material models Analytical models linear dispersion model non-alcoholic fatty liver disease patients Dispersion Medical research Liver cirrhosis Fatty Liver - physiopathology Elasticity Imaging Techniques - methods Liver Cirrhosis - ultrasonography Fatty Liver - ultrasonography Liver - ultrasonography Liver Cirrhosis - physiopathology Liver - physiology Elasticity - physiology Rouze, Ned C oth Rosenzweig, Stephen J oth Wang, Michael H oth Abdelmalek, Manal F oth Guy, Cynthia D oth Palmeri, Mark L oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 62(2015), 1, Seite 165-175 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:62 year:2015 number:1 pages:165-175 http://dx.doi.org/10.1109/TUFFC.2014.006653 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7002935 http://www.ncbi.nlm.nih.gov/pubmed/25585400 http://search.proquest.com/docview/1645015444 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_95 AR 62 2015 1 165-175 |
allfieldsGer |
10.1109/TUFFC.2014.006653 doi PQ20160617 (DE-627)OLC196315049X (DE-599)GBVOLC196315049X (PRQ)c2636-6c31ab936ca46561982e08f3827d9909fffd5a306d120b7865b51a1da4ef95220 (KEY)0013324820150000062000100165derivationandanalysisofviscoelasticpropertiesinhum DE-627 ger DE-627 rakwb eng 520 620 530 DNB Nightingale, Kathryn R verfasserin aut Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Commercially-available shear wave imaging systems measure group shear wave speed (SWS) and often report stiffness parameters applying purely elastic material models. Soft tissues, however, are viscoelastic, and higher-order material models are necessary to characterize the dispersion associated with broadband shear waves. In this paper, we describe a robust, model-based algorithm and use a linear dispersion model to perform shear wave dispersion analysis in traditionally difficult-to-image subjects. In a cohort of 135 non-alcoholic fatty liver disease patients, we compare the performance of group SWS with dispersion analysis-derived phase velocity c(200 Hz) and dispersion slope dc/df parameters to stage hepatic fibrosis and steatosis. Area under the ROC curve (AUROC) analysis demonstrates correlation between all parameters [group SWS, c(200 Hz), and, to a lesser extent dc/df ] and fibrosis stage, whereas no correlation was observed between steatosis stage and any of the material parameters. Interestingly, optimal AUROC threshold SWS values separating advanced liver fibrosis (≥F3) from mild-to-moderate fibrosis (≤F2) were shown to be frequency-dependent, and to increase from 1.8 to 3.3 m/s over the 0 to 400 Hz shear wave frequency range. dispersion slope parameters group shear wave speed performance Materials stiffness parameters hepatic steatosis staging soft tissues viscoelastic properties broadband shear waves elastic waves elastic constants optimal AUROC threshold shear wave speed higher-order material models model-based algorithm dispersion analysis-derived phase velocity shear wave dispersion analysis frequency 0 Hz to 400 Hz Data models Acoustics biomechanics shear wave imaging systems hepatic fibrosis staging viscoelasticity Frequency measurement human liver ROC curve shear wave frequency liver purely elastic material models Analytical models linear dispersion model non-alcoholic fatty liver disease patients Dispersion Medical research Liver cirrhosis Fatty Liver - physiopathology Elasticity Imaging Techniques - methods Liver Cirrhosis - ultrasonography Fatty Liver - ultrasonography Liver - ultrasonography Liver Cirrhosis - physiopathology Liver - physiology Elasticity - physiology Rouze, Ned C oth Rosenzweig, Stephen J oth Wang, Michael H oth Abdelmalek, Manal F oth Guy, Cynthia D oth Palmeri, Mark L oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 62(2015), 1, Seite 165-175 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:62 year:2015 number:1 pages:165-175 http://dx.doi.org/10.1109/TUFFC.2014.006653 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7002935 http://www.ncbi.nlm.nih.gov/pubmed/25585400 http://search.proquest.com/docview/1645015444 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_95 AR 62 2015 1 165-175 |
allfieldsSound |
10.1109/TUFFC.2014.006653 doi PQ20160617 (DE-627)OLC196315049X (DE-599)GBVOLC196315049X (PRQ)c2636-6c31ab936ca46561982e08f3827d9909fffd5a306d120b7865b51a1da4ef95220 (KEY)0013324820150000062000100165derivationandanalysisofviscoelasticpropertiesinhum DE-627 ger DE-627 rakwb eng 520 620 530 DNB Nightingale, Kathryn R verfasserin aut Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Commercially-available shear wave imaging systems measure group shear wave speed (SWS) and often report stiffness parameters applying purely elastic material models. Soft tissues, however, are viscoelastic, and higher-order material models are necessary to characterize the dispersion associated with broadband shear waves. In this paper, we describe a robust, model-based algorithm and use a linear dispersion model to perform shear wave dispersion analysis in traditionally difficult-to-image subjects. In a cohort of 135 non-alcoholic fatty liver disease patients, we compare the performance of group SWS with dispersion analysis-derived phase velocity c(200 Hz) and dispersion slope dc/df parameters to stage hepatic fibrosis and steatosis. Area under the ROC curve (AUROC) analysis demonstrates correlation between all parameters [group SWS, c(200 Hz), and, to a lesser extent dc/df ] and fibrosis stage, whereas no correlation was observed between steatosis stage and any of the material parameters. Interestingly, optimal AUROC threshold SWS values separating advanced liver fibrosis (≥F3) from mild-to-moderate fibrosis (≤F2) were shown to be frequency-dependent, and to increase from 1.8 to 3.3 m/s over the 0 to 400 Hz shear wave frequency range. dispersion slope parameters group shear wave speed performance Materials stiffness parameters hepatic steatosis staging soft tissues viscoelastic properties broadband shear waves elastic waves elastic constants optimal AUROC threshold shear wave speed higher-order material models model-based algorithm dispersion analysis-derived phase velocity shear wave dispersion analysis frequency 0 Hz to 400 Hz Data models Acoustics biomechanics shear wave imaging systems hepatic fibrosis staging viscoelasticity Frequency measurement human liver ROC curve shear wave frequency liver purely elastic material models Analytical models linear dispersion model non-alcoholic fatty liver disease patients Dispersion Medical research Liver cirrhosis Fatty Liver - physiopathology Elasticity Imaging Techniques - methods Liver Cirrhosis - ultrasonography Fatty Liver - ultrasonography Liver - ultrasonography Liver Cirrhosis - physiopathology Liver - physiology Elasticity - physiology Rouze, Ned C oth Rosenzweig, Stephen J oth Wang, Michael H oth Abdelmalek, Manal F oth Guy, Cynthia D oth Palmeri, Mark L oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 62(2015), 1, Seite 165-175 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:62 year:2015 number:1 pages:165-175 http://dx.doi.org/10.1109/TUFFC.2014.006653 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7002935 http://www.ncbi.nlm.nih.gov/pubmed/25585400 http://search.proquest.com/docview/1645015444 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_95 AR 62 2015 1 165-175 |
language |
English |
source |
Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control 62(2015), 1, Seite 165-175 volume:62 year:2015 number:1 pages:165-175 |
sourceStr |
Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control 62(2015), 1, Seite 165-175 volume:62 year:2015 number:1 pages:165-175 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
dispersion slope parameters group shear wave speed performance Materials stiffness parameters hepatic steatosis staging soft tissues viscoelastic properties broadband shear waves elastic waves elastic constants optimal AUROC threshold shear wave speed higher-order material models model-based algorithm dispersion analysis-derived phase velocity shear wave dispersion analysis frequency 0 Hz to 400 Hz Data models Acoustics biomechanics shear wave imaging systems hepatic fibrosis staging viscoelasticity Frequency measurement human liver ROC curve shear wave frequency liver purely elastic material models Analytical models linear dispersion model non-alcoholic fatty liver disease patients Dispersion Medical research Liver cirrhosis Fatty Liver - physiopathology Elasticity Imaging Techniques - methods Liver Cirrhosis - ultrasonography Fatty Liver - ultrasonography Liver - ultrasonography Liver Cirrhosis - physiopathology Liver - physiology Elasticity - physiology |
dewey-raw |
520 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
authorswithroles_txt_mv |
Nightingale, Kathryn R @@aut@@ Rouze, Ned C @@oth@@ Rosenzweig, Stephen J @@oth@@ Wang, Michael H @@oth@@ Abdelmalek, Manal F @@oth@@ Guy, Cynthia D @@oth@@ Palmeri, Mark L @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129191442 |
dewey-sort |
3520 |
id |
OLC196315049X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC196315049X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230515234708.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TUFFC.2014.006653</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC196315049X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC196315049X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2636-6c31ab936ca46561982e08f3827d9909fffd5a306d120b7865b51a1da4ef95220</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0013324820150000062000100165derivationandanalysisofviscoelasticpropertiesinhum</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nightingale, Kathryn R</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Commercially-available shear wave imaging systems measure group shear wave speed (SWS) and often report stiffness parameters applying purely elastic material models. Soft tissues, however, are viscoelastic, and higher-order material models are necessary to characterize the dispersion associated with broadband shear waves. In this paper, we describe a robust, model-based algorithm and use a linear dispersion model to perform shear wave dispersion analysis in traditionally difficult-to-image subjects. In a cohort of 135 non-alcoholic fatty liver disease patients, we compare the performance of group SWS with dispersion analysis-derived phase velocity c(200 Hz) and dispersion slope dc/df parameters to stage hepatic fibrosis and steatosis. Area under the ROC curve (AUROC) analysis demonstrates correlation between all parameters [group SWS, c(200 Hz), and, to a lesser extent dc/df ] and fibrosis stage, whereas no correlation was observed between steatosis stage and any of the material parameters. Interestingly, optimal AUROC threshold SWS values separating advanced liver fibrosis (≥F3) from mild-to-moderate fibrosis (≤F2) were shown to be frequency-dependent, and to increase from 1.8 to 3.3 m/s over the 0 to 400 Hz shear wave frequency range.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dispersion slope parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">group shear wave speed performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stiffness parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hepatic steatosis staging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soft tissues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">viscoelastic properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">broadband shear waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">elastic waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">elastic constants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimal AUROC threshold shear wave speed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">higher-order material models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model-based algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dispersion analysis-derived phase velocity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shear wave dispersion analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency 0 Hz to 400 Hz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shear wave imaging systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hepatic fibrosis staging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">viscoelasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">human liver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ROC curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shear wave frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">liver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">purely elastic material models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear dispersion model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-alcoholic fatty liver disease patients</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dispersion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liver cirrhosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatty Liver - physiopathology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elasticity Imaging Techniques - methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liver Cirrhosis - ultrasonography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatty Liver - ultrasonography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liver - ultrasonography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liver Cirrhosis - physiopathology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liver - physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elasticity - physiology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rouze, Ned C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosenzweig, Stephen J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Michael H</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abdelmalek, Manal F</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guy, Cynthia D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palmeri, Mark L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on ultrasonics, ferroelectrics, and frequency control</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">62(2015), 1, Seite 165-175</subfield><subfield code="w">(DE-627)129191442</subfield><subfield code="w">(DE-600)53308-7</subfield><subfield code="w">(DE-576)014456540</subfield><subfield code="x">0885-3010</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:165-175</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TUFFC.2014.006653</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7002935</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25585400</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1645015444</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">165-175</subfield></datafield></record></collection>
|
author |
Nightingale, Kathryn R |
spellingShingle |
Nightingale, Kathryn R ddc 520 misc dispersion slope parameters misc group shear wave speed performance misc Materials misc stiffness parameters misc hepatic steatosis staging misc soft tissues misc viscoelastic properties misc broadband shear waves misc elastic waves misc elastic constants misc optimal AUROC threshold shear wave speed misc higher-order material models misc model-based algorithm misc dispersion analysis-derived phase velocity misc shear wave dispersion analysis misc frequency 0 Hz to 400 Hz misc Data models misc Acoustics misc biomechanics misc shear wave imaging systems misc hepatic fibrosis staging misc viscoelasticity misc Frequency measurement misc human liver misc ROC curve misc shear wave frequency misc liver misc purely elastic material models misc Analytical models misc linear dispersion model misc non-alcoholic fatty liver disease patients misc Dispersion misc Medical research misc Liver cirrhosis misc Fatty Liver - physiopathology misc Elasticity Imaging Techniques - methods misc Liver Cirrhosis - ultrasonography misc Fatty Liver - ultrasonography misc Liver - ultrasonography misc Liver Cirrhosis - physiopathology misc Liver - physiology misc Elasticity - physiology Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging |
authorStr |
Nightingale, Kathryn R |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129191442 |
format |
Article |
dewey-ones |
520 - Astronomy & allied sciences 620 - Engineering & allied operations 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0885-3010 |
topic_title |
520 620 530 DNB Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging dispersion slope parameters group shear wave speed performance Materials stiffness parameters hepatic steatosis staging soft tissues viscoelastic properties broadband shear waves elastic waves elastic constants optimal AUROC threshold shear wave speed higher-order material models model-based algorithm dispersion analysis-derived phase velocity shear wave dispersion analysis frequency 0 Hz to 400 Hz Data models Acoustics biomechanics shear wave imaging systems hepatic fibrosis staging viscoelasticity Frequency measurement human liver ROC curve shear wave frequency liver purely elastic material models Analytical models linear dispersion model non-alcoholic fatty liver disease patients Dispersion Medical research Liver cirrhosis Fatty Liver - physiopathology Elasticity Imaging Techniques - methods Liver Cirrhosis - ultrasonography Fatty Liver - ultrasonography Liver - ultrasonography Liver Cirrhosis - physiopathology Liver - physiology Elasticity - physiology |
topic |
ddc 520 misc dispersion slope parameters misc group shear wave speed performance misc Materials misc stiffness parameters misc hepatic steatosis staging misc soft tissues misc viscoelastic properties misc broadband shear waves misc elastic waves misc elastic constants misc optimal AUROC threshold shear wave speed misc higher-order material models misc model-based algorithm misc dispersion analysis-derived phase velocity misc shear wave dispersion analysis misc frequency 0 Hz to 400 Hz misc Data models misc Acoustics misc biomechanics misc shear wave imaging systems misc hepatic fibrosis staging misc viscoelasticity misc Frequency measurement misc human liver misc ROC curve misc shear wave frequency misc liver misc purely elastic material models misc Analytical models misc linear dispersion model misc non-alcoholic fatty liver disease patients misc Dispersion misc Medical research misc Liver cirrhosis misc Fatty Liver - physiopathology misc Elasticity Imaging Techniques - methods misc Liver Cirrhosis - ultrasonography misc Fatty Liver - ultrasonography misc Liver - ultrasonography misc Liver Cirrhosis - physiopathology misc Liver - physiology misc Elasticity - physiology |
topic_unstemmed |
ddc 520 misc dispersion slope parameters misc group shear wave speed performance misc Materials misc stiffness parameters misc hepatic steatosis staging misc soft tissues misc viscoelastic properties misc broadband shear waves misc elastic waves misc elastic constants misc optimal AUROC threshold shear wave speed misc higher-order material models misc model-based algorithm misc dispersion analysis-derived phase velocity misc shear wave dispersion analysis misc frequency 0 Hz to 400 Hz misc Data models misc Acoustics misc biomechanics misc shear wave imaging systems misc hepatic fibrosis staging misc viscoelasticity misc Frequency measurement misc human liver misc ROC curve misc shear wave frequency misc liver misc purely elastic material models misc Analytical models misc linear dispersion model misc non-alcoholic fatty liver disease patients misc Dispersion misc Medical research misc Liver cirrhosis misc Fatty Liver - physiopathology misc Elasticity Imaging Techniques - methods misc Liver Cirrhosis - ultrasonography misc Fatty Liver - ultrasonography misc Liver - ultrasonography misc Liver Cirrhosis - physiopathology misc Liver - physiology misc Elasticity - physiology |
topic_browse |
ddc 520 misc dispersion slope parameters misc group shear wave speed performance misc Materials misc stiffness parameters misc hepatic steatosis staging misc soft tissues misc viscoelastic properties misc broadband shear waves misc elastic waves misc elastic constants misc optimal AUROC threshold shear wave speed misc higher-order material models misc model-based algorithm misc dispersion analysis-derived phase velocity misc shear wave dispersion analysis misc frequency 0 Hz to 400 Hz misc Data models misc Acoustics misc biomechanics misc shear wave imaging systems misc hepatic fibrosis staging misc viscoelasticity misc Frequency measurement misc human liver misc ROC curve misc shear wave frequency misc liver misc purely elastic material models misc Analytical models misc linear dispersion model misc non-alcoholic fatty liver disease patients misc Dispersion misc Medical research misc Liver cirrhosis misc Fatty Liver - physiopathology misc Elasticity Imaging Techniques - methods misc Liver Cirrhosis - ultrasonography misc Fatty Liver - ultrasonography misc Liver - ultrasonography misc Liver Cirrhosis - physiopathology misc Liver - physiology misc Elasticity - physiology |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
n c r nc ncr s j r sj sjr m h w mh mhw m f a mf mfa c d g cd cdg m l p ml mlp |
hierarchy_parent_title |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
hierarchy_parent_id |
129191442 |
dewey-tens |
520 - Astronomy 620 - Engineering 530 - Physics |
hierarchy_top_title |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 |
title |
Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging |
ctrlnum |
(DE-627)OLC196315049X (DE-599)GBVOLC196315049X (PRQ)c2636-6c31ab936ca46561982e08f3827d9909fffd5a306d120b7865b51a1da4ef95220 (KEY)0013324820150000062000100165derivationandanalysisofviscoelasticpropertiesinhum |
title_full |
Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging |
author_sort |
Nightingale, Kathryn R |
journal |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
journalStr |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
165 |
author_browse |
Nightingale, Kathryn R |
container_volume |
62 |
class |
520 620 530 DNB |
format_se |
Aufsätze |
author-letter |
Nightingale, Kathryn R |
doi_str_mv |
10.1109/TUFFC.2014.006653 |
dewey-full |
520 620 530 |
title_sort |
derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging |
title_auth |
Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging |
abstract |
Commercially-available shear wave imaging systems measure group shear wave speed (SWS) and often report stiffness parameters applying purely elastic material models. Soft tissues, however, are viscoelastic, and higher-order material models are necessary to characterize the dispersion associated with broadband shear waves. In this paper, we describe a robust, model-based algorithm and use a linear dispersion model to perform shear wave dispersion analysis in traditionally difficult-to-image subjects. In a cohort of 135 non-alcoholic fatty liver disease patients, we compare the performance of group SWS with dispersion analysis-derived phase velocity c(200 Hz) and dispersion slope dc/df parameters to stage hepatic fibrosis and steatosis. Area under the ROC curve (AUROC) analysis demonstrates correlation between all parameters [group SWS, c(200 Hz), and, to a lesser extent dc/df ] and fibrosis stage, whereas no correlation was observed between steatosis stage and any of the material parameters. Interestingly, optimal AUROC threshold SWS values separating advanced liver fibrosis (≥F3) from mild-to-moderate fibrosis (≤F2) were shown to be frequency-dependent, and to increase from 1.8 to 3.3 m/s over the 0 to 400 Hz shear wave frequency range. |
abstractGer |
Commercially-available shear wave imaging systems measure group shear wave speed (SWS) and often report stiffness parameters applying purely elastic material models. Soft tissues, however, are viscoelastic, and higher-order material models are necessary to characterize the dispersion associated with broadband shear waves. In this paper, we describe a robust, model-based algorithm and use a linear dispersion model to perform shear wave dispersion analysis in traditionally difficult-to-image subjects. In a cohort of 135 non-alcoholic fatty liver disease patients, we compare the performance of group SWS with dispersion analysis-derived phase velocity c(200 Hz) and dispersion slope dc/df parameters to stage hepatic fibrosis and steatosis. Area under the ROC curve (AUROC) analysis demonstrates correlation between all parameters [group SWS, c(200 Hz), and, to a lesser extent dc/df ] and fibrosis stage, whereas no correlation was observed between steatosis stage and any of the material parameters. Interestingly, optimal AUROC threshold SWS values separating advanced liver fibrosis (≥F3) from mild-to-moderate fibrosis (≤F2) were shown to be frequency-dependent, and to increase from 1.8 to 3.3 m/s over the 0 to 400 Hz shear wave frequency range. |
abstract_unstemmed |
Commercially-available shear wave imaging systems measure group shear wave speed (SWS) and often report stiffness parameters applying purely elastic material models. Soft tissues, however, are viscoelastic, and higher-order material models are necessary to characterize the dispersion associated with broadband shear waves. In this paper, we describe a robust, model-based algorithm and use a linear dispersion model to perform shear wave dispersion analysis in traditionally difficult-to-image subjects. In a cohort of 135 non-alcoholic fatty liver disease patients, we compare the performance of group SWS with dispersion analysis-derived phase velocity c(200 Hz) and dispersion slope dc/df parameters to stage hepatic fibrosis and steatosis. Area under the ROC curve (AUROC) analysis demonstrates correlation between all parameters [group SWS, c(200 Hz), and, to a lesser extent dc/df ] and fibrosis stage, whereas no correlation was observed between steatosis stage and any of the material parameters. Interestingly, optimal AUROC threshold SWS values separating advanced liver fibrosis (≥F3) from mild-to-moderate fibrosis (≤F2) were shown to be frequency-dependent, and to increase from 1.8 to 3.3 m/s over the 0 to 400 Hz shear wave frequency range. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_95 |
container_issue |
1 |
title_short |
Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging |
url |
http://dx.doi.org/10.1109/TUFFC.2014.006653 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7002935 http://www.ncbi.nlm.nih.gov/pubmed/25585400 http://search.proquest.com/docview/1645015444 |
remote_bool |
false |
author2 |
Rouze, Ned C Rosenzweig, Stephen J Wang, Michael H Abdelmalek, Manal F Guy, Cynthia D Palmeri, Mark L |
author2Str |
Rouze, Ned C Rosenzweig, Stephen J Wang, Michael H Abdelmalek, Manal F Guy, Cynthia D Palmeri, Mark L |
ppnlink |
129191442 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1109/TUFFC.2014.006653 |
up_date |
2024-07-04T05:05:12.455Z |
_version_ |
1803623609088868352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC196315049X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230515234708.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TUFFC.2014.006653</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC196315049X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC196315049X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2636-6c31ab936ca46561982e08f3827d9909fffd5a306d120b7865b51a1da4ef95220</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0013324820150000062000100165derivationandanalysisofviscoelasticpropertiesinhum</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nightingale, Kathryn R</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Commercially-available shear wave imaging systems measure group shear wave speed (SWS) and often report stiffness parameters applying purely elastic material models. Soft tissues, however, are viscoelastic, and higher-order material models are necessary to characterize the dispersion associated with broadband shear waves. In this paper, we describe a robust, model-based algorithm and use a linear dispersion model to perform shear wave dispersion analysis in traditionally difficult-to-image subjects. In a cohort of 135 non-alcoholic fatty liver disease patients, we compare the performance of group SWS with dispersion analysis-derived phase velocity c(200 Hz) and dispersion slope dc/df parameters to stage hepatic fibrosis and steatosis. Area under the ROC curve (AUROC) analysis demonstrates correlation between all parameters [group SWS, c(200 Hz), and, to a lesser extent dc/df ] and fibrosis stage, whereas no correlation was observed between steatosis stage and any of the material parameters. Interestingly, optimal AUROC threshold SWS values separating advanced liver fibrosis (≥F3) from mild-to-moderate fibrosis (≤F2) were shown to be frequency-dependent, and to increase from 1.8 to 3.3 m/s over the 0 to 400 Hz shear wave frequency range.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dispersion slope parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">group shear wave speed performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stiffness parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hepatic steatosis staging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soft tissues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">viscoelastic properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">broadband shear waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">elastic waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">elastic constants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimal AUROC threshold shear wave speed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">higher-order material models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model-based algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dispersion analysis-derived phase velocity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shear wave dispersion analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency 0 Hz to 400 Hz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shear wave imaging systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hepatic fibrosis staging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">viscoelasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">human liver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ROC curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shear wave frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">liver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">purely elastic material models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear dispersion model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-alcoholic fatty liver disease patients</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dispersion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liver cirrhosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatty Liver - physiopathology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elasticity Imaging Techniques - methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liver Cirrhosis - ultrasonography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatty Liver - ultrasonography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liver - ultrasonography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liver Cirrhosis - physiopathology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liver - physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elasticity - physiology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rouze, Ned C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosenzweig, Stephen J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Michael H</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abdelmalek, Manal F</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guy, Cynthia D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palmeri, Mark L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on ultrasonics, ferroelectrics, and frequency control</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">62(2015), 1, Seite 165-175</subfield><subfield code="w">(DE-627)129191442</subfield><subfield code="w">(DE-600)53308-7</subfield><subfield code="w">(DE-576)014456540</subfield><subfield code="x">0885-3010</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:165-175</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TUFFC.2014.006653</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7002935</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25585400</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1645015444</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">165-175</subfield></datafield></record></collection>
|
score |
7.401745 |