Out-of-plane Doppler imaging based on ultrafast plane wave imaging
Retrieving the out-of-plane blood flow velocity vector from two-dimensional transverse acquisitions of large vessels could improve the quantification of flow rate and maximum speed. The in-plane vector flow component can be computed easily using the Doppler frequency shift. The main problem is estim...
Ausführliche Beschreibung
Autor*in: |
Osmanski, Bruno-Felix [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on ultrasonics, ferroelectrics, and frequency control - New York, NY : IEEE, 1986, 62(2015), 4, Seite 625-636 |
---|---|
Übergeordnetes Werk: |
volume:62 ; year:2015 ; number:4 ; pages:625-636 |
Links: |
---|
DOI / URN: |
10.1109/TUFFC.2014.006575 |
---|
Katalog-ID: |
OLC1963150627 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1963150627 | ||
003 | DE-627 | ||
005 | 20210716012538.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TUFFC.2014.006575 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1963150627 | ||
035 | |a (DE-599)GBVOLC1963150627 | ||
035 | |a (PRQ)c2403-73185275d15dc256b9a804c3da9d89cd838c983b52a25adb9cb7da07e72258da0 | ||
035 | |a (KEY)0013324820150000062000400625outofplanedopplerimagingbasedonultrafastplanewavei | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 520 |a 620 |a 530 |q DNB |
100 | 1 | |a Osmanski, Bruno-Felix |e verfasserin |4 aut | |
245 | 1 | 0 | |a Out-of-plane Doppler imaging based on ultrafast plane wave imaging |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Retrieving the out-of-plane blood flow velocity vector from two-dimensional transverse acquisitions of large vessels could improve the quantification of flow rate and maximum speed. The in-plane vector flow component can be computed easily using the Doppler frequency shift. The main problem is estimating the angle between the probe imaging plane and the vessel axis to derive the out-of-plane component from in-plane measurements. In this article, we study the case in which the velocity vector can be decomposed on two directions: the out-of-plane direction and the in-plane depth direction. We explore the combination of a technique called intrinsic spectral broadening with ultrafast plane wave imaging to retrieve the out-of-plane component of the flow velocity vector. Using a one-time probe calibration of this intrinsic spectral broadening, out-of-plane angle and flow speed can be recovered easily, thus avoiding approximations of a complex theoretical analysis. For the calibration step, ultrafast plane wave imaging permits a fast calibration procedure for the Doppler intrinsic spectral broadening. In vitro experimental validations are performed on a homogeneous flow phantom and a Poiseuille flow; the absolute speed was retrieved with 6% error. The potential of the technique is demonstrated in vivo on the human carotid artery. Combined with in-plane vector flow approaches, this out-of-plane Doppler imaging method paves the way to threedimensional vector flow imaging using only conventional onedimensional probe technology. | ||
650 | 4 | |a blood vessels | |
650 | 4 | |a Probes | |
650 | 4 | |a calibration | |
650 | 4 | |a one-dimensional probe technology | |
650 | 4 | |a flow rate | |
650 | 4 | |a Arrays | |
650 | 4 | |a biomedical ultrasonics | |
650 | 4 | |a ultrafast plane wave imaging | |
650 | 4 | |a Doppler frequency shift | |
650 | 4 | |a Imaging | |
650 | 4 | |a phantoms | |
650 | 4 | |a Doppler intrinsic spectral broadening | |
650 | 4 | |a intrinsic spectral broadening | |
650 | 4 | |a haemodynamics | |
650 | 4 | |a Transducers | |
650 | 4 | |a Doppler measurement | |
650 | 4 | |a human carotid artery | |
650 | 4 | |a Poiseuille flow | |
650 | 4 | |a three-dimensional vector flow imaging | |
650 | 4 | |a Ultrasonic imaging | |
650 | 4 | |a two-dimensional transverse acquisitions | |
650 | 4 | |a medical image processing | |
650 | 4 | |a Shape | |
650 | 4 | |a homogeneous flow phantom | |
650 | 4 | |a out-of-plane blood flow velocity vector | |
650 | 4 | |a out-of-plane Doppler imaging | |
650 | 4 | |a one-time probe calibration | |
650 | 4 | |a image retrieval | |
650 | 4 | |a in-plane vector flow component | |
650 | 4 | |a out-of-plane Doppler imaging method | |
650 | 4 | |a Calibration | |
650 | 4 | |a Multinational space ventures | |
650 | 4 | |a Flow velocity | |
650 | 4 | |a Doppler effect | |
700 | 1 | |a Montaldo, Gabriel |4 oth | |
700 | 1 | |a Tanter, Mickael |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control |d New York, NY : IEEE, 1986 |g 62(2015), 4, Seite 625-636 |w (DE-627)129191442 |w (DE-600)53308-7 |w (DE-576)014456540 |x 0885-3010 |7 nnns |
773 | 1 | 8 | |g volume:62 |g year:2015 |g number:4 |g pages:625-636 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TUFFC.2014.006575 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7081459 |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25881341 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1685248963 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_95 | ||
951 | |a AR | ||
952 | |d 62 |j 2015 |e 4 |h 625-636 |
author_variant |
b f o bfo |
---|---|
matchkey_str |
article:08853010:2015----::uopaeopeiaigaeoutaatl |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1109/TUFFC.2014.006575 doi PQ20160617 (DE-627)OLC1963150627 (DE-599)GBVOLC1963150627 (PRQ)c2403-73185275d15dc256b9a804c3da9d89cd838c983b52a25adb9cb7da07e72258da0 (KEY)0013324820150000062000400625outofplanedopplerimagingbasedonultrafastplanewavei DE-627 ger DE-627 rakwb eng 520 620 530 DNB Osmanski, Bruno-Felix verfasserin aut Out-of-plane Doppler imaging based on ultrafast plane wave imaging 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Retrieving the out-of-plane blood flow velocity vector from two-dimensional transverse acquisitions of large vessels could improve the quantification of flow rate and maximum speed. The in-plane vector flow component can be computed easily using the Doppler frequency shift. The main problem is estimating the angle between the probe imaging plane and the vessel axis to derive the out-of-plane component from in-plane measurements. In this article, we study the case in which the velocity vector can be decomposed on two directions: the out-of-plane direction and the in-plane depth direction. We explore the combination of a technique called intrinsic spectral broadening with ultrafast plane wave imaging to retrieve the out-of-plane component of the flow velocity vector. Using a one-time probe calibration of this intrinsic spectral broadening, out-of-plane angle and flow speed can be recovered easily, thus avoiding approximations of a complex theoretical analysis. For the calibration step, ultrafast plane wave imaging permits a fast calibration procedure for the Doppler intrinsic spectral broadening. In vitro experimental validations are performed on a homogeneous flow phantom and a Poiseuille flow; the absolute speed was retrieved with 6% error. The potential of the technique is demonstrated in vivo on the human carotid artery. Combined with in-plane vector flow approaches, this out-of-plane Doppler imaging method paves the way to threedimensional vector flow imaging using only conventional onedimensional probe technology. blood vessels Probes calibration one-dimensional probe technology flow rate Arrays biomedical ultrasonics ultrafast plane wave imaging Doppler frequency shift Imaging phantoms Doppler intrinsic spectral broadening intrinsic spectral broadening haemodynamics Transducers Doppler measurement human carotid artery Poiseuille flow three-dimensional vector flow imaging Ultrasonic imaging two-dimensional transverse acquisitions medical image processing Shape homogeneous flow phantom out-of-plane blood flow velocity vector out-of-plane Doppler imaging one-time probe calibration image retrieval in-plane vector flow component out-of-plane Doppler imaging method Calibration Multinational space ventures Flow velocity Doppler effect Montaldo, Gabriel oth Tanter, Mickael oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 62(2015), 4, Seite 625-636 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:62 year:2015 number:4 pages:625-636 http://dx.doi.org/10.1109/TUFFC.2014.006575 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7081459 http://www.ncbi.nlm.nih.gov/pubmed/25881341 http://search.proquest.com/docview/1685248963 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_95 AR 62 2015 4 625-636 |
spelling |
10.1109/TUFFC.2014.006575 doi PQ20160617 (DE-627)OLC1963150627 (DE-599)GBVOLC1963150627 (PRQ)c2403-73185275d15dc256b9a804c3da9d89cd838c983b52a25adb9cb7da07e72258da0 (KEY)0013324820150000062000400625outofplanedopplerimagingbasedonultrafastplanewavei DE-627 ger DE-627 rakwb eng 520 620 530 DNB Osmanski, Bruno-Felix verfasserin aut Out-of-plane Doppler imaging based on ultrafast plane wave imaging 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Retrieving the out-of-plane blood flow velocity vector from two-dimensional transverse acquisitions of large vessels could improve the quantification of flow rate and maximum speed. The in-plane vector flow component can be computed easily using the Doppler frequency shift. The main problem is estimating the angle between the probe imaging plane and the vessel axis to derive the out-of-plane component from in-plane measurements. In this article, we study the case in which the velocity vector can be decomposed on two directions: the out-of-plane direction and the in-plane depth direction. We explore the combination of a technique called intrinsic spectral broadening with ultrafast plane wave imaging to retrieve the out-of-plane component of the flow velocity vector. Using a one-time probe calibration of this intrinsic spectral broadening, out-of-plane angle and flow speed can be recovered easily, thus avoiding approximations of a complex theoretical analysis. For the calibration step, ultrafast plane wave imaging permits a fast calibration procedure for the Doppler intrinsic spectral broadening. In vitro experimental validations are performed on a homogeneous flow phantom and a Poiseuille flow; the absolute speed was retrieved with 6% error. The potential of the technique is demonstrated in vivo on the human carotid artery. Combined with in-plane vector flow approaches, this out-of-plane Doppler imaging method paves the way to threedimensional vector flow imaging using only conventional onedimensional probe technology. blood vessels Probes calibration one-dimensional probe technology flow rate Arrays biomedical ultrasonics ultrafast plane wave imaging Doppler frequency shift Imaging phantoms Doppler intrinsic spectral broadening intrinsic spectral broadening haemodynamics Transducers Doppler measurement human carotid artery Poiseuille flow three-dimensional vector flow imaging Ultrasonic imaging two-dimensional transverse acquisitions medical image processing Shape homogeneous flow phantom out-of-plane blood flow velocity vector out-of-plane Doppler imaging one-time probe calibration image retrieval in-plane vector flow component out-of-plane Doppler imaging method Calibration Multinational space ventures Flow velocity Doppler effect Montaldo, Gabriel oth Tanter, Mickael oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 62(2015), 4, Seite 625-636 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:62 year:2015 number:4 pages:625-636 http://dx.doi.org/10.1109/TUFFC.2014.006575 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7081459 http://www.ncbi.nlm.nih.gov/pubmed/25881341 http://search.proquest.com/docview/1685248963 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_95 AR 62 2015 4 625-636 |
allfields_unstemmed |
10.1109/TUFFC.2014.006575 doi PQ20160617 (DE-627)OLC1963150627 (DE-599)GBVOLC1963150627 (PRQ)c2403-73185275d15dc256b9a804c3da9d89cd838c983b52a25adb9cb7da07e72258da0 (KEY)0013324820150000062000400625outofplanedopplerimagingbasedonultrafastplanewavei DE-627 ger DE-627 rakwb eng 520 620 530 DNB Osmanski, Bruno-Felix verfasserin aut Out-of-plane Doppler imaging based on ultrafast plane wave imaging 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Retrieving the out-of-plane blood flow velocity vector from two-dimensional transverse acquisitions of large vessels could improve the quantification of flow rate and maximum speed. The in-plane vector flow component can be computed easily using the Doppler frequency shift. The main problem is estimating the angle between the probe imaging plane and the vessel axis to derive the out-of-plane component from in-plane measurements. In this article, we study the case in which the velocity vector can be decomposed on two directions: the out-of-plane direction and the in-plane depth direction. We explore the combination of a technique called intrinsic spectral broadening with ultrafast plane wave imaging to retrieve the out-of-plane component of the flow velocity vector. Using a one-time probe calibration of this intrinsic spectral broadening, out-of-plane angle and flow speed can be recovered easily, thus avoiding approximations of a complex theoretical analysis. For the calibration step, ultrafast plane wave imaging permits a fast calibration procedure for the Doppler intrinsic spectral broadening. In vitro experimental validations are performed on a homogeneous flow phantom and a Poiseuille flow; the absolute speed was retrieved with 6% error. The potential of the technique is demonstrated in vivo on the human carotid artery. Combined with in-plane vector flow approaches, this out-of-plane Doppler imaging method paves the way to threedimensional vector flow imaging using only conventional onedimensional probe technology. blood vessels Probes calibration one-dimensional probe technology flow rate Arrays biomedical ultrasonics ultrafast plane wave imaging Doppler frequency shift Imaging phantoms Doppler intrinsic spectral broadening intrinsic spectral broadening haemodynamics Transducers Doppler measurement human carotid artery Poiseuille flow three-dimensional vector flow imaging Ultrasonic imaging two-dimensional transverse acquisitions medical image processing Shape homogeneous flow phantom out-of-plane blood flow velocity vector out-of-plane Doppler imaging one-time probe calibration image retrieval in-plane vector flow component out-of-plane Doppler imaging method Calibration Multinational space ventures Flow velocity Doppler effect Montaldo, Gabriel oth Tanter, Mickael oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 62(2015), 4, Seite 625-636 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:62 year:2015 number:4 pages:625-636 http://dx.doi.org/10.1109/TUFFC.2014.006575 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7081459 http://www.ncbi.nlm.nih.gov/pubmed/25881341 http://search.proquest.com/docview/1685248963 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_95 AR 62 2015 4 625-636 |
allfieldsGer |
10.1109/TUFFC.2014.006575 doi PQ20160617 (DE-627)OLC1963150627 (DE-599)GBVOLC1963150627 (PRQ)c2403-73185275d15dc256b9a804c3da9d89cd838c983b52a25adb9cb7da07e72258da0 (KEY)0013324820150000062000400625outofplanedopplerimagingbasedonultrafastplanewavei DE-627 ger DE-627 rakwb eng 520 620 530 DNB Osmanski, Bruno-Felix verfasserin aut Out-of-plane Doppler imaging based on ultrafast plane wave imaging 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Retrieving the out-of-plane blood flow velocity vector from two-dimensional transverse acquisitions of large vessels could improve the quantification of flow rate and maximum speed. The in-plane vector flow component can be computed easily using the Doppler frequency shift. The main problem is estimating the angle between the probe imaging plane and the vessel axis to derive the out-of-plane component from in-plane measurements. In this article, we study the case in which the velocity vector can be decomposed on two directions: the out-of-plane direction and the in-plane depth direction. We explore the combination of a technique called intrinsic spectral broadening with ultrafast plane wave imaging to retrieve the out-of-plane component of the flow velocity vector. Using a one-time probe calibration of this intrinsic spectral broadening, out-of-plane angle and flow speed can be recovered easily, thus avoiding approximations of a complex theoretical analysis. For the calibration step, ultrafast plane wave imaging permits a fast calibration procedure for the Doppler intrinsic spectral broadening. In vitro experimental validations are performed on a homogeneous flow phantom and a Poiseuille flow; the absolute speed was retrieved with 6% error. The potential of the technique is demonstrated in vivo on the human carotid artery. Combined with in-plane vector flow approaches, this out-of-plane Doppler imaging method paves the way to threedimensional vector flow imaging using only conventional onedimensional probe technology. blood vessels Probes calibration one-dimensional probe technology flow rate Arrays biomedical ultrasonics ultrafast plane wave imaging Doppler frequency shift Imaging phantoms Doppler intrinsic spectral broadening intrinsic spectral broadening haemodynamics Transducers Doppler measurement human carotid artery Poiseuille flow three-dimensional vector flow imaging Ultrasonic imaging two-dimensional transverse acquisitions medical image processing Shape homogeneous flow phantom out-of-plane blood flow velocity vector out-of-plane Doppler imaging one-time probe calibration image retrieval in-plane vector flow component out-of-plane Doppler imaging method Calibration Multinational space ventures Flow velocity Doppler effect Montaldo, Gabriel oth Tanter, Mickael oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 62(2015), 4, Seite 625-636 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:62 year:2015 number:4 pages:625-636 http://dx.doi.org/10.1109/TUFFC.2014.006575 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7081459 http://www.ncbi.nlm.nih.gov/pubmed/25881341 http://search.proquest.com/docview/1685248963 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_95 AR 62 2015 4 625-636 |
allfieldsSound |
10.1109/TUFFC.2014.006575 doi PQ20160617 (DE-627)OLC1963150627 (DE-599)GBVOLC1963150627 (PRQ)c2403-73185275d15dc256b9a804c3da9d89cd838c983b52a25adb9cb7da07e72258da0 (KEY)0013324820150000062000400625outofplanedopplerimagingbasedonultrafastplanewavei DE-627 ger DE-627 rakwb eng 520 620 530 DNB Osmanski, Bruno-Felix verfasserin aut Out-of-plane Doppler imaging based on ultrafast plane wave imaging 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Retrieving the out-of-plane blood flow velocity vector from two-dimensional transverse acquisitions of large vessels could improve the quantification of flow rate and maximum speed. The in-plane vector flow component can be computed easily using the Doppler frequency shift. The main problem is estimating the angle between the probe imaging plane and the vessel axis to derive the out-of-plane component from in-plane measurements. In this article, we study the case in which the velocity vector can be decomposed on two directions: the out-of-plane direction and the in-plane depth direction. We explore the combination of a technique called intrinsic spectral broadening with ultrafast plane wave imaging to retrieve the out-of-plane component of the flow velocity vector. Using a one-time probe calibration of this intrinsic spectral broadening, out-of-plane angle and flow speed can be recovered easily, thus avoiding approximations of a complex theoretical analysis. For the calibration step, ultrafast plane wave imaging permits a fast calibration procedure for the Doppler intrinsic spectral broadening. In vitro experimental validations are performed on a homogeneous flow phantom and a Poiseuille flow; the absolute speed was retrieved with 6% error. The potential of the technique is demonstrated in vivo on the human carotid artery. Combined with in-plane vector flow approaches, this out-of-plane Doppler imaging method paves the way to threedimensional vector flow imaging using only conventional onedimensional probe technology. blood vessels Probes calibration one-dimensional probe technology flow rate Arrays biomedical ultrasonics ultrafast plane wave imaging Doppler frequency shift Imaging phantoms Doppler intrinsic spectral broadening intrinsic spectral broadening haemodynamics Transducers Doppler measurement human carotid artery Poiseuille flow three-dimensional vector flow imaging Ultrasonic imaging two-dimensional transverse acquisitions medical image processing Shape homogeneous flow phantom out-of-plane blood flow velocity vector out-of-plane Doppler imaging one-time probe calibration image retrieval in-plane vector flow component out-of-plane Doppler imaging method Calibration Multinational space ventures Flow velocity Doppler effect Montaldo, Gabriel oth Tanter, Mickael oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 62(2015), 4, Seite 625-636 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:62 year:2015 number:4 pages:625-636 http://dx.doi.org/10.1109/TUFFC.2014.006575 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7081459 http://www.ncbi.nlm.nih.gov/pubmed/25881341 http://search.proquest.com/docview/1685248963 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_95 AR 62 2015 4 625-636 |
language |
English |
source |
Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control 62(2015), 4, Seite 625-636 volume:62 year:2015 number:4 pages:625-636 |
sourceStr |
Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control 62(2015), 4, Seite 625-636 volume:62 year:2015 number:4 pages:625-636 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
blood vessels Probes calibration one-dimensional probe technology flow rate Arrays biomedical ultrasonics ultrafast plane wave imaging Doppler frequency shift Imaging phantoms Doppler intrinsic spectral broadening intrinsic spectral broadening haemodynamics Transducers Doppler measurement human carotid artery Poiseuille flow three-dimensional vector flow imaging Ultrasonic imaging two-dimensional transverse acquisitions medical image processing Shape homogeneous flow phantom out-of-plane blood flow velocity vector out-of-plane Doppler imaging one-time probe calibration image retrieval in-plane vector flow component out-of-plane Doppler imaging method Calibration Multinational space ventures Flow velocity Doppler effect |
dewey-raw |
520 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
authorswithroles_txt_mv |
Osmanski, Bruno-Felix @@aut@@ Montaldo, Gabriel @@oth@@ Tanter, Mickael @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129191442 |
dewey-sort |
3520 |
id |
OLC1963150627 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963150627</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716012538.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TUFFC.2014.006575</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963150627</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963150627</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2403-73185275d15dc256b9a804c3da9d89cd838c983b52a25adb9cb7da07e72258da0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0013324820150000062000400625outofplanedopplerimagingbasedonultrafastplanewavei</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Osmanski, Bruno-Felix</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Out-of-plane Doppler imaging based on ultrafast plane wave imaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Retrieving the out-of-plane blood flow velocity vector from two-dimensional transverse acquisitions of large vessels could improve the quantification of flow rate and maximum speed. The in-plane vector flow component can be computed easily using the Doppler frequency shift. The main problem is estimating the angle between the probe imaging plane and the vessel axis to derive the out-of-plane component from in-plane measurements. In this article, we study the case in which the velocity vector can be decomposed on two directions: the out-of-plane direction and the in-plane depth direction. We explore the combination of a technique called intrinsic spectral broadening with ultrafast plane wave imaging to retrieve the out-of-plane component of the flow velocity vector. Using a one-time probe calibration of this intrinsic spectral broadening, out-of-plane angle and flow speed can be recovered easily, thus avoiding approximations of a complex theoretical analysis. For the calibration step, ultrafast plane wave imaging permits a fast calibration procedure for the Doppler intrinsic spectral broadening. In vitro experimental validations are performed on a homogeneous flow phantom and a Poiseuille flow; the absolute speed was retrieved with 6% error. The potential of the technique is demonstrated in vivo on the human carotid artery. Combined with in-plane vector flow approaches, this out-of-plane Doppler imaging method paves the way to threedimensional vector flow imaging using only conventional onedimensional probe technology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">blood vessels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">one-dimensional probe technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flow rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arrays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomedical ultrasonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultrafast plane wave imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doppler frequency shift</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phantoms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doppler intrinsic spectral broadening</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">intrinsic spectral broadening</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">haemodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transducers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doppler measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">human carotid artery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poiseuille flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">three-dimensional vector flow imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasonic imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-dimensional transverse acquisitions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">medical image processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shape</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">homogeneous flow phantom</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">out-of-plane blood flow velocity vector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">out-of-plane Doppler imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">one-time probe calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in-plane vector flow component</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">out-of-plane Doppler imaging method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multinational space ventures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow velocity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doppler effect</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Montaldo, Gabriel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tanter, Mickael</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on ultrasonics, ferroelectrics, and frequency control</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">62(2015), 4, Seite 625-636</subfield><subfield code="w">(DE-627)129191442</subfield><subfield code="w">(DE-600)53308-7</subfield><subfield code="w">(DE-576)014456540</subfield><subfield code="x">0885-3010</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:625-636</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TUFFC.2014.006575</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7081459</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25881341</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1685248963</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="h">625-636</subfield></datafield></record></collection>
|
author |
Osmanski, Bruno-Felix |
spellingShingle |
Osmanski, Bruno-Felix ddc 520 misc blood vessels misc Probes misc calibration misc one-dimensional probe technology misc flow rate misc Arrays misc biomedical ultrasonics misc ultrafast plane wave imaging misc Doppler frequency shift misc Imaging misc phantoms misc Doppler intrinsic spectral broadening misc intrinsic spectral broadening misc haemodynamics misc Transducers misc Doppler measurement misc human carotid artery misc Poiseuille flow misc three-dimensional vector flow imaging misc Ultrasonic imaging misc two-dimensional transverse acquisitions misc medical image processing misc Shape misc homogeneous flow phantom misc out-of-plane blood flow velocity vector misc out-of-plane Doppler imaging misc one-time probe calibration misc image retrieval misc in-plane vector flow component misc out-of-plane Doppler imaging method misc Calibration misc Multinational space ventures misc Flow velocity misc Doppler effect Out-of-plane Doppler imaging based on ultrafast plane wave imaging |
authorStr |
Osmanski, Bruno-Felix |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129191442 |
format |
Article |
dewey-ones |
520 - Astronomy & allied sciences 620 - Engineering & allied operations 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0885-3010 |
topic_title |
520 620 530 DNB Out-of-plane Doppler imaging based on ultrafast plane wave imaging blood vessels Probes calibration one-dimensional probe technology flow rate Arrays biomedical ultrasonics ultrafast plane wave imaging Doppler frequency shift Imaging phantoms Doppler intrinsic spectral broadening intrinsic spectral broadening haemodynamics Transducers Doppler measurement human carotid artery Poiseuille flow three-dimensional vector flow imaging Ultrasonic imaging two-dimensional transverse acquisitions medical image processing Shape homogeneous flow phantom out-of-plane blood flow velocity vector out-of-plane Doppler imaging one-time probe calibration image retrieval in-plane vector flow component out-of-plane Doppler imaging method Calibration Multinational space ventures Flow velocity Doppler effect |
topic |
ddc 520 misc blood vessels misc Probes misc calibration misc one-dimensional probe technology misc flow rate misc Arrays misc biomedical ultrasonics misc ultrafast plane wave imaging misc Doppler frequency shift misc Imaging misc phantoms misc Doppler intrinsic spectral broadening misc intrinsic spectral broadening misc haemodynamics misc Transducers misc Doppler measurement misc human carotid artery misc Poiseuille flow misc three-dimensional vector flow imaging misc Ultrasonic imaging misc two-dimensional transverse acquisitions misc medical image processing misc Shape misc homogeneous flow phantom misc out-of-plane blood flow velocity vector misc out-of-plane Doppler imaging misc one-time probe calibration misc image retrieval misc in-plane vector flow component misc out-of-plane Doppler imaging method misc Calibration misc Multinational space ventures misc Flow velocity misc Doppler effect |
topic_unstemmed |
ddc 520 misc blood vessels misc Probes misc calibration misc one-dimensional probe technology misc flow rate misc Arrays misc biomedical ultrasonics misc ultrafast plane wave imaging misc Doppler frequency shift misc Imaging misc phantoms misc Doppler intrinsic spectral broadening misc intrinsic spectral broadening misc haemodynamics misc Transducers misc Doppler measurement misc human carotid artery misc Poiseuille flow misc three-dimensional vector flow imaging misc Ultrasonic imaging misc two-dimensional transverse acquisitions misc medical image processing misc Shape misc homogeneous flow phantom misc out-of-plane blood flow velocity vector misc out-of-plane Doppler imaging misc one-time probe calibration misc image retrieval misc in-plane vector flow component misc out-of-plane Doppler imaging method misc Calibration misc Multinational space ventures misc Flow velocity misc Doppler effect |
topic_browse |
ddc 520 misc blood vessels misc Probes misc calibration misc one-dimensional probe technology misc flow rate misc Arrays misc biomedical ultrasonics misc ultrafast plane wave imaging misc Doppler frequency shift misc Imaging misc phantoms misc Doppler intrinsic spectral broadening misc intrinsic spectral broadening misc haemodynamics misc Transducers misc Doppler measurement misc human carotid artery misc Poiseuille flow misc three-dimensional vector flow imaging misc Ultrasonic imaging misc two-dimensional transverse acquisitions misc medical image processing misc Shape misc homogeneous flow phantom misc out-of-plane blood flow velocity vector misc out-of-plane Doppler imaging misc one-time probe calibration misc image retrieval misc in-plane vector flow component misc out-of-plane Doppler imaging method misc Calibration misc Multinational space ventures misc Flow velocity misc Doppler effect |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
g m gm m t mt |
hierarchy_parent_title |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
hierarchy_parent_id |
129191442 |
dewey-tens |
520 - Astronomy 620 - Engineering 530 - Physics |
hierarchy_top_title |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 |
title |
Out-of-plane Doppler imaging based on ultrafast plane wave imaging |
ctrlnum |
(DE-627)OLC1963150627 (DE-599)GBVOLC1963150627 (PRQ)c2403-73185275d15dc256b9a804c3da9d89cd838c983b52a25adb9cb7da07e72258da0 (KEY)0013324820150000062000400625outofplanedopplerimagingbasedonultrafastplanewavei |
title_full |
Out-of-plane Doppler imaging based on ultrafast plane wave imaging |
author_sort |
Osmanski, Bruno-Felix |
journal |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
journalStr |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
625 |
author_browse |
Osmanski, Bruno-Felix |
container_volume |
62 |
class |
520 620 530 DNB |
format_se |
Aufsätze |
author-letter |
Osmanski, Bruno-Felix |
doi_str_mv |
10.1109/TUFFC.2014.006575 |
dewey-full |
520 620 530 |
title_sort |
out-of-plane doppler imaging based on ultrafast plane wave imaging |
title_auth |
Out-of-plane Doppler imaging based on ultrafast plane wave imaging |
abstract |
Retrieving the out-of-plane blood flow velocity vector from two-dimensional transverse acquisitions of large vessels could improve the quantification of flow rate and maximum speed. The in-plane vector flow component can be computed easily using the Doppler frequency shift. The main problem is estimating the angle between the probe imaging plane and the vessel axis to derive the out-of-plane component from in-plane measurements. In this article, we study the case in which the velocity vector can be decomposed on two directions: the out-of-plane direction and the in-plane depth direction. We explore the combination of a technique called intrinsic spectral broadening with ultrafast plane wave imaging to retrieve the out-of-plane component of the flow velocity vector. Using a one-time probe calibration of this intrinsic spectral broadening, out-of-plane angle and flow speed can be recovered easily, thus avoiding approximations of a complex theoretical analysis. For the calibration step, ultrafast plane wave imaging permits a fast calibration procedure for the Doppler intrinsic spectral broadening. In vitro experimental validations are performed on a homogeneous flow phantom and a Poiseuille flow; the absolute speed was retrieved with 6% error. The potential of the technique is demonstrated in vivo on the human carotid artery. Combined with in-plane vector flow approaches, this out-of-plane Doppler imaging method paves the way to threedimensional vector flow imaging using only conventional onedimensional probe technology. |
abstractGer |
Retrieving the out-of-plane blood flow velocity vector from two-dimensional transverse acquisitions of large vessels could improve the quantification of flow rate and maximum speed. The in-plane vector flow component can be computed easily using the Doppler frequency shift. The main problem is estimating the angle between the probe imaging plane and the vessel axis to derive the out-of-plane component from in-plane measurements. In this article, we study the case in which the velocity vector can be decomposed on two directions: the out-of-plane direction and the in-plane depth direction. We explore the combination of a technique called intrinsic spectral broadening with ultrafast plane wave imaging to retrieve the out-of-plane component of the flow velocity vector. Using a one-time probe calibration of this intrinsic spectral broadening, out-of-plane angle and flow speed can be recovered easily, thus avoiding approximations of a complex theoretical analysis. For the calibration step, ultrafast plane wave imaging permits a fast calibration procedure for the Doppler intrinsic spectral broadening. In vitro experimental validations are performed on a homogeneous flow phantom and a Poiseuille flow; the absolute speed was retrieved with 6% error. The potential of the technique is demonstrated in vivo on the human carotid artery. Combined with in-plane vector flow approaches, this out-of-plane Doppler imaging method paves the way to threedimensional vector flow imaging using only conventional onedimensional probe technology. |
abstract_unstemmed |
Retrieving the out-of-plane blood flow velocity vector from two-dimensional transverse acquisitions of large vessels could improve the quantification of flow rate and maximum speed. The in-plane vector flow component can be computed easily using the Doppler frequency shift. The main problem is estimating the angle between the probe imaging plane and the vessel axis to derive the out-of-plane component from in-plane measurements. In this article, we study the case in which the velocity vector can be decomposed on two directions: the out-of-plane direction and the in-plane depth direction. We explore the combination of a technique called intrinsic spectral broadening with ultrafast plane wave imaging to retrieve the out-of-plane component of the flow velocity vector. Using a one-time probe calibration of this intrinsic spectral broadening, out-of-plane angle and flow speed can be recovered easily, thus avoiding approximations of a complex theoretical analysis. For the calibration step, ultrafast plane wave imaging permits a fast calibration procedure for the Doppler intrinsic spectral broadening. In vitro experimental validations are performed on a homogeneous flow phantom and a Poiseuille flow; the absolute speed was retrieved with 6% error. The potential of the technique is demonstrated in vivo on the human carotid artery. Combined with in-plane vector flow approaches, this out-of-plane Doppler imaging method paves the way to threedimensional vector flow imaging using only conventional onedimensional probe technology. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_95 |
container_issue |
4 |
title_short |
Out-of-plane Doppler imaging based on ultrafast plane wave imaging |
url |
http://dx.doi.org/10.1109/TUFFC.2014.006575 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7081459 http://www.ncbi.nlm.nih.gov/pubmed/25881341 http://search.proquest.com/docview/1685248963 |
remote_bool |
false |
author2 |
Montaldo, Gabriel Tanter, Mickael |
author2Str |
Montaldo, Gabriel Tanter, Mickael |
ppnlink |
129191442 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/TUFFC.2014.006575 |
up_date |
2024-07-04T05:05:13.875Z |
_version_ |
1803623610571554816 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963150627</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716012538.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TUFFC.2014.006575</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963150627</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963150627</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2403-73185275d15dc256b9a804c3da9d89cd838c983b52a25adb9cb7da07e72258da0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0013324820150000062000400625outofplanedopplerimagingbasedonultrafastplanewavei</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Osmanski, Bruno-Felix</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Out-of-plane Doppler imaging based on ultrafast plane wave imaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Retrieving the out-of-plane blood flow velocity vector from two-dimensional transverse acquisitions of large vessels could improve the quantification of flow rate and maximum speed. The in-plane vector flow component can be computed easily using the Doppler frequency shift. The main problem is estimating the angle between the probe imaging plane and the vessel axis to derive the out-of-plane component from in-plane measurements. In this article, we study the case in which the velocity vector can be decomposed on two directions: the out-of-plane direction and the in-plane depth direction. We explore the combination of a technique called intrinsic spectral broadening with ultrafast plane wave imaging to retrieve the out-of-plane component of the flow velocity vector. Using a one-time probe calibration of this intrinsic spectral broadening, out-of-plane angle and flow speed can be recovered easily, thus avoiding approximations of a complex theoretical analysis. For the calibration step, ultrafast plane wave imaging permits a fast calibration procedure for the Doppler intrinsic spectral broadening. In vitro experimental validations are performed on a homogeneous flow phantom and a Poiseuille flow; the absolute speed was retrieved with 6% error. The potential of the technique is demonstrated in vivo on the human carotid artery. Combined with in-plane vector flow approaches, this out-of-plane Doppler imaging method paves the way to threedimensional vector flow imaging using only conventional onedimensional probe technology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">blood vessels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">one-dimensional probe technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flow rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arrays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomedical ultrasonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultrafast plane wave imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doppler frequency shift</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phantoms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doppler intrinsic spectral broadening</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">intrinsic spectral broadening</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">haemodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transducers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doppler measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">human carotid artery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poiseuille flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">three-dimensional vector flow imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasonic imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-dimensional transverse acquisitions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">medical image processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shape</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">homogeneous flow phantom</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">out-of-plane blood flow velocity vector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">out-of-plane Doppler imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">one-time probe calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in-plane vector flow component</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">out-of-plane Doppler imaging method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multinational space ventures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow velocity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doppler effect</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Montaldo, Gabriel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tanter, Mickael</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on ultrasonics, ferroelectrics, and frequency control</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">62(2015), 4, Seite 625-636</subfield><subfield code="w">(DE-627)129191442</subfield><subfield code="w">(DE-600)53308-7</subfield><subfield code="w">(DE-576)014456540</subfield><subfield code="x">0885-3010</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:625-636</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TUFFC.2014.006575</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7081459</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25881341</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1685248963</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="h">625-636</subfield></datafield></record></collection>
|
score |
7.401165 |