Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals
methylisoborneol (2-MIB) and geosmin are two odor-causing compounds that are difficult to remove and the cause of many consumer complaints. In this study, we assessed the degradation of 2-MIB and geosmin using a UV/persulfate process for the first time. The results showed that both 2-MIB and geosmin...
Ausführliche Beschreibung
Autor*in: |
Xie, Pengchao [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved. |
---|
Schlagwörter: |
Water Pollutants, Chemical - isolation & purification Naphthols - isolation & purification |
---|
Übergeordnetes Werk: |
Enthalten in: Water research - Amsterdam [u.a.] : Elsevier, Pergamon, 1967, 69(2015), Seite 223-233 |
---|---|
Übergeordnetes Werk: |
volume:69 ; year:2015 ; pages:223-233 |
Links: |
---|
DOI / URN: |
10.1016/j.watres.2014.11.029 |
---|
Katalog-ID: |
OLC1963549236 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1963549236 | ||
003 | DE-627 | ||
005 | 20230714161245.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.watres.2014.11.029 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1963549236 | ||
035 | |a (DE-599)GBVOLC1963549236 | ||
035 | |a (PRQ)c1862-7c10b189c7155b42c00bbfd375ea536b12a360abea475bf059cd15d4891382980 | ||
035 | |a (KEY)0018203620150000069000000223removalof2mibandgeosminusinguvpersulfatecontributi | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
100 | 1 | |a Xie, Pengchao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a methylisoborneol (2-MIB) and geosmin are two odor-causing compounds that are difficult to remove and the cause of many consumer complaints. In this study, we assessed the degradation of 2-MIB and geosmin using a UV/persulfate process for the first time. The results showed that both 2-MIB and geosmin could be degraded effectively using this process. The process was modeled based on steady-state assumption with respect to the odor-causing compounds and either hydroxyl or sulfate radicals. The second order rate constants for 2-MIB and geosmin reacting with the sulfate radical (SO4(-)) were estimated to be (4.2 ± 0.6) × 10(8) M(-1)s(-1) and (7.6 ± 0.6) × 10(8) M(-1)s(-1) respectively at a pH of 7.0. The contributions of the hydroxyl radical (OH) to 2-MIB and geosmin degradation were 3.5 times and 2.0 times higher, respectively, than the contribution from SO4(-) in Milli-Q water with 2 mM phosphate buffer at pH 7.0. The pseudo-first-order rate constants (ko(s)) of both 2-MIB and geosmin increased with increasing dosages of persulfate. Although pH did not affect the degradation of 2-MIB and geosmin directly, different scavenging effects of hydrogen phosphate and dihydrogen phosphate resulted in higher values of ko(s) for both 2-MIB and geosmin in acidic condition. Bicarbonate and natural organic matter (NOM) inhibited the degradation of both 2-MIB and geosmin dramatically through consuming OH and SO4(-) and were likely to be the main radical scavengers in natural waters when using UV/persulfate process to control 2-MIB and geosmin. | ||
540 | |a Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved. | ||
650 | 4 | |a Sulfates - chemistry | |
650 | 4 | |a Water Pollutants, Chemical - isolation & purification | |
650 | 4 | |a Hydroxyl Radical - chemistry | |
650 | 4 | |a Naphthols - isolation & purification | |
650 | 4 | |a Potassium Compounds - chemistry | |
650 | 4 | |a Methanol - chemistry | |
650 | 4 | |a Alkalies - chemistry | |
650 | 4 | |a Bornanes - isolation & purification | |
700 | 1 | |a Ma, Jun |4 oth | |
700 | 1 | |a Liu, Wei |4 oth | |
700 | 1 | |a Zou, Jing |4 oth | |
700 | 1 | |a Yue, Siyang |4 oth | |
700 | 1 | |a Li, Xuchun |4 oth | |
700 | 1 | |a Wiesner, Mark R |4 oth | |
700 | 1 | |a Fang, Jingyun |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Water research |d Amsterdam [u.a.] : Elsevier, Pergamon, 1967 |g 69(2015), Seite 223-233 |w (DE-627)129471860 |w (DE-600)202613-2 |w (DE-576)014841630 |x 0043-1354 |7 nnns |
773 | 1 | 8 | |g volume:69 |g year:2015 |g pages:223-233 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.watres.2014.11.029 |3 Volltext |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25486622 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4219 | ||
951 | |a AR | ||
952 | |d 69 |j 2015 |h 223-233 |
author_variant |
p x px |
---|---|
matchkey_str |
article:00431354:2015----::eoao2iadesiuigveslaeotiuinohdo |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1016/j.watres.2014.11.029 doi PQ20160617 (DE-627)OLC1963549236 (DE-599)GBVOLC1963549236 (PRQ)c1862-7c10b189c7155b42c00bbfd375ea536b12a360abea475bf059cd15d4891382980 (KEY)0018203620150000069000000223removalof2mibandgeosminusinguvpersulfatecontributi DE-627 ger DE-627 rakwb eng 550 DNB Xie, Pengchao verfasserin aut Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier methylisoborneol (2-MIB) and geosmin are two odor-causing compounds that are difficult to remove and the cause of many consumer complaints. In this study, we assessed the degradation of 2-MIB and geosmin using a UV/persulfate process for the first time. The results showed that both 2-MIB and geosmin could be degraded effectively using this process. The process was modeled based on steady-state assumption with respect to the odor-causing compounds and either hydroxyl or sulfate radicals. The second order rate constants for 2-MIB and geosmin reacting with the sulfate radical (SO4(-)) were estimated to be (4.2 ± 0.6) × 10(8) M(-1)s(-1) and (7.6 ± 0.6) × 10(8) M(-1)s(-1) respectively at a pH of 7.0. The contributions of the hydroxyl radical (OH) to 2-MIB and geosmin degradation were 3.5 times and 2.0 times higher, respectively, than the contribution from SO4(-) in Milli-Q water with 2 mM phosphate buffer at pH 7.0. The pseudo-first-order rate constants (ko(s)) of both 2-MIB and geosmin increased with increasing dosages of persulfate. Although pH did not affect the degradation of 2-MIB and geosmin directly, different scavenging effects of hydrogen phosphate and dihydrogen phosphate resulted in higher values of ko(s) for both 2-MIB and geosmin in acidic condition. Bicarbonate and natural organic matter (NOM) inhibited the degradation of both 2-MIB and geosmin dramatically through consuming OH and SO4(-) and were likely to be the main radical scavengers in natural waters when using UV/persulfate process to control 2-MIB and geosmin. Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved. Sulfates - chemistry Water Pollutants, Chemical - isolation & purification Hydroxyl Radical - chemistry Naphthols - isolation & purification Potassium Compounds - chemistry Methanol - chemistry Alkalies - chemistry Bornanes - isolation & purification Ma, Jun oth Liu, Wei oth Zou, Jing oth Yue, Siyang oth Li, Xuchun oth Wiesner, Mark R oth Fang, Jingyun oth Enthalten in Water research Amsterdam [u.a.] : Elsevier, Pergamon, 1967 69(2015), Seite 223-233 (DE-627)129471860 (DE-600)202613-2 (DE-576)014841630 0043-1354 nnns volume:69 year:2015 pages:223-233 http://dx.doi.org/10.1016/j.watres.2014.11.029 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25486622 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4112 GBV_ILN_4219 AR 69 2015 223-233 |
spelling |
10.1016/j.watres.2014.11.029 doi PQ20160617 (DE-627)OLC1963549236 (DE-599)GBVOLC1963549236 (PRQ)c1862-7c10b189c7155b42c00bbfd375ea536b12a360abea475bf059cd15d4891382980 (KEY)0018203620150000069000000223removalof2mibandgeosminusinguvpersulfatecontributi DE-627 ger DE-627 rakwb eng 550 DNB Xie, Pengchao verfasserin aut Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier methylisoborneol (2-MIB) and geosmin are two odor-causing compounds that are difficult to remove and the cause of many consumer complaints. In this study, we assessed the degradation of 2-MIB and geosmin using a UV/persulfate process for the first time. The results showed that both 2-MIB and geosmin could be degraded effectively using this process. The process was modeled based on steady-state assumption with respect to the odor-causing compounds and either hydroxyl or sulfate radicals. The second order rate constants for 2-MIB and geosmin reacting with the sulfate radical (SO4(-)) were estimated to be (4.2 ± 0.6) × 10(8) M(-1)s(-1) and (7.6 ± 0.6) × 10(8) M(-1)s(-1) respectively at a pH of 7.0. The contributions of the hydroxyl radical (OH) to 2-MIB and geosmin degradation were 3.5 times and 2.0 times higher, respectively, than the contribution from SO4(-) in Milli-Q water with 2 mM phosphate buffer at pH 7.0. The pseudo-first-order rate constants (ko(s)) of both 2-MIB and geosmin increased with increasing dosages of persulfate. Although pH did not affect the degradation of 2-MIB and geosmin directly, different scavenging effects of hydrogen phosphate and dihydrogen phosphate resulted in higher values of ko(s) for both 2-MIB and geosmin in acidic condition. Bicarbonate and natural organic matter (NOM) inhibited the degradation of both 2-MIB and geosmin dramatically through consuming OH and SO4(-) and were likely to be the main radical scavengers in natural waters when using UV/persulfate process to control 2-MIB and geosmin. Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved. Sulfates - chemistry Water Pollutants, Chemical - isolation & purification Hydroxyl Radical - chemistry Naphthols - isolation & purification Potassium Compounds - chemistry Methanol - chemistry Alkalies - chemistry Bornanes - isolation & purification Ma, Jun oth Liu, Wei oth Zou, Jing oth Yue, Siyang oth Li, Xuchun oth Wiesner, Mark R oth Fang, Jingyun oth Enthalten in Water research Amsterdam [u.a.] : Elsevier, Pergamon, 1967 69(2015), Seite 223-233 (DE-627)129471860 (DE-600)202613-2 (DE-576)014841630 0043-1354 nnns volume:69 year:2015 pages:223-233 http://dx.doi.org/10.1016/j.watres.2014.11.029 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25486622 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4112 GBV_ILN_4219 AR 69 2015 223-233 |
allfields_unstemmed |
10.1016/j.watres.2014.11.029 doi PQ20160617 (DE-627)OLC1963549236 (DE-599)GBVOLC1963549236 (PRQ)c1862-7c10b189c7155b42c00bbfd375ea536b12a360abea475bf059cd15d4891382980 (KEY)0018203620150000069000000223removalof2mibandgeosminusinguvpersulfatecontributi DE-627 ger DE-627 rakwb eng 550 DNB Xie, Pengchao verfasserin aut Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier methylisoborneol (2-MIB) and geosmin are two odor-causing compounds that are difficult to remove and the cause of many consumer complaints. In this study, we assessed the degradation of 2-MIB and geosmin using a UV/persulfate process for the first time. The results showed that both 2-MIB and geosmin could be degraded effectively using this process. The process was modeled based on steady-state assumption with respect to the odor-causing compounds and either hydroxyl or sulfate radicals. The second order rate constants for 2-MIB and geosmin reacting with the sulfate radical (SO4(-)) were estimated to be (4.2 ± 0.6) × 10(8) M(-1)s(-1) and (7.6 ± 0.6) × 10(8) M(-1)s(-1) respectively at a pH of 7.0. The contributions of the hydroxyl radical (OH) to 2-MIB and geosmin degradation were 3.5 times and 2.0 times higher, respectively, than the contribution from SO4(-) in Milli-Q water with 2 mM phosphate buffer at pH 7.0. The pseudo-first-order rate constants (ko(s)) of both 2-MIB and geosmin increased with increasing dosages of persulfate. Although pH did not affect the degradation of 2-MIB and geosmin directly, different scavenging effects of hydrogen phosphate and dihydrogen phosphate resulted in higher values of ko(s) for both 2-MIB and geosmin in acidic condition. Bicarbonate and natural organic matter (NOM) inhibited the degradation of both 2-MIB and geosmin dramatically through consuming OH and SO4(-) and were likely to be the main radical scavengers in natural waters when using UV/persulfate process to control 2-MIB and geosmin. Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved. Sulfates - chemistry Water Pollutants, Chemical - isolation & purification Hydroxyl Radical - chemistry Naphthols - isolation & purification Potassium Compounds - chemistry Methanol - chemistry Alkalies - chemistry Bornanes - isolation & purification Ma, Jun oth Liu, Wei oth Zou, Jing oth Yue, Siyang oth Li, Xuchun oth Wiesner, Mark R oth Fang, Jingyun oth Enthalten in Water research Amsterdam [u.a.] : Elsevier, Pergamon, 1967 69(2015), Seite 223-233 (DE-627)129471860 (DE-600)202613-2 (DE-576)014841630 0043-1354 nnns volume:69 year:2015 pages:223-233 http://dx.doi.org/10.1016/j.watres.2014.11.029 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25486622 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4112 GBV_ILN_4219 AR 69 2015 223-233 |
allfieldsGer |
10.1016/j.watres.2014.11.029 doi PQ20160617 (DE-627)OLC1963549236 (DE-599)GBVOLC1963549236 (PRQ)c1862-7c10b189c7155b42c00bbfd375ea536b12a360abea475bf059cd15d4891382980 (KEY)0018203620150000069000000223removalof2mibandgeosminusinguvpersulfatecontributi DE-627 ger DE-627 rakwb eng 550 DNB Xie, Pengchao verfasserin aut Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier methylisoborneol (2-MIB) and geosmin are two odor-causing compounds that are difficult to remove and the cause of many consumer complaints. In this study, we assessed the degradation of 2-MIB and geosmin using a UV/persulfate process for the first time. The results showed that both 2-MIB and geosmin could be degraded effectively using this process. The process was modeled based on steady-state assumption with respect to the odor-causing compounds and either hydroxyl or sulfate radicals. The second order rate constants for 2-MIB and geosmin reacting with the sulfate radical (SO4(-)) were estimated to be (4.2 ± 0.6) × 10(8) M(-1)s(-1) and (7.6 ± 0.6) × 10(8) M(-1)s(-1) respectively at a pH of 7.0. The contributions of the hydroxyl radical (OH) to 2-MIB and geosmin degradation were 3.5 times and 2.0 times higher, respectively, than the contribution from SO4(-) in Milli-Q water with 2 mM phosphate buffer at pH 7.0. The pseudo-first-order rate constants (ko(s)) of both 2-MIB and geosmin increased with increasing dosages of persulfate. Although pH did not affect the degradation of 2-MIB and geosmin directly, different scavenging effects of hydrogen phosphate and dihydrogen phosphate resulted in higher values of ko(s) for both 2-MIB and geosmin in acidic condition. Bicarbonate and natural organic matter (NOM) inhibited the degradation of both 2-MIB and geosmin dramatically through consuming OH and SO4(-) and were likely to be the main radical scavengers in natural waters when using UV/persulfate process to control 2-MIB and geosmin. Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved. Sulfates - chemistry Water Pollutants, Chemical - isolation & purification Hydroxyl Radical - chemistry Naphthols - isolation & purification Potassium Compounds - chemistry Methanol - chemistry Alkalies - chemistry Bornanes - isolation & purification Ma, Jun oth Liu, Wei oth Zou, Jing oth Yue, Siyang oth Li, Xuchun oth Wiesner, Mark R oth Fang, Jingyun oth Enthalten in Water research Amsterdam [u.a.] : Elsevier, Pergamon, 1967 69(2015), Seite 223-233 (DE-627)129471860 (DE-600)202613-2 (DE-576)014841630 0043-1354 nnns volume:69 year:2015 pages:223-233 http://dx.doi.org/10.1016/j.watres.2014.11.029 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25486622 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4112 GBV_ILN_4219 AR 69 2015 223-233 |
allfieldsSound |
10.1016/j.watres.2014.11.029 doi PQ20160617 (DE-627)OLC1963549236 (DE-599)GBVOLC1963549236 (PRQ)c1862-7c10b189c7155b42c00bbfd375ea536b12a360abea475bf059cd15d4891382980 (KEY)0018203620150000069000000223removalof2mibandgeosminusinguvpersulfatecontributi DE-627 ger DE-627 rakwb eng 550 DNB Xie, Pengchao verfasserin aut Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier methylisoborneol (2-MIB) and geosmin are two odor-causing compounds that are difficult to remove and the cause of many consumer complaints. In this study, we assessed the degradation of 2-MIB and geosmin using a UV/persulfate process for the first time. The results showed that both 2-MIB and geosmin could be degraded effectively using this process. The process was modeled based on steady-state assumption with respect to the odor-causing compounds and either hydroxyl or sulfate radicals. The second order rate constants for 2-MIB and geosmin reacting with the sulfate radical (SO4(-)) were estimated to be (4.2 ± 0.6) × 10(8) M(-1)s(-1) and (7.6 ± 0.6) × 10(8) M(-1)s(-1) respectively at a pH of 7.0. The contributions of the hydroxyl radical (OH) to 2-MIB and geosmin degradation were 3.5 times and 2.0 times higher, respectively, than the contribution from SO4(-) in Milli-Q water with 2 mM phosphate buffer at pH 7.0. The pseudo-first-order rate constants (ko(s)) of both 2-MIB and geosmin increased with increasing dosages of persulfate. Although pH did not affect the degradation of 2-MIB and geosmin directly, different scavenging effects of hydrogen phosphate and dihydrogen phosphate resulted in higher values of ko(s) for both 2-MIB and geosmin in acidic condition. Bicarbonate and natural organic matter (NOM) inhibited the degradation of both 2-MIB and geosmin dramatically through consuming OH and SO4(-) and were likely to be the main radical scavengers in natural waters when using UV/persulfate process to control 2-MIB and geosmin. Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved. Sulfates - chemistry Water Pollutants, Chemical - isolation & purification Hydroxyl Radical - chemistry Naphthols - isolation & purification Potassium Compounds - chemistry Methanol - chemistry Alkalies - chemistry Bornanes - isolation & purification Ma, Jun oth Liu, Wei oth Zou, Jing oth Yue, Siyang oth Li, Xuchun oth Wiesner, Mark R oth Fang, Jingyun oth Enthalten in Water research Amsterdam [u.a.] : Elsevier, Pergamon, 1967 69(2015), Seite 223-233 (DE-627)129471860 (DE-600)202613-2 (DE-576)014841630 0043-1354 nnns volume:69 year:2015 pages:223-233 http://dx.doi.org/10.1016/j.watres.2014.11.029 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25486622 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4112 GBV_ILN_4219 AR 69 2015 223-233 |
language |
English |
source |
Enthalten in Water research 69(2015), Seite 223-233 volume:69 year:2015 pages:223-233 |
sourceStr |
Enthalten in Water research 69(2015), Seite 223-233 volume:69 year:2015 pages:223-233 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Sulfates - chemistry Water Pollutants, Chemical - isolation & purification Hydroxyl Radical - chemistry Naphthols - isolation & purification Potassium Compounds - chemistry Methanol - chemistry Alkalies - chemistry Bornanes - isolation & purification |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Water research |
authorswithroles_txt_mv |
Xie, Pengchao @@aut@@ Ma, Jun @@oth@@ Liu, Wei @@oth@@ Zou, Jing @@oth@@ Yue, Siyang @@oth@@ Li, Xuchun @@oth@@ Wiesner, Mark R @@oth@@ Fang, Jingyun @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129471860 |
dewey-sort |
3550 |
id |
OLC1963549236 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963549236</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714161245.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.watres.2014.11.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963549236</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963549236</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1862-7c10b189c7155b42c00bbfd375ea536b12a360abea475bf059cd15d4891382980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0018203620150000069000000223removalof2mibandgeosminusinguvpersulfatecontributi</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xie, Pengchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">methylisoborneol (2-MIB) and geosmin are two odor-causing compounds that are difficult to remove and the cause of many consumer complaints. In this study, we assessed the degradation of 2-MIB and geosmin using a UV/persulfate process for the first time. The results showed that both 2-MIB and geosmin could be degraded effectively using this process. The process was modeled based on steady-state assumption with respect to the odor-causing compounds and either hydroxyl or sulfate radicals. The second order rate constants for 2-MIB and geosmin reacting with the sulfate radical (SO4(-)) were estimated to be (4.2 ± 0.6) × 10(8) M(-1)s(-1) and (7.6 ± 0.6) × 10(8) M(-1)s(-1) respectively at a pH of 7.0. The contributions of the hydroxyl radical (OH) to 2-MIB and geosmin degradation were 3.5 times and 2.0 times higher, respectively, than the contribution from SO4(-) in Milli-Q water with 2 mM phosphate buffer at pH 7.0. The pseudo-first-order rate constants (ko(s)) of both 2-MIB and geosmin increased with increasing dosages of persulfate. Although pH did not affect the degradation of 2-MIB and geosmin directly, different scavenging effects of hydrogen phosphate and dihydrogen phosphate resulted in higher values of ko(s) for both 2-MIB and geosmin in acidic condition. Bicarbonate and natural organic matter (NOM) inhibited the degradation of both 2-MIB and geosmin dramatically through consuming OH and SO4(-) and were likely to be the main radical scavengers in natural waters when using UV/persulfate process to control 2-MIB and geosmin.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sulfates - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water Pollutants, Chemical - isolation & purification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydroxyl Radical - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naphthols - isolation & purification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potassium Compounds - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methanol - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alkalies - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bornanes - isolation & purification</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Jun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Jing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yue, Siyang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xuchun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiesner, Mark R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Jingyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, Pergamon, 1967</subfield><subfield code="g">69(2015), Seite 223-233</subfield><subfield code="w">(DE-627)129471860</subfield><subfield code="w">(DE-600)202613-2</subfield><subfield code="w">(DE-576)014841630</subfield><subfield code="x">0043-1354</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:69</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:223-233</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.watres.2014.11.029</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25486622</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">69</subfield><subfield code="j">2015</subfield><subfield code="h">223-233</subfield></datafield></record></collection>
|
author |
Xie, Pengchao |
spellingShingle |
Xie, Pengchao ddc 550 misc Sulfates - chemistry misc Water Pollutants, Chemical - isolation & purification misc Hydroxyl Radical - chemistry misc Naphthols - isolation & purification misc Potassium Compounds - chemistry misc Methanol - chemistry misc Alkalies - chemistry misc Bornanes - isolation & purification Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals |
authorStr |
Xie, Pengchao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129471860 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0043-1354 |
topic_title |
550 DNB Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals Sulfates - chemistry Water Pollutants, Chemical - isolation & purification Hydroxyl Radical - chemistry Naphthols - isolation & purification Potassium Compounds - chemistry Methanol - chemistry Alkalies - chemistry Bornanes - isolation & purification |
topic |
ddc 550 misc Sulfates - chemistry misc Water Pollutants, Chemical - isolation & purification misc Hydroxyl Radical - chemistry misc Naphthols - isolation & purification misc Potassium Compounds - chemistry misc Methanol - chemistry misc Alkalies - chemistry misc Bornanes - isolation & purification |
topic_unstemmed |
ddc 550 misc Sulfates - chemistry misc Water Pollutants, Chemical - isolation & purification misc Hydroxyl Radical - chemistry misc Naphthols - isolation & purification misc Potassium Compounds - chemistry misc Methanol - chemistry misc Alkalies - chemistry misc Bornanes - isolation & purification |
topic_browse |
ddc 550 misc Sulfates - chemistry misc Water Pollutants, Chemical - isolation & purification misc Hydroxyl Radical - chemistry misc Naphthols - isolation & purification misc Potassium Compounds - chemistry misc Methanol - chemistry misc Alkalies - chemistry misc Bornanes - isolation & purification |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j m jm w l wl j z jz s y sy x l xl m r w mr mrw j f jf |
hierarchy_parent_title |
Water research |
hierarchy_parent_id |
129471860 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Water research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129471860 (DE-600)202613-2 (DE-576)014841630 |
title |
Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals |
ctrlnum |
(DE-627)OLC1963549236 (DE-599)GBVOLC1963549236 (PRQ)c1862-7c10b189c7155b42c00bbfd375ea536b12a360abea475bf059cd15d4891382980 (KEY)0018203620150000069000000223removalof2mibandgeosminusinguvpersulfatecontributi |
title_full |
Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals |
author_sort |
Xie, Pengchao |
journal |
Water research |
journalStr |
Water research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
223 |
author_browse |
Xie, Pengchao |
container_volume |
69 |
class |
550 DNB |
format_se |
Aufsätze |
author-letter |
Xie, Pengchao |
doi_str_mv |
10.1016/j.watres.2014.11.029 |
dewey-full |
550 |
title_sort |
removal of 2-mib and geosmin using uv/persulfate: contributions of hydroxyl and sulfate radicals |
title_auth |
Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals |
abstract |
methylisoborneol (2-MIB) and geosmin are two odor-causing compounds that are difficult to remove and the cause of many consumer complaints. In this study, we assessed the degradation of 2-MIB and geosmin using a UV/persulfate process for the first time. The results showed that both 2-MIB and geosmin could be degraded effectively using this process. The process was modeled based on steady-state assumption with respect to the odor-causing compounds and either hydroxyl or sulfate radicals. The second order rate constants for 2-MIB and geosmin reacting with the sulfate radical (SO4(-)) were estimated to be (4.2 ± 0.6) × 10(8) M(-1)s(-1) and (7.6 ± 0.6) × 10(8) M(-1)s(-1) respectively at a pH of 7.0. The contributions of the hydroxyl radical (OH) to 2-MIB and geosmin degradation were 3.5 times and 2.0 times higher, respectively, than the contribution from SO4(-) in Milli-Q water with 2 mM phosphate buffer at pH 7.0. The pseudo-first-order rate constants (ko(s)) of both 2-MIB and geosmin increased with increasing dosages of persulfate. Although pH did not affect the degradation of 2-MIB and geosmin directly, different scavenging effects of hydrogen phosphate and dihydrogen phosphate resulted in higher values of ko(s) for both 2-MIB and geosmin in acidic condition. Bicarbonate and natural organic matter (NOM) inhibited the degradation of both 2-MIB and geosmin dramatically through consuming OH and SO4(-) and were likely to be the main radical scavengers in natural waters when using UV/persulfate process to control 2-MIB and geosmin. |
abstractGer |
methylisoborneol (2-MIB) and geosmin are two odor-causing compounds that are difficult to remove and the cause of many consumer complaints. In this study, we assessed the degradation of 2-MIB and geosmin using a UV/persulfate process for the first time. The results showed that both 2-MIB and geosmin could be degraded effectively using this process. The process was modeled based on steady-state assumption with respect to the odor-causing compounds and either hydroxyl or sulfate radicals. The second order rate constants for 2-MIB and geosmin reacting with the sulfate radical (SO4(-)) were estimated to be (4.2 ± 0.6) × 10(8) M(-1)s(-1) and (7.6 ± 0.6) × 10(8) M(-1)s(-1) respectively at a pH of 7.0. The contributions of the hydroxyl radical (OH) to 2-MIB and geosmin degradation were 3.5 times and 2.0 times higher, respectively, than the contribution from SO4(-) in Milli-Q water with 2 mM phosphate buffer at pH 7.0. The pseudo-first-order rate constants (ko(s)) of both 2-MIB and geosmin increased with increasing dosages of persulfate. Although pH did not affect the degradation of 2-MIB and geosmin directly, different scavenging effects of hydrogen phosphate and dihydrogen phosphate resulted in higher values of ko(s) for both 2-MIB and geosmin in acidic condition. Bicarbonate and natural organic matter (NOM) inhibited the degradation of both 2-MIB and geosmin dramatically through consuming OH and SO4(-) and were likely to be the main radical scavengers in natural waters when using UV/persulfate process to control 2-MIB and geosmin. |
abstract_unstemmed |
methylisoborneol (2-MIB) and geosmin are two odor-causing compounds that are difficult to remove and the cause of many consumer complaints. In this study, we assessed the degradation of 2-MIB and geosmin using a UV/persulfate process for the first time. The results showed that both 2-MIB and geosmin could be degraded effectively using this process. The process was modeled based on steady-state assumption with respect to the odor-causing compounds and either hydroxyl or sulfate radicals. The second order rate constants for 2-MIB and geosmin reacting with the sulfate radical (SO4(-)) were estimated to be (4.2 ± 0.6) × 10(8) M(-1)s(-1) and (7.6 ± 0.6) × 10(8) M(-1)s(-1) respectively at a pH of 7.0. The contributions of the hydroxyl radical (OH) to 2-MIB and geosmin degradation were 3.5 times and 2.0 times higher, respectively, than the contribution from SO4(-) in Milli-Q water with 2 mM phosphate buffer at pH 7.0. The pseudo-first-order rate constants (ko(s)) of both 2-MIB and geosmin increased with increasing dosages of persulfate. Although pH did not affect the degradation of 2-MIB and geosmin directly, different scavenging effects of hydrogen phosphate and dihydrogen phosphate resulted in higher values of ko(s) for both 2-MIB and geosmin in acidic condition. Bicarbonate and natural organic matter (NOM) inhibited the degradation of both 2-MIB and geosmin dramatically through consuming OH and SO4(-) and were likely to be the main radical scavengers in natural waters when using UV/persulfate process to control 2-MIB and geosmin. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4112 GBV_ILN_4219 |
title_short |
Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals |
url |
http://dx.doi.org/10.1016/j.watres.2014.11.029 http://www.ncbi.nlm.nih.gov/pubmed/25486622 |
remote_bool |
false |
author2 |
Ma, Jun Liu, Wei Zou, Jing Yue, Siyang Li, Xuchun Wiesner, Mark R Fang, Jingyun |
author2Str |
Ma, Jun Liu, Wei Zou, Jing Yue, Siyang Li, Xuchun Wiesner, Mark R Fang, Jingyun |
ppnlink |
129471860 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.watres.2014.11.029 |
up_date |
2024-07-04T05:59:33.493Z |
_version_ |
1803627028539244544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963549236</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714161245.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.watres.2014.11.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963549236</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963549236</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1862-7c10b189c7155b42c00bbfd375ea536b12a360abea475bf059cd15d4891382980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0018203620150000069000000223removalof2mibandgeosminusinguvpersulfatecontributi</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xie, Pengchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">methylisoborneol (2-MIB) and geosmin are two odor-causing compounds that are difficult to remove and the cause of many consumer complaints. In this study, we assessed the degradation of 2-MIB and geosmin using a UV/persulfate process for the first time. The results showed that both 2-MIB and geosmin could be degraded effectively using this process. The process was modeled based on steady-state assumption with respect to the odor-causing compounds and either hydroxyl or sulfate radicals. The second order rate constants for 2-MIB and geosmin reacting with the sulfate radical (SO4(-)) were estimated to be (4.2 ± 0.6) × 10(8) M(-1)s(-1) and (7.6 ± 0.6) × 10(8) M(-1)s(-1) respectively at a pH of 7.0. The contributions of the hydroxyl radical (OH) to 2-MIB and geosmin degradation were 3.5 times and 2.0 times higher, respectively, than the contribution from SO4(-) in Milli-Q water with 2 mM phosphate buffer at pH 7.0. The pseudo-first-order rate constants (ko(s)) of both 2-MIB and geosmin increased with increasing dosages of persulfate. Although pH did not affect the degradation of 2-MIB and geosmin directly, different scavenging effects of hydrogen phosphate and dihydrogen phosphate resulted in higher values of ko(s) for both 2-MIB and geosmin in acidic condition. Bicarbonate and natural organic matter (NOM) inhibited the degradation of both 2-MIB and geosmin dramatically through consuming OH and SO4(-) and were likely to be the main radical scavengers in natural waters when using UV/persulfate process to control 2-MIB and geosmin.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2014 Elsevier Ltd. All rights reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sulfates - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water Pollutants, Chemical - isolation & purification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydroxyl Radical - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naphthols - isolation & purification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potassium Compounds - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methanol - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alkalies - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bornanes - isolation & purification</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Jun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Jing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yue, Siyang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xuchun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiesner, Mark R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Jingyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, Pergamon, 1967</subfield><subfield code="g">69(2015), Seite 223-233</subfield><subfield code="w">(DE-627)129471860</subfield><subfield code="w">(DE-600)202613-2</subfield><subfield code="w">(DE-576)014841630</subfield><subfield code="x">0043-1354</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:69</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:223-233</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.watres.2014.11.029</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25486622</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">69</subfield><subfield code="j">2015</subfield><subfield code="h">223-233</subfield></datafield></record></collection>
|
score |
7.4018803 |