Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts
This paper proposes a side-sensitive group runs double sampling (SSGRDS) chart to detect shifts in the process mean. It improves the side-sensitive group runs chart proposed by Gadre and Rattihalli. The implementation of the SSGRDS chart is explained. The newly developed SSGRDS chart is compared wit...
Ausführliche Beschreibung
Autor*in: |
Khoo, Michael B.C [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2015 Taylor & Francis 2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of production research - London : Taylor & Francis, 1961, 53(2015), 15, Seite 4735-19 |
---|---|
Übergeordnetes Werk: |
volume:53 ; year:2015 ; number:15 ; pages:4735-19 |
Links: |
---|
DOI / URN: |
10.1080/00207543.2015.1043033 |
---|
Katalog-ID: |
OLC1963689135 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1963689135 | ||
003 | DE-627 | ||
005 | 20220221044753.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/00207543.2015.1043033 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1963689135 | ||
035 | |a (DE-599)GBVOLC1963689135 | ||
035 | |a (PRQ)c2781-8c1b665ec8adc0dc0560dc8ca22dc5b7d0c7d9f228081b72e39ca757c8d334280 | ||
035 | |a (KEY)0019873020150000053001504735sidesensitivegrouprunsdoublesamplingssgrdschartfor | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |a 620 |a 330 |q DNB |
084 | |a 85.35 |2 bkl | ||
084 | |a 52.70 |2 bkl | ||
100 | 1 | |a Khoo, Michael B.C |e verfasserin |4 aut | |
245 | 1 | 0 | |a Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This paper proposes a side-sensitive group runs double sampling (SSGRDS) chart to detect shifts in the process mean. It improves the side-sensitive group runs chart proposed by Gadre and Rattihalli. The implementation of the SSGRDS chart is explained. The newly developed SSGRDS chart is compared with the synthetic, double sampling, synthetic double sampling, side-sensitive group runs and exponentially weighted moving average charts, in terms of the zero-state and steady-state average number of observations to signal (ANOS) and expected average number of observations to signal (EANOS). The zero-state and steady-state ANOS (ssANOS) and EANOS results reveal that the optimal SSGRDS chart generally performs well for detecting small and large mean shifts, from an overall perspective, compared with the optimal versions of other competing charts. This article provides tables of optimal charting parameters to facilitate the design of the SSGRDS chart. From these tables, the user can directly determine the optimal charting parameters for (i) minimising the standardised mean shift , based on different combinations of in-control ANOS and in-control average sample size , or (ii) minimising an overall range of shifts , based on different in-control EANOS and ASS 0 combinations. | ||
540 | |a Nutzungsrecht: © 2015 Taylor & Francis 2015 | ||
650 | 4 | |a process mean | |
650 | 4 | |a side-sensitive group runs | |
650 | 4 | |a synthetic | |
650 | 4 | |a double sampling | |
650 | 4 | |a exponentially weighted moving average | |
650 | 4 | |a synthetic double sampling | |
650 | 4 | |a Process controls | |
650 | 4 | |a Comparative analysis | |
650 | 4 | |a Control charts | |
650 | 4 | |a Sampling techniques | |
650 | 4 | |a Design optimization | |
650 | 4 | |a Studies | |
650 | 4 | |a Operations research | |
700 | 1 | |a Tan, Eng Keng |4 oth | |
700 | 1 | |a Chong, Zhi Lin |4 oth | |
700 | 1 | |a Haridy, Salah |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International journal of production research |d London : Taylor & Francis, 1961 |g 53(2015), 15, Seite 4735-19 |w (DE-627)129358835 |w (DE-600)160477-6 |w (DE-576)014731150 |x 0020-7543 |7 nnns |
773 | 1 | 8 | |g volume:53 |g year:2015 |g number:15 |g pages:4735-19 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/00207543.2015.1043033 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1043033 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1692805829 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4126 | ||
936 | b | k | |a 85.35 |q AVZ |
936 | b | k | |a 52.70 |q AVZ |
951 | |a AR | ||
952 | |d 53 |j 2015 |e 15 |h 4735-19 |
author_variant |
m b k mb mbk |
---|---|
matchkey_str |
article:00207543:2015----::ieestvgopusobeapigsrshrfr |
hierarchy_sort_str |
2015 |
bklnumber |
85.35 52.70 |
publishDate |
2015 |
allfields |
10.1080/00207543.2015.1043033 doi PQ20160617 (DE-627)OLC1963689135 (DE-599)GBVOLC1963689135 (PRQ)c2781-8c1b665ec8adc0dc0560dc8ca22dc5b7d0c7d9f228081b72e39ca757c8d334280 (KEY)0019873020150000053001504735sidesensitivegrouprunsdoublesamplingssgrdschartfor DE-627 ger DE-627 rakwb eng 600 620 330 DNB 85.35 bkl 52.70 bkl Khoo, Michael B.C verfasserin aut Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a side-sensitive group runs double sampling (SSGRDS) chart to detect shifts in the process mean. It improves the side-sensitive group runs chart proposed by Gadre and Rattihalli. The implementation of the SSGRDS chart is explained. The newly developed SSGRDS chart is compared with the synthetic, double sampling, synthetic double sampling, side-sensitive group runs and exponentially weighted moving average charts, in terms of the zero-state and steady-state average number of observations to signal (ANOS) and expected average number of observations to signal (EANOS). The zero-state and steady-state ANOS (ssANOS) and EANOS results reveal that the optimal SSGRDS chart generally performs well for detecting small and large mean shifts, from an overall perspective, compared with the optimal versions of other competing charts. This article provides tables of optimal charting parameters to facilitate the design of the SSGRDS chart. From these tables, the user can directly determine the optimal charting parameters for (i) minimising the standardised mean shift , based on different combinations of in-control ANOS and in-control average sample size , or (ii) minimising an overall range of shifts , based on different in-control EANOS and ASS 0 combinations. Nutzungsrecht: © 2015 Taylor & Francis 2015 process mean side-sensitive group runs synthetic double sampling exponentially weighted moving average synthetic double sampling Process controls Comparative analysis Control charts Sampling techniques Design optimization Studies Operations research Tan, Eng Keng oth Chong, Zhi Lin oth Haridy, Salah oth Enthalten in International journal of production research London : Taylor & Francis, 1961 53(2015), 15, Seite 4735-19 (DE-627)129358835 (DE-600)160477-6 (DE-576)014731150 0020-7543 nnns volume:53 year:2015 number:15 pages:4735-19 http://dx.doi.org/10.1080/00207543.2015.1043033 Volltext http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1043033 http://search.proquest.com/docview/1692805829 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4126 85.35 AVZ 52.70 AVZ AR 53 2015 15 4735-19 |
spelling |
10.1080/00207543.2015.1043033 doi PQ20160617 (DE-627)OLC1963689135 (DE-599)GBVOLC1963689135 (PRQ)c2781-8c1b665ec8adc0dc0560dc8ca22dc5b7d0c7d9f228081b72e39ca757c8d334280 (KEY)0019873020150000053001504735sidesensitivegrouprunsdoublesamplingssgrdschartfor DE-627 ger DE-627 rakwb eng 600 620 330 DNB 85.35 bkl 52.70 bkl Khoo, Michael B.C verfasserin aut Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a side-sensitive group runs double sampling (SSGRDS) chart to detect shifts in the process mean. It improves the side-sensitive group runs chart proposed by Gadre and Rattihalli. The implementation of the SSGRDS chart is explained. The newly developed SSGRDS chart is compared with the synthetic, double sampling, synthetic double sampling, side-sensitive group runs and exponentially weighted moving average charts, in terms of the zero-state and steady-state average number of observations to signal (ANOS) and expected average number of observations to signal (EANOS). The zero-state and steady-state ANOS (ssANOS) and EANOS results reveal that the optimal SSGRDS chart generally performs well for detecting small and large mean shifts, from an overall perspective, compared with the optimal versions of other competing charts. This article provides tables of optimal charting parameters to facilitate the design of the SSGRDS chart. From these tables, the user can directly determine the optimal charting parameters for (i) minimising the standardised mean shift , based on different combinations of in-control ANOS and in-control average sample size , or (ii) minimising an overall range of shifts , based on different in-control EANOS and ASS 0 combinations. Nutzungsrecht: © 2015 Taylor & Francis 2015 process mean side-sensitive group runs synthetic double sampling exponentially weighted moving average synthetic double sampling Process controls Comparative analysis Control charts Sampling techniques Design optimization Studies Operations research Tan, Eng Keng oth Chong, Zhi Lin oth Haridy, Salah oth Enthalten in International journal of production research London : Taylor & Francis, 1961 53(2015), 15, Seite 4735-19 (DE-627)129358835 (DE-600)160477-6 (DE-576)014731150 0020-7543 nnns volume:53 year:2015 number:15 pages:4735-19 http://dx.doi.org/10.1080/00207543.2015.1043033 Volltext http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1043033 http://search.proquest.com/docview/1692805829 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4126 85.35 AVZ 52.70 AVZ AR 53 2015 15 4735-19 |
allfields_unstemmed |
10.1080/00207543.2015.1043033 doi PQ20160617 (DE-627)OLC1963689135 (DE-599)GBVOLC1963689135 (PRQ)c2781-8c1b665ec8adc0dc0560dc8ca22dc5b7d0c7d9f228081b72e39ca757c8d334280 (KEY)0019873020150000053001504735sidesensitivegrouprunsdoublesamplingssgrdschartfor DE-627 ger DE-627 rakwb eng 600 620 330 DNB 85.35 bkl 52.70 bkl Khoo, Michael B.C verfasserin aut Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a side-sensitive group runs double sampling (SSGRDS) chart to detect shifts in the process mean. It improves the side-sensitive group runs chart proposed by Gadre and Rattihalli. The implementation of the SSGRDS chart is explained. The newly developed SSGRDS chart is compared with the synthetic, double sampling, synthetic double sampling, side-sensitive group runs and exponentially weighted moving average charts, in terms of the zero-state and steady-state average number of observations to signal (ANOS) and expected average number of observations to signal (EANOS). The zero-state and steady-state ANOS (ssANOS) and EANOS results reveal that the optimal SSGRDS chart generally performs well for detecting small and large mean shifts, from an overall perspective, compared with the optimal versions of other competing charts. This article provides tables of optimal charting parameters to facilitate the design of the SSGRDS chart. From these tables, the user can directly determine the optimal charting parameters for (i) minimising the standardised mean shift , based on different combinations of in-control ANOS and in-control average sample size , or (ii) minimising an overall range of shifts , based on different in-control EANOS and ASS 0 combinations. Nutzungsrecht: © 2015 Taylor & Francis 2015 process mean side-sensitive group runs synthetic double sampling exponentially weighted moving average synthetic double sampling Process controls Comparative analysis Control charts Sampling techniques Design optimization Studies Operations research Tan, Eng Keng oth Chong, Zhi Lin oth Haridy, Salah oth Enthalten in International journal of production research London : Taylor & Francis, 1961 53(2015), 15, Seite 4735-19 (DE-627)129358835 (DE-600)160477-6 (DE-576)014731150 0020-7543 nnns volume:53 year:2015 number:15 pages:4735-19 http://dx.doi.org/10.1080/00207543.2015.1043033 Volltext http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1043033 http://search.proquest.com/docview/1692805829 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4126 85.35 AVZ 52.70 AVZ AR 53 2015 15 4735-19 |
allfieldsGer |
10.1080/00207543.2015.1043033 doi PQ20160617 (DE-627)OLC1963689135 (DE-599)GBVOLC1963689135 (PRQ)c2781-8c1b665ec8adc0dc0560dc8ca22dc5b7d0c7d9f228081b72e39ca757c8d334280 (KEY)0019873020150000053001504735sidesensitivegrouprunsdoublesamplingssgrdschartfor DE-627 ger DE-627 rakwb eng 600 620 330 DNB 85.35 bkl 52.70 bkl Khoo, Michael B.C verfasserin aut Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a side-sensitive group runs double sampling (SSGRDS) chart to detect shifts in the process mean. It improves the side-sensitive group runs chart proposed by Gadre and Rattihalli. The implementation of the SSGRDS chart is explained. The newly developed SSGRDS chart is compared with the synthetic, double sampling, synthetic double sampling, side-sensitive group runs and exponentially weighted moving average charts, in terms of the zero-state and steady-state average number of observations to signal (ANOS) and expected average number of observations to signal (EANOS). The zero-state and steady-state ANOS (ssANOS) and EANOS results reveal that the optimal SSGRDS chart generally performs well for detecting small and large mean shifts, from an overall perspective, compared with the optimal versions of other competing charts. This article provides tables of optimal charting parameters to facilitate the design of the SSGRDS chart. From these tables, the user can directly determine the optimal charting parameters for (i) minimising the standardised mean shift , based on different combinations of in-control ANOS and in-control average sample size , or (ii) minimising an overall range of shifts , based on different in-control EANOS and ASS 0 combinations. Nutzungsrecht: © 2015 Taylor & Francis 2015 process mean side-sensitive group runs synthetic double sampling exponentially weighted moving average synthetic double sampling Process controls Comparative analysis Control charts Sampling techniques Design optimization Studies Operations research Tan, Eng Keng oth Chong, Zhi Lin oth Haridy, Salah oth Enthalten in International journal of production research London : Taylor & Francis, 1961 53(2015), 15, Seite 4735-19 (DE-627)129358835 (DE-600)160477-6 (DE-576)014731150 0020-7543 nnns volume:53 year:2015 number:15 pages:4735-19 http://dx.doi.org/10.1080/00207543.2015.1043033 Volltext http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1043033 http://search.proquest.com/docview/1692805829 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4126 85.35 AVZ 52.70 AVZ AR 53 2015 15 4735-19 |
allfieldsSound |
10.1080/00207543.2015.1043033 doi PQ20160617 (DE-627)OLC1963689135 (DE-599)GBVOLC1963689135 (PRQ)c2781-8c1b665ec8adc0dc0560dc8ca22dc5b7d0c7d9f228081b72e39ca757c8d334280 (KEY)0019873020150000053001504735sidesensitivegrouprunsdoublesamplingssgrdschartfor DE-627 ger DE-627 rakwb eng 600 620 330 DNB 85.35 bkl 52.70 bkl Khoo, Michael B.C verfasserin aut Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a side-sensitive group runs double sampling (SSGRDS) chart to detect shifts in the process mean. It improves the side-sensitive group runs chart proposed by Gadre and Rattihalli. The implementation of the SSGRDS chart is explained. The newly developed SSGRDS chart is compared with the synthetic, double sampling, synthetic double sampling, side-sensitive group runs and exponentially weighted moving average charts, in terms of the zero-state and steady-state average number of observations to signal (ANOS) and expected average number of observations to signal (EANOS). The zero-state and steady-state ANOS (ssANOS) and EANOS results reveal that the optimal SSGRDS chart generally performs well for detecting small and large mean shifts, from an overall perspective, compared with the optimal versions of other competing charts. This article provides tables of optimal charting parameters to facilitate the design of the SSGRDS chart. From these tables, the user can directly determine the optimal charting parameters for (i) minimising the standardised mean shift , based on different combinations of in-control ANOS and in-control average sample size , or (ii) minimising an overall range of shifts , based on different in-control EANOS and ASS 0 combinations. Nutzungsrecht: © 2015 Taylor & Francis 2015 process mean side-sensitive group runs synthetic double sampling exponentially weighted moving average synthetic double sampling Process controls Comparative analysis Control charts Sampling techniques Design optimization Studies Operations research Tan, Eng Keng oth Chong, Zhi Lin oth Haridy, Salah oth Enthalten in International journal of production research London : Taylor & Francis, 1961 53(2015), 15, Seite 4735-19 (DE-627)129358835 (DE-600)160477-6 (DE-576)014731150 0020-7543 nnns volume:53 year:2015 number:15 pages:4735-19 http://dx.doi.org/10.1080/00207543.2015.1043033 Volltext http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1043033 http://search.proquest.com/docview/1692805829 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4126 85.35 AVZ 52.70 AVZ AR 53 2015 15 4735-19 |
language |
English |
source |
Enthalten in International journal of production research 53(2015), 15, Seite 4735-19 volume:53 year:2015 number:15 pages:4735-19 |
sourceStr |
Enthalten in International journal of production research 53(2015), 15, Seite 4735-19 volume:53 year:2015 number:15 pages:4735-19 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
process mean side-sensitive group runs synthetic double sampling exponentially weighted moving average synthetic double sampling Process controls Comparative analysis Control charts Sampling techniques Design optimization Studies Operations research |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
International journal of production research |
authorswithroles_txt_mv |
Khoo, Michael B.C @@aut@@ Tan, Eng Keng @@oth@@ Chong, Zhi Lin @@oth@@ Haridy, Salah @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129358835 |
dewey-sort |
3600 |
id |
OLC1963689135 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963689135</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221044753.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/00207543.2015.1043033</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963689135</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963689135</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2781-8c1b665ec8adc0dc0560dc8ca22dc5b7d0c7d9f228081b72e39ca757c8d334280</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0019873020150000053001504735sidesensitivegrouprunsdoublesamplingssgrdschartfor</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">620</subfield><subfield code="a">330</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khoo, Michael B.C</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a side-sensitive group runs double sampling (SSGRDS) chart to detect shifts in the process mean. It improves the side-sensitive group runs chart proposed by Gadre and Rattihalli. The implementation of the SSGRDS chart is explained. The newly developed SSGRDS chart is compared with the synthetic, double sampling, synthetic double sampling, side-sensitive group runs and exponentially weighted moving average charts, in terms of the zero-state and steady-state average number of observations to signal (ANOS) and expected average number of observations to signal (EANOS). The zero-state and steady-state ANOS (ssANOS) and EANOS results reveal that the optimal SSGRDS chart generally performs well for detecting small and large mean shifts, from an overall perspective, compared with the optimal versions of other competing charts. This article provides tables of optimal charting parameters to facilitate the design of the SSGRDS chart. From these tables, the user can directly determine the optimal charting parameters for (i) minimising the standardised mean shift , based on different combinations of in-control ANOS and in-control average sample size , or (ii) minimising an overall range of shifts , based on different in-control EANOS and ASS 0 combinations.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015 Taylor & Francis 2015</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">process mean</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">side-sensitive group runs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthetic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">double sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exponentially weighted moving average</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthetic double sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Process controls</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Comparative analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control charts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sampling techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Eng Keng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chong, Zhi Lin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haridy, Salah</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of production research</subfield><subfield code="d">London : Taylor & Francis, 1961</subfield><subfield code="g">53(2015), 15, Seite 4735-19</subfield><subfield code="w">(DE-627)129358835</subfield><subfield code="w">(DE-600)160477-6</subfield><subfield code="w">(DE-576)014731150</subfield><subfield code="x">0020-7543</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:15</subfield><subfield code="g">pages:4735-19</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/00207543.2015.1043033</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1043033</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1692805829</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2015</subfield><subfield code="e">15</subfield><subfield code="h">4735-19</subfield></datafield></record></collection>
|
author |
Khoo, Michael B.C |
spellingShingle |
Khoo, Michael B.C ddc 600 bkl 85.35 bkl 52.70 misc process mean misc side-sensitive group runs misc synthetic misc double sampling misc exponentially weighted moving average misc synthetic double sampling misc Process controls misc Comparative analysis misc Control charts misc Sampling techniques misc Design optimization misc Studies misc Operations research Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts |
authorStr |
Khoo, Michael B.C |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129358835 |
format |
Article |
dewey-ones |
600 - Technology 620 - Engineering & allied operations 330 - Economics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-7543 |
topic_title |
600 620 330 DNB 85.35 bkl 52.70 bkl Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts process mean side-sensitive group runs synthetic double sampling exponentially weighted moving average synthetic double sampling Process controls Comparative analysis Control charts Sampling techniques Design optimization Studies Operations research |
topic |
ddc 600 bkl 85.35 bkl 52.70 misc process mean misc side-sensitive group runs misc synthetic misc double sampling misc exponentially weighted moving average misc synthetic double sampling misc Process controls misc Comparative analysis misc Control charts misc Sampling techniques misc Design optimization misc Studies misc Operations research |
topic_unstemmed |
ddc 600 bkl 85.35 bkl 52.70 misc process mean misc side-sensitive group runs misc synthetic misc double sampling misc exponentially weighted moving average misc synthetic double sampling misc Process controls misc Comparative analysis misc Control charts misc Sampling techniques misc Design optimization misc Studies misc Operations research |
topic_browse |
ddc 600 bkl 85.35 bkl 52.70 misc process mean misc side-sensitive group runs misc synthetic misc double sampling misc exponentially weighted moving average misc synthetic double sampling misc Process controls misc Comparative analysis misc Control charts misc Sampling techniques misc Design optimization misc Studies misc Operations research |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
e k t ek ekt z l c zl zlc s h sh |
hierarchy_parent_title |
International journal of production research |
hierarchy_parent_id |
129358835 |
dewey-tens |
600 - Technology 620 - Engineering 330 - Economics |
hierarchy_top_title |
International journal of production research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129358835 (DE-600)160477-6 (DE-576)014731150 |
title |
Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts |
ctrlnum |
(DE-627)OLC1963689135 (DE-599)GBVOLC1963689135 (PRQ)c2781-8c1b665ec8adc0dc0560dc8ca22dc5b7d0c7d9f228081b72e39ca757c8d334280 (KEY)0019873020150000053001504735sidesensitivegrouprunsdoublesamplingssgrdschartfor |
title_full |
Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts |
author_sort |
Khoo, Michael B.C |
journal |
International journal of production research |
journalStr |
International journal of production research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
4735 |
author_browse |
Khoo, Michael B.C |
container_volume |
53 |
class |
600 620 330 DNB 85.35 bkl 52.70 bkl |
format_se |
Aufsätze |
author-letter |
Khoo, Michael B.C |
doi_str_mv |
10.1080/00207543.2015.1043033 |
dewey-full |
600 620 330 |
title_sort |
side-sensitive group runs double sampling (ssgrds) chart for detecting mean shifts |
title_auth |
Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts |
abstract |
This paper proposes a side-sensitive group runs double sampling (SSGRDS) chart to detect shifts in the process mean. It improves the side-sensitive group runs chart proposed by Gadre and Rattihalli. The implementation of the SSGRDS chart is explained. The newly developed SSGRDS chart is compared with the synthetic, double sampling, synthetic double sampling, side-sensitive group runs and exponentially weighted moving average charts, in terms of the zero-state and steady-state average number of observations to signal (ANOS) and expected average number of observations to signal (EANOS). The zero-state and steady-state ANOS (ssANOS) and EANOS results reveal that the optimal SSGRDS chart generally performs well for detecting small and large mean shifts, from an overall perspective, compared with the optimal versions of other competing charts. This article provides tables of optimal charting parameters to facilitate the design of the SSGRDS chart. From these tables, the user can directly determine the optimal charting parameters for (i) minimising the standardised mean shift , based on different combinations of in-control ANOS and in-control average sample size , or (ii) minimising an overall range of shifts , based on different in-control EANOS and ASS 0 combinations. |
abstractGer |
This paper proposes a side-sensitive group runs double sampling (SSGRDS) chart to detect shifts in the process mean. It improves the side-sensitive group runs chart proposed by Gadre and Rattihalli. The implementation of the SSGRDS chart is explained. The newly developed SSGRDS chart is compared with the synthetic, double sampling, synthetic double sampling, side-sensitive group runs and exponentially weighted moving average charts, in terms of the zero-state and steady-state average number of observations to signal (ANOS) and expected average number of observations to signal (EANOS). The zero-state and steady-state ANOS (ssANOS) and EANOS results reveal that the optimal SSGRDS chart generally performs well for detecting small and large mean shifts, from an overall perspective, compared with the optimal versions of other competing charts. This article provides tables of optimal charting parameters to facilitate the design of the SSGRDS chart. From these tables, the user can directly determine the optimal charting parameters for (i) minimising the standardised mean shift , based on different combinations of in-control ANOS and in-control average sample size , or (ii) minimising an overall range of shifts , based on different in-control EANOS and ASS 0 combinations. |
abstract_unstemmed |
This paper proposes a side-sensitive group runs double sampling (SSGRDS) chart to detect shifts in the process mean. It improves the side-sensitive group runs chart proposed by Gadre and Rattihalli. The implementation of the SSGRDS chart is explained. The newly developed SSGRDS chart is compared with the synthetic, double sampling, synthetic double sampling, side-sensitive group runs and exponentially weighted moving average charts, in terms of the zero-state and steady-state average number of observations to signal (ANOS) and expected average number of observations to signal (EANOS). The zero-state and steady-state ANOS (ssANOS) and EANOS results reveal that the optimal SSGRDS chart generally performs well for detecting small and large mean shifts, from an overall perspective, compared with the optimal versions of other competing charts. This article provides tables of optimal charting parameters to facilitate the design of the SSGRDS chart. From these tables, the user can directly determine the optimal charting parameters for (i) minimising the standardised mean shift , based on different combinations of in-control ANOS and in-control average sample size , or (ii) minimising an overall range of shifts , based on different in-control EANOS and ASS 0 combinations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4126 |
container_issue |
15 |
title_short |
Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts |
url |
http://dx.doi.org/10.1080/00207543.2015.1043033 http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1043033 http://search.proquest.com/docview/1692805829 |
remote_bool |
false |
author2 |
Tan, Eng Keng Chong, Zhi Lin Haridy, Salah |
author2Str |
Tan, Eng Keng Chong, Zhi Lin Haridy, Salah |
ppnlink |
129358835 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1080/00207543.2015.1043033 |
up_date |
2024-07-04T06:17:35.025Z |
_version_ |
1803628162608791552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963689135</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221044753.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/00207543.2015.1043033</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963689135</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963689135</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2781-8c1b665ec8adc0dc0560dc8ca22dc5b7d0c7d9f228081b72e39ca757c8d334280</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0019873020150000053001504735sidesensitivegrouprunsdoublesamplingssgrdschartfor</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">620</subfield><subfield code="a">330</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khoo, Michael B.C</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a side-sensitive group runs double sampling (SSGRDS) chart to detect shifts in the process mean. It improves the side-sensitive group runs chart proposed by Gadre and Rattihalli. The implementation of the SSGRDS chart is explained. The newly developed SSGRDS chart is compared with the synthetic, double sampling, synthetic double sampling, side-sensitive group runs and exponentially weighted moving average charts, in terms of the zero-state and steady-state average number of observations to signal (ANOS) and expected average number of observations to signal (EANOS). The zero-state and steady-state ANOS (ssANOS) and EANOS results reveal that the optimal SSGRDS chart generally performs well for detecting small and large mean shifts, from an overall perspective, compared with the optimal versions of other competing charts. This article provides tables of optimal charting parameters to facilitate the design of the SSGRDS chart. From these tables, the user can directly determine the optimal charting parameters for (i) minimising the standardised mean shift , based on different combinations of in-control ANOS and in-control average sample size , or (ii) minimising an overall range of shifts , based on different in-control EANOS and ASS 0 combinations.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015 Taylor & Francis 2015</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">process mean</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">side-sensitive group runs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthetic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">double sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exponentially weighted moving average</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthetic double sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Process controls</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Comparative analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control charts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sampling techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Eng Keng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chong, Zhi Lin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haridy, Salah</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of production research</subfield><subfield code="d">London : Taylor & Francis, 1961</subfield><subfield code="g">53(2015), 15, Seite 4735-19</subfield><subfield code="w">(DE-627)129358835</subfield><subfield code="w">(DE-600)160477-6</subfield><subfield code="w">(DE-576)014731150</subfield><subfield code="x">0020-7543</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:15</subfield><subfield code="g">pages:4735-19</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/00207543.2015.1043033</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1043033</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1692805829</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2015</subfield><subfield code="e">15</subfield><subfield code="h">4735-19</subfield></datafield></record></collection>
|
score |
7.400505 |