Segmented classification analysis with a class of rectangle-screened elliptical populations
In many practical situations, a statistical practitioner often faces a problem of classifying an object from one of the segmented (or screened) populations where the segmentation was conducted by a set of screening variables. This paper addresses this problem, proposing and studying yet another opti...
Ausführliche Beschreibung
Autor*in: |
Kim, Hea-Jung [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2015 Taylor & Francis 2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of applied statistics - Abingdon [u.a.] : Taylor & Francis, 1984, 42(2015), 9, Seite 1877 |
---|---|
Übergeordnetes Werk: |
volume:42 ; year:2015 ; number:9 ; pages:1877 |
Links: |
---|
DOI / URN: |
10.1080/02664763.2015.1014886 |
---|
Katalog-ID: |
OLC1963704002 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1963704002 | ||
003 | DE-627 | ||
005 | 20230714161531.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/02664763.2015.1014886 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1963704002 | ||
035 | |a (DE-599)GBVOLC1963704002 | ||
035 | |a (PRQ)i2013-e7ab557a6854befde08108fd1c9010d501426bbb8bff602f3423f513ef7f19d0 | ||
035 | |a (KEY)0020036020150000042000901877segmentedclassificationanalysiswithaclassofrectang | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DNB |
100 | 1 | |a Kim, Hea-Jung |e verfasserin |4 aut | |
245 | 1 | 0 | |a Segmented classification analysis with a class of rectangle-screened elliptical populations |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In many practical situations, a statistical practitioner often faces a problem of classifying an object from one of the segmented (or screened) populations where the segmentation was conducted by a set of screening variables. This paper addresses this problem, proposing and studying yet another optimal rule for classification with segmented populations. A class of q-dimensional rectangle-screened elliptically contoured (RSEC) distributions is considered for flexibly modeling the segmented populations. Based on the properties of the RSEC distributions, a parametric procedure for the segmented classification analysis (SCA) is proposed. This includes motivation for the SCA as well as some theoretical propositions regarding its optimal rule and properties. These properties allow us to establish other important results which include an efficient estimation of the rule by the Monte Carlo expectation-conditional maximization algorithm and an optimal variable selection procedure. Two numerical examples making use of utilizing a simulation study and a real dataset application and advocating the SCA procedure are also provided. | ||
540 | |a Nutzungsrecht: © 2015 Taylor & Francis 2015 | ||
650 | 4 | |a optimalrule | |
650 | 4 | |a MCECM algorithm | |
650 | 4 | |a segmented classification | |
650 | 4 | |a 62F30 | |
650 | 4 | |a 62E10 | |
650 | 4 | |a rectangle-screened elliptically contoured distribution | |
650 | 4 | |a variable selection | |
650 | 4 | |a Monte Carlo simulation | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Statistical analysis | |
650 | 4 | |a Studies | |
773 | 0 | 8 | |i Enthalten in |t Journal of applied statistics |d Abingdon [u.a.] : Taylor & Francis, 1984 |g 42(2015), 9, Seite 1877 |w (DE-627)130678848 |w (DE-600)882603-1 |w (DE-576)016221605 |x 0266-4763 |7 nnns |
773 | 1 | 8 | |g volume:42 |g year:2015 |g number:9 |g pages:1877 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/02664763.2015.1014886 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/02664763.2015.1014886 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1697792518 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 42 |j 2015 |e 9 |h 1877 |
author_variant |
h j k hjk |
---|---|
matchkey_str |
article:02664763:2015----::emnecasfctoaayiwtalsorcagecend |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1080/02664763.2015.1014886 doi PQ20160617 (DE-627)OLC1963704002 (DE-599)GBVOLC1963704002 (PRQ)i2013-e7ab557a6854befde08108fd1c9010d501426bbb8bff602f3423f513ef7f19d0 (KEY)0020036020150000042000901877segmentedclassificationanalysiswithaclassofrectang DE-627 ger DE-627 rakwb eng 510 DNB Kim, Hea-Jung verfasserin aut Segmented classification analysis with a class of rectangle-screened elliptical populations 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In many practical situations, a statistical practitioner often faces a problem of classifying an object from one of the segmented (or screened) populations where the segmentation was conducted by a set of screening variables. This paper addresses this problem, proposing and studying yet another optimal rule for classification with segmented populations. A class of q-dimensional rectangle-screened elliptically contoured (RSEC) distributions is considered for flexibly modeling the segmented populations. Based on the properties of the RSEC distributions, a parametric procedure for the segmented classification analysis (SCA) is proposed. This includes motivation for the SCA as well as some theoretical propositions regarding its optimal rule and properties. These properties allow us to establish other important results which include an efficient estimation of the rule by the Monte Carlo expectation-conditional maximization algorithm and an optimal variable selection procedure. Two numerical examples making use of utilizing a simulation study and a real dataset application and advocating the SCA procedure are also provided. Nutzungsrecht: © 2015 Taylor & Francis 2015 optimalrule MCECM algorithm segmented classification 62F30 62E10 rectangle-screened elliptically contoured distribution variable selection Monte Carlo simulation Algorithms Statistical analysis Studies Enthalten in Journal of applied statistics Abingdon [u.a.] : Taylor & Francis, 1984 42(2015), 9, Seite 1877 (DE-627)130678848 (DE-600)882603-1 (DE-576)016221605 0266-4763 nnns volume:42 year:2015 number:9 pages:1877 http://dx.doi.org/10.1080/02664763.2015.1014886 Volltext http://www.tandfonline.com/doi/abs/10.1080/02664763.2015.1014886 http://search.proquest.com/docview/1697792518 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 AR 42 2015 9 1877 |
spelling |
10.1080/02664763.2015.1014886 doi PQ20160617 (DE-627)OLC1963704002 (DE-599)GBVOLC1963704002 (PRQ)i2013-e7ab557a6854befde08108fd1c9010d501426bbb8bff602f3423f513ef7f19d0 (KEY)0020036020150000042000901877segmentedclassificationanalysiswithaclassofrectang DE-627 ger DE-627 rakwb eng 510 DNB Kim, Hea-Jung verfasserin aut Segmented classification analysis with a class of rectangle-screened elliptical populations 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In many practical situations, a statistical practitioner often faces a problem of classifying an object from one of the segmented (or screened) populations where the segmentation was conducted by a set of screening variables. This paper addresses this problem, proposing and studying yet another optimal rule for classification with segmented populations. A class of q-dimensional rectangle-screened elliptically contoured (RSEC) distributions is considered for flexibly modeling the segmented populations. Based on the properties of the RSEC distributions, a parametric procedure for the segmented classification analysis (SCA) is proposed. This includes motivation for the SCA as well as some theoretical propositions regarding its optimal rule and properties. These properties allow us to establish other important results which include an efficient estimation of the rule by the Monte Carlo expectation-conditional maximization algorithm and an optimal variable selection procedure. Two numerical examples making use of utilizing a simulation study and a real dataset application and advocating the SCA procedure are also provided. Nutzungsrecht: © 2015 Taylor & Francis 2015 optimalrule MCECM algorithm segmented classification 62F30 62E10 rectangle-screened elliptically contoured distribution variable selection Monte Carlo simulation Algorithms Statistical analysis Studies Enthalten in Journal of applied statistics Abingdon [u.a.] : Taylor & Francis, 1984 42(2015), 9, Seite 1877 (DE-627)130678848 (DE-600)882603-1 (DE-576)016221605 0266-4763 nnns volume:42 year:2015 number:9 pages:1877 http://dx.doi.org/10.1080/02664763.2015.1014886 Volltext http://www.tandfonline.com/doi/abs/10.1080/02664763.2015.1014886 http://search.proquest.com/docview/1697792518 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 AR 42 2015 9 1877 |
allfields_unstemmed |
10.1080/02664763.2015.1014886 doi PQ20160617 (DE-627)OLC1963704002 (DE-599)GBVOLC1963704002 (PRQ)i2013-e7ab557a6854befde08108fd1c9010d501426bbb8bff602f3423f513ef7f19d0 (KEY)0020036020150000042000901877segmentedclassificationanalysiswithaclassofrectang DE-627 ger DE-627 rakwb eng 510 DNB Kim, Hea-Jung verfasserin aut Segmented classification analysis with a class of rectangle-screened elliptical populations 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In many practical situations, a statistical practitioner often faces a problem of classifying an object from one of the segmented (or screened) populations where the segmentation was conducted by a set of screening variables. This paper addresses this problem, proposing and studying yet another optimal rule for classification with segmented populations. A class of q-dimensional rectangle-screened elliptically contoured (RSEC) distributions is considered for flexibly modeling the segmented populations. Based on the properties of the RSEC distributions, a parametric procedure for the segmented classification analysis (SCA) is proposed. This includes motivation for the SCA as well as some theoretical propositions regarding its optimal rule and properties. These properties allow us to establish other important results which include an efficient estimation of the rule by the Monte Carlo expectation-conditional maximization algorithm and an optimal variable selection procedure. Two numerical examples making use of utilizing a simulation study and a real dataset application and advocating the SCA procedure are also provided. Nutzungsrecht: © 2015 Taylor & Francis 2015 optimalrule MCECM algorithm segmented classification 62F30 62E10 rectangle-screened elliptically contoured distribution variable selection Monte Carlo simulation Algorithms Statistical analysis Studies Enthalten in Journal of applied statistics Abingdon [u.a.] : Taylor & Francis, 1984 42(2015), 9, Seite 1877 (DE-627)130678848 (DE-600)882603-1 (DE-576)016221605 0266-4763 nnns volume:42 year:2015 number:9 pages:1877 http://dx.doi.org/10.1080/02664763.2015.1014886 Volltext http://www.tandfonline.com/doi/abs/10.1080/02664763.2015.1014886 http://search.proquest.com/docview/1697792518 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 AR 42 2015 9 1877 |
allfieldsGer |
10.1080/02664763.2015.1014886 doi PQ20160617 (DE-627)OLC1963704002 (DE-599)GBVOLC1963704002 (PRQ)i2013-e7ab557a6854befde08108fd1c9010d501426bbb8bff602f3423f513ef7f19d0 (KEY)0020036020150000042000901877segmentedclassificationanalysiswithaclassofrectang DE-627 ger DE-627 rakwb eng 510 DNB Kim, Hea-Jung verfasserin aut Segmented classification analysis with a class of rectangle-screened elliptical populations 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In many practical situations, a statistical practitioner often faces a problem of classifying an object from one of the segmented (or screened) populations where the segmentation was conducted by a set of screening variables. This paper addresses this problem, proposing and studying yet another optimal rule for classification with segmented populations. A class of q-dimensional rectangle-screened elliptically contoured (RSEC) distributions is considered for flexibly modeling the segmented populations. Based on the properties of the RSEC distributions, a parametric procedure for the segmented classification analysis (SCA) is proposed. This includes motivation for the SCA as well as some theoretical propositions regarding its optimal rule and properties. These properties allow us to establish other important results which include an efficient estimation of the rule by the Monte Carlo expectation-conditional maximization algorithm and an optimal variable selection procedure. Two numerical examples making use of utilizing a simulation study and a real dataset application and advocating the SCA procedure are also provided. Nutzungsrecht: © 2015 Taylor & Francis 2015 optimalrule MCECM algorithm segmented classification 62F30 62E10 rectangle-screened elliptically contoured distribution variable selection Monte Carlo simulation Algorithms Statistical analysis Studies Enthalten in Journal of applied statistics Abingdon [u.a.] : Taylor & Francis, 1984 42(2015), 9, Seite 1877 (DE-627)130678848 (DE-600)882603-1 (DE-576)016221605 0266-4763 nnns volume:42 year:2015 number:9 pages:1877 http://dx.doi.org/10.1080/02664763.2015.1014886 Volltext http://www.tandfonline.com/doi/abs/10.1080/02664763.2015.1014886 http://search.proquest.com/docview/1697792518 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 AR 42 2015 9 1877 |
allfieldsSound |
10.1080/02664763.2015.1014886 doi PQ20160617 (DE-627)OLC1963704002 (DE-599)GBVOLC1963704002 (PRQ)i2013-e7ab557a6854befde08108fd1c9010d501426bbb8bff602f3423f513ef7f19d0 (KEY)0020036020150000042000901877segmentedclassificationanalysiswithaclassofrectang DE-627 ger DE-627 rakwb eng 510 DNB Kim, Hea-Jung verfasserin aut Segmented classification analysis with a class of rectangle-screened elliptical populations 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In many practical situations, a statistical practitioner often faces a problem of classifying an object from one of the segmented (or screened) populations where the segmentation was conducted by a set of screening variables. This paper addresses this problem, proposing and studying yet another optimal rule for classification with segmented populations. A class of q-dimensional rectangle-screened elliptically contoured (RSEC) distributions is considered for flexibly modeling the segmented populations. Based on the properties of the RSEC distributions, a parametric procedure for the segmented classification analysis (SCA) is proposed. This includes motivation for the SCA as well as some theoretical propositions regarding its optimal rule and properties. These properties allow us to establish other important results which include an efficient estimation of the rule by the Monte Carlo expectation-conditional maximization algorithm and an optimal variable selection procedure. Two numerical examples making use of utilizing a simulation study and a real dataset application and advocating the SCA procedure are also provided. Nutzungsrecht: © 2015 Taylor & Francis 2015 optimalrule MCECM algorithm segmented classification 62F30 62E10 rectangle-screened elliptically contoured distribution variable selection Monte Carlo simulation Algorithms Statistical analysis Studies Enthalten in Journal of applied statistics Abingdon [u.a.] : Taylor & Francis, 1984 42(2015), 9, Seite 1877 (DE-627)130678848 (DE-600)882603-1 (DE-576)016221605 0266-4763 nnns volume:42 year:2015 number:9 pages:1877 http://dx.doi.org/10.1080/02664763.2015.1014886 Volltext http://www.tandfonline.com/doi/abs/10.1080/02664763.2015.1014886 http://search.proquest.com/docview/1697792518 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 AR 42 2015 9 1877 |
language |
English |
source |
Enthalten in Journal of applied statistics 42(2015), 9, Seite 1877 volume:42 year:2015 number:9 pages:1877 |
sourceStr |
Enthalten in Journal of applied statistics 42(2015), 9, Seite 1877 volume:42 year:2015 number:9 pages:1877 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
optimalrule MCECM algorithm segmented classification 62F30 62E10 rectangle-screened elliptically contoured distribution variable selection Monte Carlo simulation Algorithms Statistical analysis Studies |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of applied statistics |
authorswithroles_txt_mv |
Kim, Hea-Jung @@aut@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
130678848 |
dewey-sort |
3510 |
id |
OLC1963704002 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963704002</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714161531.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/02664763.2015.1014886</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963704002</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963704002</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i2013-e7ab557a6854befde08108fd1c9010d501426bbb8bff602f3423f513ef7f19d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0020036020150000042000901877segmentedclassificationanalysiswithaclassofrectang</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, Hea-Jung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Segmented classification analysis with a class of rectangle-screened elliptical populations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In many practical situations, a statistical practitioner often faces a problem of classifying an object from one of the segmented (or screened) populations where the segmentation was conducted by a set of screening variables. This paper addresses this problem, proposing and studying yet another optimal rule for classification with segmented populations. A class of q-dimensional rectangle-screened elliptically contoured (RSEC) distributions is considered for flexibly modeling the segmented populations. Based on the properties of the RSEC distributions, a parametric procedure for the segmented classification analysis (SCA) is proposed. This includes motivation for the SCA as well as some theoretical propositions regarding its optimal rule and properties. These properties allow us to establish other important results which include an efficient estimation of the rule by the Monte Carlo expectation-conditional maximization algorithm and an optimal variable selection procedure. Two numerical examples making use of utilizing a simulation study and a real dataset application and advocating the SCA procedure are also provided.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015 Taylor & Francis 2015</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimalrule</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MCECM algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">segmented classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">62F30</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">62E10</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rectangle-screened elliptically contoured distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variable selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of applied statistics</subfield><subfield code="d">Abingdon [u.a.] : Taylor & Francis, 1984</subfield><subfield code="g">42(2015), 9, Seite 1877</subfield><subfield code="w">(DE-627)130678848</subfield><subfield code="w">(DE-600)882603-1</subfield><subfield code="w">(DE-576)016221605</subfield><subfield code="x">0266-4763</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:1877</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/02664763.2015.1014886</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/02664763.2015.1014886</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1697792518</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2015</subfield><subfield code="e">9</subfield><subfield code="h">1877</subfield></datafield></record></collection>
|
author |
Kim, Hea-Jung |
spellingShingle |
Kim, Hea-Jung ddc 510 misc optimalrule misc MCECM algorithm misc segmented classification misc 62F30 misc 62E10 misc rectangle-screened elliptically contoured distribution misc variable selection misc Monte Carlo simulation misc Algorithms misc Statistical analysis misc Studies Segmented classification analysis with a class of rectangle-screened elliptical populations |
authorStr |
Kim, Hea-Jung |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130678848 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0266-4763 |
topic_title |
510 DNB Segmented classification analysis with a class of rectangle-screened elliptical populations optimalrule MCECM algorithm segmented classification 62F30 62E10 rectangle-screened elliptically contoured distribution variable selection Monte Carlo simulation Algorithms Statistical analysis Studies |
topic |
ddc 510 misc optimalrule misc MCECM algorithm misc segmented classification misc 62F30 misc 62E10 misc rectangle-screened elliptically contoured distribution misc variable selection misc Monte Carlo simulation misc Algorithms misc Statistical analysis misc Studies |
topic_unstemmed |
ddc 510 misc optimalrule misc MCECM algorithm misc segmented classification misc 62F30 misc 62E10 misc rectangle-screened elliptically contoured distribution misc variable selection misc Monte Carlo simulation misc Algorithms misc Statistical analysis misc Studies |
topic_browse |
ddc 510 misc optimalrule misc MCECM algorithm misc segmented classification misc 62F30 misc 62E10 misc rectangle-screened elliptically contoured distribution misc variable selection misc Monte Carlo simulation misc Algorithms misc Statistical analysis misc Studies |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of applied statistics |
hierarchy_parent_id |
130678848 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of applied statistics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130678848 (DE-600)882603-1 (DE-576)016221605 |
title |
Segmented classification analysis with a class of rectangle-screened elliptical populations |
ctrlnum |
(DE-627)OLC1963704002 (DE-599)GBVOLC1963704002 (PRQ)i2013-e7ab557a6854befde08108fd1c9010d501426bbb8bff602f3423f513ef7f19d0 (KEY)0020036020150000042000901877segmentedclassificationanalysiswithaclassofrectang |
title_full |
Segmented classification analysis with a class of rectangle-screened elliptical populations |
author_sort |
Kim, Hea-Jung |
journal |
Journal of applied statistics |
journalStr |
Journal of applied statistics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1877 |
author_browse |
Kim, Hea-Jung |
container_volume |
42 |
class |
510 DNB |
format_se |
Aufsätze |
author-letter |
Kim, Hea-Jung |
doi_str_mv |
10.1080/02664763.2015.1014886 |
dewey-full |
510 |
title_sort |
segmented classification analysis with a class of rectangle-screened elliptical populations |
title_auth |
Segmented classification analysis with a class of rectangle-screened elliptical populations |
abstract |
In many practical situations, a statistical practitioner often faces a problem of classifying an object from one of the segmented (or screened) populations where the segmentation was conducted by a set of screening variables. This paper addresses this problem, proposing and studying yet another optimal rule for classification with segmented populations. A class of q-dimensional rectangle-screened elliptically contoured (RSEC) distributions is considered for flexibly modeling the segmented populations. Based on the properties of the RSEC distributions, a parametric procedure for the segmented classification analysis (SCA) is proposed. This includes motivation for the SCA as well as some theoretical propositions regarding its optimal rule and properties. These properties allow us to establish other important results which include an efficient estimation of the rule by the Monte Carlo expectation-conditional maximization algorithm and an optimal variable selection procedure. Two numerical examples making use of utilizing a simulation study and a real dataset application and advocating the SCA procedure are also provided. |
abstractGer |
In many practical situations, a statistical practitioner often faces a problem of classifying an object from one of the segmented (or screened) populations where the segmentation was conducted by a set of screening variables. This paper addresses this problem, proposing and studying yet another optimal rule for classification with segmented populations. A class of q-dimensional rectangle-screened elliptically contoured (RSEC) distributions is considered for flexibly modeling the segmented populations. Based on the properties of the RSEC distributions, a parametric procedure for the segmented classification analysis (SCA) is proposed. This includes motivation for the SCA as well as some theoretical propositions regarding its optimal rule and properties. These properties allow us to establish other important results which include an efficient estimation of the rule by the Monte Carlo expectation-conditional maximization algorithm and an optimal variable selection procedure. Two numerical examples making use of utilizing a simulation study and a real dataset application and advocating the SCA procedure are also provided. |
abstract_unstemmed |
In many practical situations, a statistical practitioner often faces a problem of classifying an object from one of the segmented (or screened) populations where the segmentation was conducted by a set of screening variables. This paper addresses this problem, proposing and studying yet another optimal rule for classification with segmented populations. A class of q-dimensional rectangle-screened elliptically contoured (RSEC) distributions is considered for flexibly modeling the segmented populations. Based on the properties of the RSEC distributions, a parametric procedure for the segmented classification analysis (SCA) is proposed. This includes motivation for the SCA as well as some theoretical propositions regarding its optimal rule and properties. These properties allow us to establish other important results which include an efficient estimation of the rule by the Monte Carlo expectation-conditional maximization algorithm and an optimal variable selection procedure. Two numerical examples making use of utilizing a simulation study and a real dataset application and advocating the SCA procedure are also provided. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 |
container_issue |
9 |
title_short |
Segmented classification analysis with a class of rectangle-screened elliptical populations |
url |
http://dx.doi.org/10.1080/02664763.2015.1014886 http://www.tandfonline.com/doi/abs/10.1080/02664763.2015.1014886 http://search.proquest.com/docview/1697792518 |
remote_bool |
false |
ppnlink |
130678848 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1080/02664763.2015.1014886 |
up_date |
2024-07-04T06:19:32.570Z |
_version_ |
1803628285853171712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963704002</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714161531.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/02664763.2015.1014886</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963704002</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963704002</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i2013-e7ab557a6854befde08108fd1c9010d501426bbb8bff602f3423f513ef7f19d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0020036020150000042000901877segmentedclassificationanalysiswithaclassofrectang</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, Hea-Jung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Segmented classification analysis with a class of rectangle-screened elliptical populations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In many practical situations, a statistical practitioner often faces a problem of classifying an object from one of the segmented (or screened) populations where the segmentation was conducted by a set of screening variables. This paper addresses this problem, proposing and studying yet another optimal rule for classification with segmented populations. A class of q-dimensional rectangle-screened elliptically contoured (RSEC) distributions is considered for flexibly modeling the segmented populations. Based on the properties of the RSEC distributions, a parametric procedure for the segmented classification analysis (SCA) is proposed. This includes motivation for the SCA as well as some theoretical propositions regarding its optimal rule and properties. These properties allow us to establish other important results which include an efficient estimation of the rule by the Monte Carlo expectation-conditional maximization algorithm and an optimal variable selection procedure. Two numerical examples making use of utilizing a simulation study and a real dataset application and advocating the SCA procedure are also provided.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015 Taylor & Francis 2015</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimalrule</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MCECM algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">segmented classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">62F30</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">62E10</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rectangle-screened elliptically contoured distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variable selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of applied statistics</subfield><subfield code="d">Abingdon [u.a.] : Taylor & Francis, 1984</subfield><subfield code="g">42(2015), 9, Seite 1877</subfield><subfield code="w">(DE-627)130678848</subfield><subfield code="w">(DE-600)882603-1</subfield><subfield code="w">(DE-576)016221605</subfield><subfield code="x">0266-4763</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:1877</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/02664763.2015.1014886</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/02664763.2015.1014886</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1697792518</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2015</subfield><subfield code="e">9</subfield><subfield code="h">1877</subfield></datafield></record></collection>
|
score |
7.400613 |