Quantum Subdivision Capacities and Continuous-Time Quantum Coding
Quantum memories can be regarded as quantum channels that transmit information through time without moving it through space. Aiming at a reliable storage of information, we may thus not only encode at the beginning and decode at the end, but also intervene during the transmission-a possibility not c...
Ausführliche Beschreibung
Autor*in: |
Muller-Hermes, Alexander [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
continuous-time quantum coding information storage reliability |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on information theory - Piscataway, NJ : IEEE, 1963, 61(2015), 1, Seite 565-581 |
---|---|
Übergeordnetes Werk: |
volume:61 ; year:2015 ; number:1 ; pages:565-581 |
Links: |
---|
DOI / URN: |
10.1109/TIT.2014.2366456 |
---|
Katalog-ID: |
OLC1963912365 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1963912365 | ||
003 | DE-627 | ||
005 | 20220221163251.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TIT.2014.2366456 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1963912365 | ||
035 | |a (DE-599)GBVOLC1963912365 | ||
035 | |a (PRQ)a2475-c4512f132b20af7f5c3f3afe8e7db0939b8aee53d1521fdd1f69f1aad2bd16a70 | ||
035 | |a (KEY)0023448620150000061000100565quantumsubdivisioncapacitiesandcontinuoustimequant | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 620 |q DNB |
084 | |a SA 5570 |q AVZ |2 rvk | ||
100 | 1 | |a Muller-Hermes, Alexander |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantum Subdivision Capacities and Continuous-Time Quantum Coding |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Quantum memories can be regarded as quantum channels that transmit information through time without moving it through space. Aiming at a reliable storage of information, we may thus not only encode at the beginning and decode at the end, but also intervene during the transmission-a possibility not captured by the ordinary capacities in quantum Shannon theory. In this paper, we introduce capacities that take this possibility into account and study them, in particular, for the transmission of quantum information via dynamical semigroups of Lindblad form. When the evolution is subdivided and supplemented by additional continuous semigroups acting on arbitrary block sizes, we show that the capacity of the ideal channel can be obtained in all cases. If the supplementary evolution is reversible, however, this is no longer the case. Upper and lower bounds for this scenario are proven. Finally, we provide a continuous coding scheme and simple examples showing that adding a purely dissipative term to a Liouvillian can sometimes increase the quantum capacity. | ||
650 | 4 | |a quantum subdivision capacitiy | |
650 | 4 | |a quantum Shannon theory | |
650 | 4 | |a quantum information | |
650 | 4 | |a Quantum mechanics | |
650 | 4 | |a quantum channel | |
650 | 4 | |a channel coding | |
650 | 4 | |a Relays | |
650 | 4 | |a quantum capacity | |
650 | 4 | |a continuous-time quantum coding | |
650 | 4 | |a Markovian dynamics | |
650 | 4 | |a decoding | |
650 | 4 | |a quantum memories | |
650 | 4 | |a information storage reliability | |
650 | 4 | |a Information processing | |
650 | 4 | |a Lindblad form | |
650 | 4 | |a quantum information transmission | |
650 | 4 | |a Noise | |
650 | 4 | |a quantum communication | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Codes | |
650 | 4 | |a Quantum physics | |
650 | 4 | |a Information dissemination | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Mathematical Physics | |
700 | 1 | |a Reeb, David |4 oth | |
700 | 1 | |a Wolf, Michael M |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on information theory |d Piscataway, NJ : IEEE, 1963 |g 61(2015), 1, Seite 565-581 |w (DE-627)12954731X |w (DE-600)218505-2 |w (DE-576)01499819X |x 0018-9448 |7 nnns |
773 | 1 | 8 | |g volume:61 |g year:2015 |g number:1 |g pages:565-581 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TIT.2014.2366456 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6948359 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1644762744 |
856 | 4 | 2 | |u http://arxiv.org/abs/1310.2856 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OPC-BBI | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4318 | ||
936 | r | v | |a SA 5570 |
951 | |a AR | ||
952 | |d 61 |j 2015 |e 1 |h 565-581 |
author_variant |
a m h amh |
---|---|
matchkey_str |
article:00189448:2015----::unusbiiinaaiisncniuut |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1109/TIT.2014.2366456 doi PQ20160617 (DE-627)OLC1963912365 (DE-599)GBVOLC1963912365 (PRQ)a2475-c4512f132b20af7f5c3f3afe8e7db0939b8aee53d1521fdd1f69f1aad2bd16a70 (KEY)0023448620150000061000100565quantumsubdivisioncapacitiesandcontinuoustimequant DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Muller-Hermes, Alexander verfasserin aut Quantum Subdivision Capacities and Continuous-Time Quantum Coding 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Quantum memories can be regarded as quantum channels that transmit information through time without moving it through space. Aiming at a reliable storage of information, we may thus not only encode at the beginning and decode at the end, but also intervene during the transmission-a possibility not captured by the ordinary capacities in quantum Shannon theory. In this paper, we introduce capacities that take this possibility into account and study them, in particular, for the transmission of quantum information via dynamical semigroups of Lindblad form. When the evolution is subdivided and supplemented by additional continuous semigroups acting on arbitrary block sizes, we show that the capacity of the ideal channel can be obtained in all cases. If the supplementary evolution is reversible, however, this is no longer the case. Upper and lower bounds for this scenario are proven. Finally, we provide a continuous coding scheme and simple examples showing that adding a purely dissipative term to a Liouvillian can sometimes increase the quantum capacity. quantum subdivision capacitiy quantum Shannon theory quantum information Quantum mechanics quantum channel channel coding Relays quantum capacity continuous-time quantum coding Markovian dynamics decoding quantum memories information storage reliability Information processing Lindblad form quantum information transmission Noise quantum communication Quantum theory Codes Quantum physics Information dissemination Quantum Physics Mathematical Physics Reeb, David oth Wolf, Michael M oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 61(2015), 1, Seite 565-581 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:61 year:2015 number:1 pages:565-581 http://dx.doi.org/10.1109/TIT.2014.2366456 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6948359 http://search.proquest.com/docview/1644762744 http://arxiv.org/abs/1310.2856 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4318 SA 5570 AR 61 2015 1 565-581 |
spelling |
10.1109/TIT.2014.2366456 doi PQ20160617 (DE-627)OLC1963912365 (DE-599)GBVOLC1963912365 (PRQ)a2475-c4512f132b20af7f5c3f3afe8e7db0939b8aee53d1521fdd1f69f1aad2bd16a70 (KEY)0023448620150000061000100565quantumsubdivisioncapacitiesandcontinuoustimequant DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Muller-Hermes, Alexander verfasserin aut Quantum Subdivision Capacities and Continuous-Time Quantum Coding 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Quantum memories can be regarded as quantum channels that transmit information through time without moving it through space. Aiming at a reliable storage of information, we may thus not only encode at the beginning and decode at the end, but also intervene during the transmission-a possibility not captured by the ordinary capacities in quantum Shannon theory. In this paper, we introduce capacities that take this possibility into account and study them, in particular, for the transmission of quantum information via dynamical semigroups of Lindblad form. When the evolution is subdivided and supplemented by additional continuous semigroups acting on arbitrary block sizes, we show that the capacity of the ideal channel can be obtained in all cases. If the supplementary evolution is reversible, however, this is no longer the case. Upper and lower bounds for this scenario are proven. Finally, we provide a continuous coding scheme and simple examples showing that adding a purely dissipative term to a Liouvillian can sometimes increase the quantum capacity. quantum subdivision capacitiy quantum Shannon theory quantum information Quantum mechanics quantum channel channel coding Relays quantum capacity continuous-time quantum coding Markovian dynamics decoding quantum memories information storage reliability Information processing Lindblad form quantum information transmission Noise quantum communication Quantum theory Codes Quantum physics Information dissemination Quantum Physics Mathematical Physics Reeb, David oth Wolf, Michael M oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 61(2015), 1, Seite 565-581 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:61 year:2015 number:1 pages:565-581 http://dx.doi.org/10.1109/TIT.2014.2366456 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6948359 http://search.proquest.com/docview/1644762744 http://arxiv.org/abs/1310.2856 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4318 SA 5570 AR 61 2015 1 565-581 |
allfields_unstemmed |
10.1109/TIT.2014.2366456 doi PQ20160617 (DE-627)OLC1963912365 (DE-599)GBVOLC1963912365 (PRQ)a2475-c4512f132b20af7f5c3f3afe8e7db0939b8aee53d1521fdd1f69f1aad2bd16a70 (KEY)0023448620150000061000100565quantumsubdivisioncapacitiesandcontinuoustimequant DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Muller-Hermes, Alexander verfasserin aut Quantum Subdivision Capacities and Continuous-Time Quantum Coding 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Quantum memories can be regarded as quantum channels that transmit information through time without moving it through space. Aiming at a reliable storage of information, we may thus not only encode at the beginning and decode at the end, but also intervene during the transmission-a possibility not captured by the ordinary capacities in quantum Shannon theory. In this paper, we introduce capacities that take this possibility into account and study them, in particular, for the transmission of quantum information via dynamical semigroups of Lindblad form. When the evolution is subdivided and supplemented by additional continuous semigroups acting on arbitrary block sizes, we show that the capacity of the ideal channel can be obtained in all cases. If the supplementary evolution is reversible, however, this is no longer the case. Upper and lower bounds for this scenario are proven. Finally, we provide a continuous coding scheme and simple examples showing that adding a purely dissipative term to a Liouvillian can sometimes increase the quantum capacity. quantum subdivision capacitiy quantum Shannon theory quantum information Quantum mechanics quantum channel channel coding Relays quantum capacity continuous-time quantum coding Markovian dynamics decoding quantum memories information storage reliability Information processing Lindblad form quantum information transmission Noise quantum communication Quantum theory Codes Quantum physics Information dissemination Quantum Physics Mathematical Physics Reeb, David oth Wolf, Michael M oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 61(2015), 1, Seite 565-581 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:61 year:2015 number:1 pages:565-581 http://dx.doi.org/10.1109/TIT.2014.2366456 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6948359 http://search.proquest.com/docview/1644762744 http://arxiv.org/abs/1310.2856 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4318 SA 5570 AR 61 2015 1 565-581 |
allfieldsGer |
10.1109/TIT.2014.2366456 doi PQ20160617 (DE-627)OLC1963912365 (DE-599)GBVOLC1963912365 (PRQ)a2475-c4512f132b20af7f5c3f3afe8e7db0939b8aee53d1521fdd1f69f1aad2bd16a70 (KEY)0023448620150000061000100565quantumsubdivisioncapacitiesandcontinuoustimequant DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Muller-Hermes, Alexander verfasserin aut Quantum Subdivision Capacities and Continuous-Time Quantum Coding 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Quantum memories can be regarded as quantum channels that transmit information through time without moving it through space. Aiming at a reliable storage of information, we may thus not only encode at the beginning and decode at the end, but also intervene during the transmission-a possibility not captured by the ordinary capacities in quantum Shannon theory. In this paper, we introduce capacities that take this possibility into account and study them, in particular, for the transmission of quantum information via dynamical semigroups of Lindblad form. When the evolution is subdivided and supplemented by additional continuous semigroups acting on arbitrary block sizes, we show that the capacity of the ideal channel can be obtained in all cases. If the supplementary evolution is reversible, however, this is no longer the case. Upper and lower bounds for this scenario are proven. Finally, we provide a continuous coding scheme and simple examples showing that adding a purely dissipative term to a Liouvillian can sometimes increase the quantum capacity. quantum subdivision capacitiy quantum Shannon theory quantum information Quantum mechanics quantum channel channel coding Relays quantum capacity continuous-time quantum coding Markovian dynamics decoding quantum memories information storage reliability Information processing Lindblad form quantum information transmission Noise quantum communication Quantum theory Codes Quantum physics Information dissemination Quantum Physics Mathematical Physics Reeb, David oth Wolf, Michael M oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 61(2015), 1, Seite 565-581 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:61 year:2015 number:1 pages:565-581 http://dx.doi.org/10.1109/TIT.2014.2366456 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6948359 http://search.proquest.com/docview/1644762744 http://arxiv.org/abs/1310.2856 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4318 SA 5570 AR 61 2015 1 565-581 |
allfieldsSound |
10.1109/TIT.2014.2366456 doi PQ20160617 (DE-627)OLC1963912365 (DE-599)GBVOLC1963912365 (PRQ)a2475-c4512f132b20af7f5c3f3afe8e7db0939b8aee53d1521fdd1f69f1aad2bd16a70 (KEY)0023448620150000061000100565quantumsubdivisioncapacitiesandcontinuoustimequant DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Muller-Hermes, Alexander verfasserin aut Quantum Subdivision Capacities and Continuous-Time Quantum Coding 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Quantum memories can be regarded as quantum channels that transmit information through time without moving it through space. Aiming at a reliable storage of information, we may thus not only encode at the beginning and decode at the end, but also intervene during the transmission-a possibility not captured by the ordinary capacities in quantum Shannon theory. In this paper, we introduce capacities that take this possibility into account and study them, in particular, for the transmission of quantum information via dynamical semigroups of Lindblad form. When the evolution is subdivided and supplemented by additional continuous semigroups acting on arbitrary block sizes, we show that the capacity of the ideal channel can be obtained in all cases. If the supplementary evolution is reversible, however, this is no longer the case. Upper and lower bounds for this scenario are proven. Finally, we provide a continuous coding scheme and simple examples showing that adding a purely dissipative term to a Liouvillian can sometimes increase the quantum capacity. quantum subdivision capacitiy quantum Shannon theory quantum information Quantum mechanics quantum channel channel coding Relays quantum capacity continuous-time quantum coding Markovian dynamics decoding quantum memories information storage reliability Information processing Lindblad form quantum information transmission Noise quantum communication Quantum theory Codes Quantum physics Information dissemination Quantum Physics Mathematical Physics Reeb, David oth Wolf, Michael M oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 61(2015), 1, Seite 565-581 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:61 year:2015 number:1 pages:565-581 http://dx.doi.org/10.1109/TIT.2014.2366456 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6948359 http://search.proquest.com/docview/1644762744 http://arxiv.org/abs/1310.2856 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4318 SA 5570 AR 61 2015 1 565-581 |
language |
English |
source |
Enthalten in IEEE transactions on information theory 61(2015), 1, Seite 565-581 volume:61 year:2015 number:1 pages:565-581 |
sourceStr |
Enthalten in IEEE transactions on information theory 61(2015), 1, Seite 565-581 volume:61 year:2015 number:1 pages:565-581 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
quantum subdivision capacitiy quantum Shannon theory quantum information Quantum mechanics quantum channel channel coding Relays quantum capacity continuous-time quantum coding Markovian dynamics decoding quantum memories information storage reliability Information processing Lindblad form quantum information transmission Noise quantum communication Quantum theory Codes Quantum physics Information dissemination Quantum Physics Mathematical Physics |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on information theory |
authorswithroles_txt_mv |
Muller-Hermes, Alexander @@aut@@ Reeb, David @@oth@@ Wolf, Michael M @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
12954731X |
dewey-sort |
270 |
id |
OLC1963912365 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963912365</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221163251.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIT.2014.2366456</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963912365</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963912365</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a2475-c4512f132b20af7f5c3f3afe8e7db0939b8aee53d1521fdd1f69f1aad2bd16a70</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0023448620150000061000100565quantumsubdivisioncapacitiesandcontinuoustimequant</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5570</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Muller-Hermes, Alexander</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum Subdivision Capacities and Continuous-Time Quantum Coding</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quantum memories can be regarded as quantum channels that transmit information through time without moving it through space. Aiming at a reliable storage of information, we may thus not only encode at the beginning and decode at the end, but also intervene during the transmission-a possibility not captured by the ordinary capacities in quantum Shannon theory. In this paper, we introduce capacities that take this possibility into account and study them, in particular, for the transmission of quantum information via dynamical semigroups of Lindblad form. When the evolution is subdivided and supplemented by additional continuous semigroups acting on arbitrary block sizes, we show that the capacity of the ideal channel can be obtained in all cases. If the supplementary evolution is reversible, however, this is no longer the case. Upper and lower bounds for this scenario are proven. Finally, we provide a continuous coding scheme and simple examples showing that adding a purely dissipative term to a Liouvillian can sometimes increase the quantum capacity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum subdivision capacitiy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum Shannon theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">channel coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum capacity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continuous-time quantum coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markovian dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">decoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum memories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">information storage reliability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lindblad form</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum information transmission</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information dissemination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reeb, David</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wolf, Michael M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on information theory</subfield><subfield code="d">Piscataway, NJ : IEEE, 1963</subfield><subfield code="g">61(2015), 1, Seite 565-581</subfield><subfield code="w">(DE-627)12954731X</subfield><subfield code="w">(DE-600)218505-2</subfield><subfield code="w">(DE-576)01499819X</subfield><subfield code="x">0018-9448</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:565-581</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIT.2014.2366456</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6948359</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1644762744</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1310.2856</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5570</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">565-581</subfield></datafield></record></collection>
|
author |
Muller-Hermes, Alexander |
spellingShingle |
Muller-Hermes, Alexander ddc 070 rvk SA 5570 misc quantum subdivision capacitiy misc quantum Shannon theory misc quantum information misc Quantum mechanics misc quantum channel misc channel coding misc Relays misc quantum capacity misc continuous-time quantum coding misc Markovian dynamics misc decoding misc quantum memories misc information storage reliability misc Information processing misc Lindblad form misc quantum information transmission misc Noise misc quantum communication misc Quantum theory misc Codes misc Quantum physics misc Information dissemination misc Quantum Physics misc Mathematical Physics Quantum Subdivision Capacities and Continuous-Time Quantum Coding |
authorStr |
Muller-Hermes, Alexander |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12954731X |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9448 |
topic_title |
070 620 DNB SA 5570 AVZ rvk Quantum Subdivision Capacities and Continuous-Time Quantum Coding quantum subdivision capacitiy quantum Shannon theory quantum information Quantum mechanics quantum channel channel coding Relays quantum capacity continuous-time quantum coding Markovian dynamics decoding quantum memories information storage reliability Information processing Lindblad form quantum information transmission Noise quantum communication Quantum theory Codes Quantum physics Information dissemination Quantum Physics Mathematical Physics |
topic |
ddc 070 rvk SA 5570 misc quantum subdivision capacitiy misc quantum Shannon theory misc quantum information misc Quantum mechanics misc quantum channel misc channel coding misc Relays misc quantum capacity misc continuous-time quantum coding misc Markovian dynamics misc decoding misc quantum memories misc information storage reliability misc Information processing misc Lindblad form misc quantum information transmission misc Noise misc quantum communication misc Quantum theory misc Codes misc Quantum physics misc Information dissemination misc Quantum Physics misc Mathematical Physics |
topic_unstemmed |
ddc 070 rvk SA 5570 misc quantum subdivision capacitiy misc quantum Shannon theory misc quantum information misc Quantum mechanics misc quantum channel misc channel coding misc Relays misc quantum capacity misc continuous-time quantum coding misc Markovian dynamics misc decoding misc quantum memories misc information storage reliability misc Information processing misc Lindblad form misc quantum information transmission misc Noise misc quantum communication misc Quantum theory misc Codes misc Quantum physics misc Information dissemination misc Quantum Physics misc Mathematical Physics |
topic_browse |
ddc 070 rvk SA 5570 misc quantum subdivision capacitiy misc quantum Shannon theory misc quantum information misc Quantum mechanics misc quantum channel misc channel coding misc Relays misc quantum capacity misc continuous-time quantum coding misc Markovian dynamics misc decoding misc quantum memories misc information storage reliability misc Information processing misc Lindblad form misc quantum information transmission misc Noise misc quantum communication misc Quantum theory misc Codes misc Quantum physics misc Information dissemination misc Quantum Physics misc Mathematical Physics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
d r dr m m w mm mmw |
hierarchy_parent_title |
IEEE transactions on information theory |
hierarchy_parent_id |
12954731X |
dewey-tens |
070 - News media, journalism & publishing 620 - Engineering |
hierarchy_top_title |
IEEE transactions on information theory |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X |
title |
Quantum Subdivision Capacities and Continuous-Time Quantum Coding |
ctrlnum |
(DE-627)OLC1963912365 (DE-599)GBVOLC1963912365 (PRQ)a2475-c4512f132b20af7f5c3f3afe8e7db0939b8aee53d1521fdd1f69f1aad2bd16a70 (KEY)0023448620150000061000100565quantumsubdivisioncapacitiesandcontinuoustimequant |
title_full |
Quantum Subdivision Capacities and Continuous-Time Quantum Coding |
author_sort |
Muller-Hermes, Alexander |
journal |
IEEE transactions on information theory |
journalStr |
IEEE transactions on information theory |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
565 |
author_browse |
Muller-Hermes, Alexander |
container_volume |
61 |
class |
070 620 DNB SA 5570 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Muller-Hermes, Alexander |
doi_str_mv |
10.1109/TIT.2014.2366456 |
dewey-full |
070 620 |
title_sort |
quantum subdivision capacities and continuous-time quantum coding |
title_auth |
Quantum Subdivision Capacities and Continuous-Time Quantum Coding |
abstract |
Quantum memories can be regarded as quantum channels that transmit information through time without moving it through space. Aiming at a reliable storage of information, we may thus not only encode at the beginning and decode at the end, but also intervene during the transmission-a possibility not captured by the ordinary capacities in quantum Shannon theory. In this paper, we introduce capacities that take this possibility into account and study them, in particular, for the transmission of quantum information via dynamical semigroups of Lindblad form. When the evolution is subdivided and supplemented by additional continuous semigroups acting on arbitrary block sizes, we show that the capacity of the ideal channel can be obtained in all cases. If the supplementary evolution is reversible, however, this is no longer the case. Upper and lower bounds for this scenario are proven. Finally, we provide a continuous coding scheme and simple examples showing that adding a purely dissipative term to a Liouvillian can sometimes increase the quantum capacity. |
abstractGer |
Quantum memories can be regarded as quantum channels that transmit information through time without moving it through space. Aiming at a reliable storage of information, we may thus not only encode at the beginning and decode at the end, but also intervene during the transmission-a possibility not captured by the ordinary capacities in quantum Shannon theory. In this paper, we introduce capacities that take this possibility into account and study them, in particular, for the transmission of quantum information via dynamical semigroups of Lindblad form. When the evolution is subdivided and supplemented by additional continuous semigroups acting on arbitrary block sizes, we show that the capacity of the ideal channel can be obtained in all cases. If the supplementary evolution is reversible, however, this is no longer the case. Upper and lower bounds for this scenario are proven. Finally, we provide a continuous coding scheme and simple examples showing that adding a purely dissipative term to a Liouvillian can sometimes increase the quantum capacity. |
abstract_unstemmed |
Quantum memories can be regarded as quantum channels that transmit information through time without moving it through space. Aiming at a reliable storage of information, we may thus not only encode at the beginning and decode at the end, but also intervene during the transmission-a possibility not captured by the ordinary capacities in quantum Shannon theory. In this paper, we introduce capacities that take this possibility into account and study them, in particular, for the transmission of quantum information via dynamical semigroups of Lindblad form. When the evolution is subdivided and supplemented by additional continuous semigroups acting on arbitrary block sizes, we show that the capacity of the ideal channel can be obtained in all cases. If the supplementary evolution is reversible, however, this is no longer the case. Upper and lower bounds for this scenario are proven. Finally, we provide a continuous coding scheme and simple examples showing that adding a purely dissipative term to a Liouvillian can sometimes increase the quantum capacity. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4318 |
container_issue |
1 |
title_short |
Quantum Subdivision Capacities and Continuous-Time Quantum Coding |
url |
http://dx.doi.org/10.1109/TIT.2014.2366456 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6948359 http://search.proquest.com/docview/1644762744 http://arxiv.org/abs/1310.2856 |
remote_bool |
false |
author2 |
Reeb, David Wolf, Michael M |
author2Str |
Reeb, David Wolf, Michael M |
ppnlink |
12954731X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/TIT.2014.2366456 |
up_date |
2024-07-04T06:46:52.665Z |
_version_ |
1803630005615329280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963912365</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221163251.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIT.2014.2366456</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963912365</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963912365</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a2475-c4512f132b20af7f5c3f3afe8e7db0939b8aee53d1521fdd1f69f1aad2bd16a70</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0023448620150000061000100565quantumsubdivisioncapacitiesandcontinuoustimequant</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5570</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Muller-Hermes, Alexander</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum Subdivision Capacities and Continuous-Time Quantum Coding</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quantum memories can be regarded as quantum channels that transmit information through time without moving it through space. Aiming at a reliable storage of information, we may thus not only encode at the beginning and decode at the end, but also intervene during the transmission-a possibility not captured by the ordinary capacities in quantum Shannon theory. In this paper, we introduce capacities that take this possibility into account and study them, in particular, for the transmission of quantum information via dynamical semigroups of Lindblad form. When the evolution is subdivided and supplemented by additional continuous semigroups acting on arbitrary block sizes, we show that the capacity of the ideal channel can be obtained in all cases. If the supplementary evolution is reversible, however, this is no longer the case. Upper and lower bounds for this scenario are proven. Finally, we provide a continuous coding scheme and simple examples showing that adding a purely dissipative term to a Liouvillian can sometimes increase the quantum capacity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum subdivision capacitiy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum Shannon theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">channel coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum capacity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continuous-time quantum coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markovian dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">decoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum memories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">information storage reliability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lindblad form</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum information transmission</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information dissemination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reeb, David</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wolf, Michael M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on information theory</subfield><subfield code="d">Piscataway, NJ : IEEE, 1963</subfield><subfield code="g">61(2015), 1, Seite 565-581</subfield><subfield code="w">(DE-627)12954731X</subfield><subfield code="w">(DE-600)218505-2</subfield><subfield code="w">(DE-576)01499819X</subfield><subfield code="x">0018-9448</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:565-581</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIT.2014.2366456</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6948359</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1644762744</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1310.2856</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5570</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">565-581</subfield></datafield></record></collection>
|
score |
7.400939 |