Upper Bounds on the Capacity of Deletion Channels Using Channel Fragmentation
We study memoryless channels with synchronization errors as defined by a stochastic channel matrix allowing for symbol drop-outs or symbol insertions with particular emphasis on the binary and non-binary deletion channels. We offer a different look at these channels by considering equivalent models...
Ausführliche Beschreibung
Autor*in: |
Rahmati, Mojtaba [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
independent identically distributed deletion channels binary deletion channel capacity deterministic fragmentation process |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on information theory - Piscataway, NJ : IEEE, 1963, 61(2015), 1, Seite 146-156 |
---|---|
Übergeordnetes Werk: |
volume:61 ; year:2015 ; number:1 ; pages:146-156 |
Links: |
---|
DOI / URN: |
10.1109/TIT.2014.2368553 |
---|
Katalog-ID: |
OLC1963917073 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1963917073 | ||
003 | DE-627 | ||
005 | 20220221163251.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TIT.2014.2368553 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1963917073 | ||
035 | |a (DE-599)GBVOLC1963917073 | ||
035 | |a (PRQ)c1863-898fe3fa31da6dfc4cfc365bcd4e669e964b4c218cfd37d63062c1236a7ed9f70 | ||
035 | |a (KEY)0023448620150000061000100146upperboundsonthecapacityofdeletionchannelsusingcha | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 620 |q DNB |
084 | |a SA 5570 |q AVZ |2 rvk | ||
100 | 1 | |a Rahmati, Mojtaba |e verfasserin |4 aut | |
245 | 1 | 0 | |a Upper Bounds on the Capacity of Deletion Channels Using Channel Fragmentation |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We study memoryless channels with synchronization errors as defined by a stochastic channel matrix allowing for symbol drop-outs or symbol insertions with particular emphasis on the binary and non-binary deletion channels. We offer a different look at these channels by considering equivalent models by fragmenting the input sequence where different subsequences travel through different channels. The resulting output symbols are combined appropriately to come up with an equivalent input-output representation of the original channel which allows for derivation of new upper bounds on the channel capacity. We consider both random and deterministic types of fragmentation processes applied to binary and nonbinary deletion channels. With two specific applications of this idea, a random fragmentation applied to a binary deletion channel and a deterministic fragmentation process applied to a nonbinary deletion channel, we prove certain inequality relations among the capacities of the original channels and those of the introduced subchannels. The resulting inequalities prove useful in deriving tighter capacity upper bounds for: 1) independent identically distributed (i.i.d.) deletion channels when the deletion probability exceeds 0.65 and 2) nonbinary deletion channels. Some extensions of these results, for instance, to the case of deletion/substitution channels are also explored. | ||
650 | 4 | |a independent identically distributed deletion channels | |
650 | 4 | |a deletion probability | |
650 | 4 | |a Capacity planning | |
650 | 4 | |a deletion/substitution channe | |
650 | 4 | |a Transmitters | |
650 | 4 | |a channel fragmentation | |
650 | 4 | |a synchronisation | |
650 | 4 | |a Synchronization | |
650 | 4 | |a matrix algebra | |
650 | 4 | |a stochastic processes | |
650 | 4 | |a symbol drop-outs | |
650 | 4 | |a binary deletion channel capacity | |
650 | 4 | |a probability | |
650 | 4 | |a non-binary deletion channel | |
650 | 4 | |a synchronization errors | |
650 | 4 | |a channel capacity | |
650 | 4 | |a capacity upper bounds | |
650 | 4 | |a stochastic channel matrix | |
650 | 4 | |a Upper bound | |
650 | 4 | |a Binary deletion channel | |
650 | 4 | |a inequality relations | |
650 | 4 | |a deterministic fragmentation process | |
650 | 4 | |a memoryless channels | |
650 | 4 | |a nonbinary deletion channel capacity | |
650 | 4 | |a Channel models | |
650 | 4 | |a symbol insertions | |
650 | 4 | |a Receivers | |
650 | 4 | |a Inequality | |
650 | 4 | |a Communication channels | |
650 | 4 | |a Input output | |
650 | 4 | |a Probability | |
650 | 4 | |a Matrix | |
650 | 4 | |a Information theory | |
700 | 1 | |a Duman, Tolga M |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on information theory |d Piscataway, NJ : IEEE, 1963 |g 61(2015), 1, Seite 146-156 |w (DE-627)12954731X |w (DE-600)218505-2 |w (DE-576)01499819X |x 0018-9448 |7 nnns |
773 | 1 | 8 | |g volume:61 |g year:2015 |g number:1 |g pages:146-156 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TIT.2014.2368553 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6949683 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1644762703 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OPC-BBI | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4318 | ||
936 | r | v | |a SA 5570 |
951 | |a AR | ||
952 | |d 61 |j 2015 |e 1 |h 146-156 |
author_variant |
m r mr |
---|---|
matchkey_str |
article:00189448:2015----::pebudoteaaiyfeeinhnessnc |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1109/TIT.2014.2368553 doi PQ20160617 (DE-627)OLC1963917073 (DE-599)GBVOLC1963917073 (PRQ)c1863-898fe3fa31da6dfc4cfc365bcd4e669e964b4c218cfd37d63062c1236a7ed9f70 (KEY)0023448620150000061000100146upperboundsonthecapacityofdeletionchannelsusingcha DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Rahmati, Mojtaba verfasserin aut Upper Bounds on the Capacity of Deletion Channels Using Channel Fragmentation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We study memoryless channels with synchronization errors as defined by a stochastic channel matrix allowing for symbol drop-outs or symbol insertions with particular emphasis on the binary and non-binary deletion channels. We offer a different look at these channels by considering equivalent models by fragmenting the input sequence where different subsequences travel through different channels. The resulting output symbols are combined appropriately to come up with an equivalent input-output representation of the original channel which allows for derivation of new upper bounds on the channel capacity. We consider both random and deterministic types of fragmentation processes applied to binary and nonbinary deletion channels. With two specific applications of this idea, a random fragmentation applied to a binary deletion channel and a deterministic fragmentation process applied to a nonbinary deletion channel, we prove certain inequality relations among the capacities of the original channels and those of the introduced subchannels. The resulting inequalities prove useful in deriving tighter capacity upper bounds for: 1) independent identically distributed (i.i.d.) deletion channels when the deletion probability exceeds 0.65 and 2) nonbinary deletion channels. Some extensions of these results, for instance, to the case of deletion/substitution channels are also explored. independent identically distributed deletion channels deletion probability Capacity planning deletion/substitution channe Transmitters channel fragmentation synchronisation Synchronization matrix algebra stochastic processes symbol drop-outs binary deletion channel capacity probability non-binary deletion channel synchronization errors channel capacity capacity upper bounds stochastic channel matrix Upper bound Binary deletion channel inequality relations deterministic fragmentation process memoryless channels nonbinary deletion channel capacity Channel models symbol insertions Receivers Inequality Communication channels Input output Probability Matrix Information theory Duman, Tolga M oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 61(2015), 1, Seite 146-156 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:61 year:2015 number:1 pages:146-156 http://dx.doi.org/10.1109/TIT.2014.2368553 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6949683 http://search.proquest.com/docview/1644762703 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4318 SA 5570 AR 61 2015 1 146-156 |
spelling |
10.1109/TIT.2014.2368553 doi PQ20160617 (DE-627)OLC1963917073 (DE-599)GBVOLC1963917073 (PRQ)c1863-898fe3fa31da6dfc4cfc365bcd4e669e964b4c218cfd37d63062c1236a7ed9f70 (KEY)0023448620150000061000100146upperboundsonthecapacityofdeletionchannelsusingcha DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Rahmati, Mojtaba verfasserin aut Upper Bounds on the Capacity of Deletion Channels Using Channel Fragmentation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We study memoryless channels with synchronization errors as defined by a stochastic channel matrix allowing for symbol drop-outs or symbol insertions with particular emphasis on the binary and non-binary deletion channels. We offer a different look at these channels by considering equivalent models by fragmenting the input sequence where different subsequences travel through different channels. The resulting output symbols are combined appropriately to come up with an equivalent input-output representation of the original channel which allows for derivation of new upper bounds on the channel capacity. We consider both random and deterministic types of fragmentation processes applied to binary and nonbinary deletion channels. With two specific applications of this idea, a random fragmentation applied to a binary deletion channel and a deterministic fragmentation process applied to a nonbinary deletion channel, we prove certain inequality relations among the capacities of the original channels and those of the introduced subchannels. The resulting inequalities prove useful in deriving tighter capacity upper bounds for: 1) independent identically distributed (i.i.d.) deletion channels when the deletion probability exceeds 0.65 and 2) nonbinary deletion channels. Some extensions of these results, for instance, to the case of deletion/substitution channels are also explored. independent identically distributed deletion channels deletion probability Capacity planning deletion/substitution channe Transmitters channel fragmentation synchronisation Synchronization matrix algebra stochastic processes symbol drop-outs binary deletion channel capacity probability non-binary deletion channel synchronization errors channel capacity capacity upper bounds stochastic channel matrix Upper bound Binary deletion channel inequality relations deterministic fragmentation process memoryless channels nonbinary deletion channel capacity Channel models symbol insertions Receivers Inequality Communication channels Input output Probability Matrix Information theory Duman, Tolga M oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 61(2015), 1, Seite 146-156 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:61 year:2015 number:1 pages:146-156 http://dx.doi.org/10.1109/TIT.2014.2368553 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6949683 http://search.proquest.com/docview/1644762703 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4318 SA 5570 AR 61 2015 1 146-156 |
allfields_unstemmed |
10.1109/TIT.2014.2368553 doi PQ20160617 (DE-627)OLC1963917073 (DE-599)GBVOLC1963917073 (PRQ)c1863-898fe3fa31da6dfc4cfc365bcd4e669e964b4c218cfd37d63062c1236a7ed9f70 (KEY)0023448620150000061000100146upperboundsonthecapacityofdeletionchannelsusingcha DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Rahmati, Mojtaba verfasserin aut Upper Bounds on the Capacity of Deletion Channels Using Channel Fragmentation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We study memoryless channels with synchronization errors as defined by a stochastic channel matrix allowing for symbol drop-outs or symbol insertions with particular emphasis on the binary and non-binary deletion channels. We offer a different look at these channels by considering equivalent models by fragmenting the input sequence where different subsequences travel through different channels. The resulting output symbols are combined appropriately to come up with an equivalent input-output representation of the original channel which allows for derivation of new upper bounds on the channel capacity. We consider both random and deterministic types of fragmentation processes applied to binary and nonbinary deletion channels. With two specific applications of this idea, a random fragmentation applied to a binary deletion channel and a deterministic fragmentation process applied to a nonbinary deletion channel, we prove certain inequality relations among the capacities of the original channels and those of the introduced subchannels. The resulting inequalities prove useful in deriving tighter capacity upper bounds for: 1) independent identically distributed (i.i.d.) deletion channels when the deletion probability exceeds 0.65 and 2) nonbinary deletion channels. Some extensions of these results, for instance, to the case of deletion/substitution channels are also explored. independent identically distributed deletion channels deletion probability Capacity planning deletion/substitution channe Transmitters channel fragmentation synchronisation Synchronization matrix algebra stochastic processes symbol drop-outs binary deletion channel capacity probability non-binary deletion channel synchronization errors channel capacity capacity upper bounds stochastic channel matrix Upper bound Binary deletion channel inequality relations deterministic fragmentation process memoryless channels nonbinary deletion channel capacity Channel models symbol insertions Receivers Inequality Communication channels Input output Probability Matrix Information theory Duman, Tolga M oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 61(2015), 1, Seite 146-156 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:61 year:2015 number:1 pages:146-156 http://dx.doi.org/10.1109/TIT.2014.2368553 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6949683 http://search.proquest.com/docview/1644762703 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4318 SA 5570 AR 61 2015 1 146-156 |
allfieldsGer |
10.1109/TIT.2014.2368553 doi PQ20160617 (DE-627)OLC1963917073 (DE-599)GBVOLC1963917073 (PRQ)c1863-898fe3fa31da6dfc4cfc365bcd4e669e964b4c218cfd37d63062c1236a7ed9f70 (KEY)0023448620150000061000100146upperboundsonthecapacityofdeletionchannelsusingcha DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Rahmati, Mojtaba verfasserin aut Upper Bounds on the Capacity of Deletion Channels Using Channel Fragmentation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We study memoryless channels with synchronization errors as defined by a stochastic channel matrix allowing for symbol drop-outs or symbol insertions with particular emphasis on the binary and non-binary deletion channels. We offer a different look at these channels by considering equivalent models by fragmenting the input sequence where different subsequences travel through different channels. The resulting output symbols are combined appropriately to come up with an equivalent input-output representation of the original channel which allows for derivation of new upper bounds on the channel capacity. We consider both random and deterministic types of fragmentation processes applied to binary and nonbinary deletion channels. With two specific applications of this idea, a random fragmentation applied to a binary deletion channel and a deterministic fragmentation process applied to a nonbinary deletion channel, we prove certain inequality relations among the capacities of the original channels and those of the introduced subchannels. The resulting inequalities prove useful in deriving tighter capacity upper bounds for: 1) independent identically distributed (i.i.d.) deletion channels when the deletion probability exceeds 0.65 and 2) nonbinary deletion channels. Some extensions of these results, for instance, to the case of deletion/substitution channels are also explored. independent identically distributed deletion channels deletion probability Capacity planning deletion/substitution channe Transmitters channel fragmentation synchronisation Synchronization matrix algebra stochastic processes symbol drop-outs binary deletion channel capacity probability non-binary deletion channel synchronization errors channel capacity capacity upper bounds stochastic channel matrix Upper bound Binary deletion channel inequality relations deterministic fragmentation process memoryless channels nonbinary deletion channel capacity Channel models symbol insertions Receivers Inequality Communication channels Input output Probability Matrix Information theory Duman, Tolga M oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 61(2015), 1, Seite 146-156 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:61 year:2015 number:1 pages:146-156 http://dx.doi.org/10.1109/TIT.2014.2368553 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6949683 http://search.proquest.com/docview/1644762703 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4318 SA 5570 AR 61 2015 1 146-156 |
allfieldsSound |
10.1109/TIT.2014.2368553 doi PQ20160617 (DE-627)OLC1963917073 (DE-599)GBVOLC1963917073 (PRQ)c1863-898fe3fa31da6dfc4cfc365bcd4e669e964b4c218cfd37d63062c1236a7ed9f70 (KEY)0023448620150000061000100146upperboundsonthecapacityofdeletionchannelsusingcha DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Rahmati, Mojtaba verfasserin aut Upper Bounds on the Capacity of Deletion Channels Using Channel Fragmentation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We study memoryless channels with synchronization errors as defined by a stochastic channel matrix allowing for symbol drop-outs or symbol insertions with particular emphasis on the binary and non-binary deletion channels. We offer a different look at these channels by considering equivalent models by fragmenting the input sequence where different subsequences travel through different channels. The resulting output symbols are combined appropriately to come up with an equivalent input-output representation of the original channel which allows for derivation of new upper bounds on the channel capacity. We consider both random and deterministic types of fragmentation processes applied to binary and nonbinary deletion channels. With two specific applications of this idea, a random fragmentation applied to a binary deletion channel and a deterministic fragmentation process applied to a nonbinary deletion channel, we prove certain inequality relations among the capacities of the original channels and those of the introduced subchannels. The resulting inequalities prove useful in deriving tighter capacity upper bounds for: 1) independent identically distributed (i.i.d.) deletion channels when the deletion probability exceeds 0.65 and 2) nonbinary deletion channels. Some extensions of these results, for instance, to the case of deletion/substitution channels are also explored. independent identically distributed deletion channels deletion probability Capacity planning deletion/substitution channe Transmitters channel fragmentation synchronisation Synchronization matrix algebra stochastic processes symbol drop-outs binary deletion channel capacity probability non-binary deletion channel synchronization errors channel capacity capacity upper bounds stochastic channel matrix Upper bound Binary deletion channel inequality relations deterministic fragmentation process memoryless channels nonbinary deletion channel capacity Channel models symbol insertions Receivers Inequality Communication channels Input output Probability Matrix Information theory Duman, Tolga M oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 61(2015), 1, Seite 146-156 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:61 year:2015 number:1 pages:146-156 http://dx.doi.org/10.1109/TIT.2014.2368553 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6949683 http://search.proquest.com/docview/1644762703 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4318 SA 5570 AR 61 2015 1 146-156 |
language |
English |
source |
Enthalten in IEEE transactions on information theory 61(2015), 1, Seite 146-156 volume:61 year:2015 number:1 pages:146-156 |
sourceStr |
Enthalten in IEEE transactions on information theory 61(2015), 1, Seite 146-156 volume:61 year:2015 number:1 pages:146-156 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
independent identically distributed deletion channels deletion probability Capacity planning deletion/substitution channe Transmitters channel fragmentation synchronisation Synchronization matrix algebra stochastic processes symbol drop-outs binary deletion channel capacity probability non-binary deletion channel synchronization errors channel capacity capacity upper bounds stochastic channel matrix Upper bound Binary deletion channel inequality relations deterministic fragmentation process memoryless channels nonbinary deletion channel capacity Channel models symbol insertions Receivers Inequality Communication channels Input output Probability Matrix Information theory |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on information theory |
authorswithroles_txt_mv |
Rahmati, Mojtaba @@aut@@ Duman, Tolga M @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
12954731X |
dewey-sort |
270 |
id |
OLC1963917073 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963917073</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221163251.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIT.2014.2368553</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963917073</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963917073</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1863-898fe3fa31da6dfc4cfc365bcd4e669e964b4c218cfd37d63062c1236a7ed9f70</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0023448620150000061000100146upperboundsonthecapacityofdeletionchannelsusingcha</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5570</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rahmati, Mojtaba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Upper Bounds on the Capacity of Deletion Channels Using Channel Fragmentation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study memoryless channels with synchronization errors as defined by a stochastic channel matrix allowing for symbol drop-outs or symbol insertions with particular emphasis on the binary and non-binary deletion channels. We offer a different look at these channels by considering equivalent models by fragmenting the input sequence where different subsequences travel through different channels. The resulting output symbols are combined appropriately to come up with an equivalent input-output representation of the original channel which allows for derivation of new upper bounds on the channel capacity. We consider both random and deterministic types of fragmentation processes applied to binary and nonbinary deletion channels. With two specific applications of this idea, a random fragmentation applied to a binary deletion channel and a deterministic fragmentation process applied to a nonbinary deletion channel, we prove certain inequality relations among the capacities of the original channels and those of the introduced subchannels. The resulting inequalities prove useful in deriving tighter capacity upper bounds for: 1) independent identically distributed (i.i.d.) deletion channels when the deletion probability exceeds 0.65 and 2) nonbinary deletion channels. Some extensions of these results, for instance, to the case of deletion/substitution channels are also explored.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">independent identically distributed deletion channels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deletion probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Capacity planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deletion/substitution channe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmitters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">channel fragmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synchronisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synchronization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">matrix algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">symbol drop-outs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">binary deletion channel capacity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-binary deletion channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synchronization errors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">channel capacity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">capacity upper bounds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic channel matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Upper bound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Binary deletion channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inequality relations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deterministic fragmentation process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">memoryless channels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonbinary deletion channel capacity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Channel models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">symbol insertions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Receivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Communication channels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Input output</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duman, Tolga M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on information theory</subfield><subfield code="d">Piscataway, NJ : IEEE, 1963</subfield><subfield code="g">61(2015), 1, Seite 146-156</subfield><subfield code="w">(DE-627)12954731X</subfield><subfield code="w">(DE-600)218505-2</subfield><subfield code="w">(DE-576)01499819X</subfield><subfield code="x">0018-9448</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:146-156</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIT.2014.2368553</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6949683</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1644762703</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5570</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">146-156</subfield></datafield></record></collection>
|
author |
Rahmati, Mojtaba |
spellingShingle |
Rahmati, Mojtaba ddc 070 rvk SA 5570 misc independent identically distributed deletion channels misc deletion probability misc Capacity planning misc deletion/substitution channe misc Transmitters misc channel fragmentation misc synchronisation misc Synchronization misc matrix algebra misc stochastic processes misc symbol drop-outs misc binary deletion channel capacity misc probability misc non-binary deletion channel misc synchronization errors misc channel capacity misc capacity upper bounds misc stochastic channel matrix misc Upper bound misc Binary deletion channel misc inequality relations misc deterministic fragmentation process misc memoryless channels misc nonbinary deletion channel capacity misc Channel models misc symbol insertions misc Receivers misc Inequality misc Communication channels misc Input output misc Probability misc Matrix misc Information theory Upper Bounds on the Capacity of Deletion Channels Using Channel Fragmentation |
authorStr |
Rahmati, Mojtaba |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12954731X |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9448 |
topic_title |
070 620 DNB SA 5570 AVZ rvk Upper Bounds on the Capacity of Deletion Channels Using Channel Fragmentation independent identically distributed deletion channels deletion probability Capacity planning deletion/substitution channe Transmitters channel fragmentation synchronisation Synchronization matrix algebra stochastic processes symbol drop-outs binary deletion channel capacity probability non-binary deletion channel synchronization errors channel capacity capacity upper bounds stochastic channel matrix Upper bound Binary deletion channel inequality relations deterministic fragmentation process memoryless channels nonbinary deletion channel capacity Channel models symbol insertions Receivers Inequality Communication channels Input output Probability Matrix Information theory |
topic |
ddc 070 rvk SA 5570 misc independent identically distributed deletion channels misc deletion probability misc Capacity planning misc deletion/substitution channe misc Transmitters misc channel fragmentation misc synchronisation misc Synchronization misc matrix algebra misc stochastic processes misc symbol drop-outs misc binary deletion channel capacity misc probability misc non-binary deletion channel misc synchronization errors misc channel capacity misc capacity upper bounds misc stochastic channel matrix misc Upper bound misc Binary deletion channel misc inequality relations misc deterministic fragmentation process misc memoryless channels misc nonbinary deletion channel capacity misc Channel models misc symbol insertions misc Receivers misc Inequality misc Communication channels misc Input output misc Probability misc Matrix misc Information theory |
topic_unstemmed |
ddc 070 rvk SA 5570 misc independent identically distributed deletion channels misc deletion probability misc Capacity planning misc deletion/substitution channe misc Transmitters misc channel fragmentation misc synchronisation misc Synchronization misc matrix algebra misc stochastic processes misc symbol drop-outs misc binary deletion channel capacity misc probability misc non-binary deletion channel misc synchronization errors misc channel capacity misc capacity upper bounds misc stochastic channel matrix misc Upper bound misc Binary deletion channel misc inequality relations misc deterministic fragmentation process misc memoryless channels misc nonbinary deletion channel capacity misc Channel models misc symbol insertions misc Receivers misc Inequality misc Communication channels misc Input output misc Probability misc Matrix misc Information theory |
topic_browse |
ddc 070 rvk SA 5570 misc independent identically distributed deletion channels misc deletion probability misc Capacity planning misc deletion/substitution channe misc Transmitters misc channel fragmentation misc synchronisation misc Synchronization misc matrix algebra misc stochastic processes misc symbol drop-outs misc binary deletion channel capacity misc probability misc non-binary deletion channel misc synchronization errors misc channel capacity misc capacity upper bounds misc stochastic channel matrix misc Upper bound misc Binary deletion channel misc inequality relations misc deterministic fragmentation process misc memoryless channels misc nonbinary deletion channel capacity misc Channel models misc symbol insertions misc Receivers misc Inequality misc Communication channels misc Input output misc Probability misc Matrix misc Information theory |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t m d tm tmd |
hierarchy_parent_title |
IEEE transactions on information theory |
hierarchy_parent_id |
12954731X |
dewey-tens |
070 - News media, journalism & publishing 620 - Engineering |
hierarchy_top_title |
IEEE transactions on information theory |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X |
title |
Upper Bounds on the Capacity of Deletion Channels Using Channel Fragmentation |
ctrlnum |
(DE-627)OLC1963917073 (DE-599)GBVOLC1963917073 (PRQ)c1863-898fe3fa31da6dfc4cfc365bcd4e669e964b4c218cfd37d63062c1236a7ed9f70 (KEY)0023448620150000061000100146upperboundsonthecapacityofdeletionchannelsusingcha |
title_full |
Upper Bounds on the Capacity of Deletion Channels Using Channel Fragmentation |
author_sort |
Rahmati, Mojtaba |
journal |
IEEE transactions on information theory |
journalStr |
IEEE transactions on information theory |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
146 |
author_browse |
Rahmati, Mojtaba |
container_volume |
61 |
class |
070 620 DNB SA 5570 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Rahmati, Mojtaba |
doi_str_mv |
10.1109/TIT.2014.2368553 |
dewey-full |
070 620 |
title_sort |
upper bounds on the capacity of deletion channels using channel fragmentation |
title_auth |
Upper Bounds on the Capacity of Deletion Channels Using Channel Fragmentation |
abstract |
We study memoryless channels with synchronization errors as defined by a stochastic channel matrix allowing for symbol drop-outs or symbol insertions with particular emphasis on the binary and non-binary deletion channels. We offer a different look at these channels by considering equivalent models by fragmenting the input sequence where different subsequences travel through different channels. The resulting output symbols are combined appropriately to come up with an equivalent input-output representation of the original channel which allows for derivation of new upper bounds on the channel capacity. We consider both random and deterministic types of fragmentation processes applied to binary and nonbinary deletion channels. With two specific applications of this idea, a random fragmentation applied to a binary deletion channel and a deterministic fragmentation process applied to a nonbinary deletion channel, we prove certain inequality relations among the capacities of the original channels and those of the introduced subchannels. The resulting inequalities prove useful in deriving tighter capacity upper bounds for: 1) independent identically distributed (i.i.d.) deletion channels when the deletion probability exceeds 0.65 and 2) nonbinary deletion channels. Some extensions of these results, for instance, to the case of deletion/substitution channels are also explored. |
abstractGer |
We study memoryless channels with synchronization errors as defined by a stochastic channel matrix allowing for symbol drop-outs or symbol insertions with particular emphasis on the binary and non-binary deletion channels. We offer a different look at these channels by considering equivalent models by fragmenting the input sequence where different subsequences travel through different channels. The resulting output symbols are combined appropriately to come up with an equivalent input-output representation of the original channel which allows for derivation of new upper bounds on the channel capacity. We consider both random and deterministic types of fragmentation processes applied to binary and nonbinary deletion channels. With two specific applications of this idea, a random fragmentation applied to a binary deletion channel and a deterministic fragmentation process applied to a nonbinary deletion channel, we prove certain inequality relations among the capacities of the original channels and those of the introduced subchannels. The resulting inequalities prove useful in deriving tighter capacity upper bounds for: 1) independent identically distributed (i.i.d.) deletion channels when the deletion probability exceeds 0.65 and 2) nonbinary deletion channels. Some extensions of these results, for instance, to the case of deletion/substitution channels are also explored. |
abstract_unstemmed |
We study memoryless channels with synchronization errors as defined by a stochastic channel matrix allowing for symbol drop-outs or symbol insertions with particular emphasis on the binary and non-binary deletion channels. We offer a different look at these channels by considering equivalent models by fragmenting the input sequence where different subsequences travel through different channels. The resulting output symbols are combined appropriately to come up with an equivalent input-output representation of the original channel which allows for derivation of new upper bounds on the channel capacity. We consider both random and deterministic types of fragmentation processes applied to binary and nonbinary deletion channels. With two specific applications of this idea, a random fragmentation applied to a binary deletion channel and a deterministic fragmentation process applied to a nonbinary deletion channel, we prove certain inequality relations among the capacities of the original channels and those of the introduced subchannels. The resulting inequalities prove useful in deriving tighter capacity upper bounds for: 1) independent identically distributed (i.i.d.) deletion channels when the deletion probability exceeds 0.65 and 2) nonbinary deletion channels. Some extensions of these results, for instance, to the case of deletion/substitution channels are also explored. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4318 |
container_issue |
1 |
title_short |
Upper Bounds on the Capacity of Deletion Channels Using Channel Fragmentation |
url |
http://dx.doi.org/10.1109/TIT.2014.2368553 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6949683 http://search.proquest.com/docview/1644762703 |
remote_bool |
false |
author2 |
Duman, Tolga M |
author2Str |
Duman, Tolga M |
ppnlink |
12954731X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/TIT.2014.2368553 |
up_date |
2024-07-04T06:47:40.403Z |
_version_ |
1803630055673298944 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963917073</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221163251.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIT.2014.2368553</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963917073</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963917073</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1863-898fe3fa31da6dfc4cfc365bcd4e669e964b4c218cfd37d63062c1236a7ed9f70</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0023448620150000061000100146upperboundsonthecapacityofdeletionchannelsusingcha</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5570</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rahmati, Mojtaba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Upper Bounds on the Capacity of Deletion Channels Using Channel Fragmentation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study memoryless channels with synchronization errors as defined by a stochastic channel matrix allowing for symbol drop-outs or symbol insertions with particular emphasis on the binary and non-binary deletion channels. We offer a different look at these channels by considering equivalent models by fragmenting the input sequence where different subsequences travel through different channels. The resulting output symbols are combined appropriately to come up with an equivalent input-output representation of the original channel which allows for derivation of new upper bounds on the channel capacity. We consider both random and deterministic types of fragmentation processes applied to binary and nonbinary deletion channels. With two specific applications of this idea, a random fragmentation applied to a binary deletion channel and a deterministic fragmentation process applied to a nonbinary deletion channel, we prove certain inequality relations among the capacities of the original channels and those of the introduced subchannels. The resulting inequalities prove useful in deriving tighter capacity upper bounds for: 1) independent identically distributed (i.i.d.) deletion channels when the deletion probability exceeds 0.65 and 2) nonbinary deletion channels. Some extensions of these results, for instance, to the case of deletion/substitution channels are also explored.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">independent identically distributed deletion channels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deletion probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Capacity planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deletion/substitution channe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmitters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">channel fragmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synchronisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synchronization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">matrix algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">symbol drop-outs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">binary deletion channel capacity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-binary deletion channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synchronization errors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">channel capacity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">capacity upper bounds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic channel matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Upper bound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Binary deletion channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inequality relations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deterministic fragmentation process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">memoryless channels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonbinary deletion channel capacity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Channel models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">symbol insertions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Receivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Communication channels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Input output</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duman, Tolga M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on information theory</subfield><subfield code="d">Piscataway, NJ : IEEE, 1963</subfield><subfield code="g">61(2015), 1, Seite 146-156</subfield><subfield code="w">(DE-627)12954731X</subfield><subfield code="w">(DE-600)218505-2</subfield><subfield code="w">(DE-576)01499819X</subfield><subfield code="x">0018-9448</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:146-156</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIT.2014.2368553</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6949683</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1644762703</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5570</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">146-156</subfield></datafield></record></collection>
|
score |
7.4011116 |