The Equivariant Cohomology Rings of Peterson Varieties in All Lie Types
Let G be a complex semisimple linear algebraic group and let Pet be the associated Peterson variety in the flag variety G/B. The main theorem of this note gives an efficient presentation of the equivariant cohomology ring H^*_S(Pet) of the Peterson variety as a quotient of a polynomial ring by an id...
Ausführliche Beschreibung
Autor*in: |
Harada, Megumi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Canadian mathematical bulletin - Toronto : Univ. of Toronto Press, 1958, 58(2015), 1, Seite 80-90 |
---|---|
Übergeordnetes Werk: |
volume:58 ; year:2015 ; number:1 ; pages:80-90 |
Links: |
---|
DOI / URN: |
10.4153/CMB-2014-048-0 |
---|
Katalog-ID: |
OLC1963934474 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1963934474 | ||
003 | DE-627 | ||
005 | 20220216101945.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.4153/CMB-2014-048-0 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1963934474 | ||
035 | |a (DE-599)GBVOLC1963934474 | ||
035 | |a (PRQ)a1360-724986126cb26b63484b44e7e3e84930d82e782e515e5d724b10df1041e062620 | ||
035 | |a (KEY)0023676420150000058000100080equivariantcohomologyringsofpetersonvarietiesinall | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DNB |
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Harada, Megumi |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Equivariant Cohomology Rings of Peterson Varieties in All Lie Types |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Let G be a complex semisimple linear algebraic group and let Pet be the associated Peterson variety in the flag variety G/B. The main theorem of this note gives an efficient presentation of the equivariant cohomology ring H^*_S(Pet) of the Peterson variety as a quotient of a polynomial ring by an ideal J generated by quadratic polynomials, in the spirit of the Borel presentation of the cohomology of the flag variety. Here the group S \cong \mathbb{C}^* is a certain subgroup of a maximal torus T of G. Our description of the ideal J uses the Cartan matrix and is uniform across Lie types. In our arguments we use the Monk formula and Giambelli formula for the equivariant cohomology rings of Peterson varieties for all Lie types, as obtained in the work of Drellich. Our result generalizes a previous theorem of Fukukawa-Harada-Masuda, which was only for Lie type A. | ||
650 | 4 | |a Secondary: 14N15 | |
650 | 4 | |a Primary: 55N91 | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Mathematics | |
700 | 1 | |a Horiguchi, Tatsuya |4 oth | |
700 | 1 | |a Masuda, Mikiya |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Canadian mathematical bulletin |d Toronto : Univ. of Toronto Press, 1958 |g 58(2015), 1, Seite 80-90 |w (DE-627)129852163 |w (DE-600)280584-4 |w (DE-576)01515226X |x 0008-4395 |7 nnns |
773 | 1 | 8 | |g volume:58 |g year:2015 |g number:1 |g pages:80-90 |
856 | 4 | 1 | |u http://dx.doi.org/10.4153/CMB-2014-048-0 |3 Volltext |
856 | 4 | 2 | |u http://arxiv.org/abs/1405.1785 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4324 | ||
936 | b | k | |a 31.00 |q AVZ |
951 | |a AR | ||
952 | |d 58 |j 2015 |e 1 |h 80-90 |
author_variant |
m h mh |
---|---|
matchkey_str |
article:00084395:2015----::heuvratooooyigoptrovre |
hierarchy_sort_str |
2015 |
bklnumber |
31.00 |
publishDate |
2015 |
allfields |
10.4153/CMB-2014-048-0 doi PQ20160617 (DE-627)OLC1963934474 (DE-599)GBVOLC1963934474 (PRQ)a1360-724986126cb26b63484b44e7e3e84930d82e782e515e5d724b10df1041e062620 (KEY)0023676420150000058000100080equivariantcohomologyringsofpetersonvarietiesinall DE-627 ger DE-627 rakwb eng 510 DNB 31.00 bkl Harada, Megumi verfasserin aut The Equivariant Cohomology Rings of Peterson Varieties in All Lie Types 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Let G be a complex semisimple linear algebraic group and let Pet be the associated Peterson variety in the flag variety G/B. The main theorem of this note gives an efficient presentation of the equivariant cohomology ring H^*_S(Pet) of the Peterson variety as a quotient of a polynomial ring by an ideal J generated by quadratic polynomials, in the spirit of the Borel presentation of the cohomology of the flag variety. Here the group S \cong \mathbb{C}^* is a certain subgroup of a maximal torus T of G. Our description of the ideal J uses the Cartan matrix and is uniform across Lie types. In our arguments we use the Monk formula and Giambelli formula for the equivariant cohomology rings of Peterson varieties for all Lie types, as obtained in the work of Drellich. Our result generalizes a previous theorem of Fukukawa-Harada-Masuda, which was only for Lie type A. Secondary: 14N15 Primary: 55N91 Algebraic Geometry Algebraic Topology Mathematics Horiguchi, Tatsuya oth Masuda, Mikiya oth Enthalten in Canadian mathematical bulletin Toronto : Univ. of Toronto Press, 1958 58(2015), 1, Seite 80-90 (DE-627)129852163 (DE-600)280584-4 (DE-576)01515226X 0008-4395 nnns volume:58 year:2015 number:1 pages:80-90 http://dx.doi.org/10.4153/CMB-2014-048-0 Volltext http://arxiv.org/abs/1405.1785 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4324 31.00 AVZ AR 58 2015 1 80-90 |
spelling |
10.4153/CMB-2014-048-0 doi PQ20160617 (DE-627)OLC1963934474 (DE-599)GBVOLC1963934474 (PRQ)a1360-724986126cb26b63484b44e7e3e84930d82e782e515e5d724b10df1041e062620 (KEY)0023676420150000058000100080equivariantcohomologyringsofpetersonvarietiesinall DE-627 ger DE-627 rakwb eng 510 DNB 31.00 bkl Harada, Megumi verfasserin aut The Equivariant Cohomology Rings of Peterson Varieties in All Lie Types 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Let G be a complex semisimple linear algebraic group and let Pet be the associated Peterson variety in the flag variety G/B. The main theorem of this note gives an efficient presentation of the equivariant cohomology ring H^*_S(Pet) of the Peterson variety as a quotient of a polynomial ring by an ideal J generated by quadratic polynomials, in the spirit of the Borel presentation of the cohomology of the flag variety. Here the group S \cong \mathbb{C}^* is a certain subgroup of a maximal torus T of G. Our description of the ideal J uses the Cartan matrix and is uniform across Lie types. In our arguments we use the Monk formula and Giambelli formula for the equivariant cohomology rings of Peterson varieties for all Lie types, as obtained in the work of Drellich. Our result generalizes a previous theorem of Fukukawa-Harada-Masuda, which was only for Lie type A. Secondary: 14N15 Primary: 55N91 Algebraic Geometry Algebraic Topology Mathematics Horiguchi, Tatsuya oth Masuda, Mikiya oth Enthalten in Canadian mathematical bulletin Toronto : Univ. of Toronto Press, 1958 58(2015), 1, Seite 80-90 (DE-627)129852163 (DE-600)280584-4 (DE-576)01515226X 0008-4395 nnns volume:58 year:2015 number:1 pages:80-90 http://dx.doi.org/10.4153/CMB-2014-048-0 Volltext http://arxiv.org/abs/1405.1785 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4324 31.00 AVZ AR 58 2015 1 80-90 |
allfields_unstemmed |
10.4153/CMB-2014-048-0 doi PQ20160617 (DE-627)OLC1963934474 (DE-599)GBVOLC1963934474 (PRQ)a1360-724986126cb26b63484b44e7e3e84930d82e782e515e5d724b10df1041e062620 (KEY)0023676420150000058000100080equivariantcohomologyringsofpetersonvarietiesinall DE-627 ger DE-627 rakwb eng 510 DNB 31.00 bkl Harada, Megumi verfasserin aut The Equivariant Cohomology Rings of Peterson Varieties in All Lie Types 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Let G be a complex semisimple linear algebraic group and let Pet be the associated Peterson variety in the flag variety G/B. The main theorem of this note gives an efficient presentation of the equivariant cohomology ring H^*_S(Pet) of the Peterson variety as a quotient of a polynomial ring by an ideal J generated by quadratic polynomials, in the spirit of the Borel presentation of the cohomology of the flag variety. Here the group S \cong \mathbb{C}^* is a certain subgroup of a maximal torus T of G. Our description of the ideal J uses the Cartan matrix and is uniform across Lie types. In our arguments we use the Monk formula and Giambelli formula for the equivariant cohomology rings of Peterson varieties for all Lie types, as obtained in the work of Drellich. Our result generalizes a previous theorem of Fukukawa-Harada-Masuda, which was only for Lie type A. Secondary: 14N15 Primary: 55N91 Algebraic Geometry Algebraic Topology Mathematics Horiguchi, Tatsuya oth Masuda, Mikiya oth Enthalten in Canadian mathematical bulletin Toronto : Univ. of Toronto Press, 1958 58(2015), 1, Seite 80-90 (DE-627)129852163 (DE-600)280584-4 (DE-576)01515226X 0008-4395 nnns volume:58 year:2015 number:1 pages:80-90 http://dx.doi.org/10.4153/CMB-2014-048-0 Volltext http://arxiv.org/abs/1405.1785 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4324 31.00 AVZ AR 58 2015 1 80-90 |
allfieldsGer |
10.4153/CMB-2014-048-0 doi PQ20160617 (DE-627)OLC1963934474 (DE-599)GBVOLC1963934474 (PRQ)a1360-724986126cb26b63484b44e7e3e84930d82e782e515e5d724b10df1041e062620 (KEY)0023676420150000058000100080equivariantcohomologyringsofpetersonvarietiesinall DE-627 ger DE-627 rakwb eng 510 DNB 31.00 bkl Harada, Megumi verfasserin aut The Equivariant Cohomology Rings of Peterson Varieties in All Lie Types 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Let G be a complex semisimple linear algebraic group and let Pet be the associated Peterson variety in the flag variety G/B. The main theorem of this note gives an efficient presentation of the equivariant cohomology ring H^*_S(Pet) of the Peterson variety as a quotient of a polynomial ring by an ideal J generated by quadratic polynomials, in the spirit of the Borel presentation of the cohomology of the flag variety. Here the group S \cong \mathbb{C}^* is a certain subgroup of a maximal torus T of G. Our description of the ideal J uses the Cartan matrix and is uniform across Lie types. In our arguments we use the Monk formula and Giambelli formula for the equivariant cohomology rings of Peterson varieties for all Lie types, as obtained in the work of Drellich. Our result generalizes a previous theorem of Fukukawa-Harada-Masuda, which was only for Lie type A. Secondary: 14N15 Primary: 55N91 Algebraic Geometry Algebraic Topology Mathematics Horiguchi, Tatsuya oth Masuda, Mikiya oth Enthalten in Canadian mathematical bulletin Toronto : Univ. of Toronto Press, 1958 58(2015), 1, Seite 80-90 (DE-627)129852163 (DE-600)280584-4 (DE-576)01515226X 0008-4395 nnns volume:58 year:2015 number:1 pages:80-90 http://dx.doi.org/10.4153/CMB-2014-048-0 Volltext http://arxiv.org/abs/1405.1785 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4324 31.00 AVZ AR 58 2015 1 80-90 |
allfieldsSound |
10.4153/CMB-2014-048-0 doi PQ20160617 (DE-627)OLC1963934474 (DE-599)GBVOLC1963934474 (PRQ)a1360-724986126cb26b63484b44e7e3e84930d82e782e515e5d724b10df1041e062620 (KEY)0023676420150000058000100080equivariantcohomologyringsofpetersonvarietiesinall DE-627 ger DE-627 rakwb eng 510 DNB 31.00 bkl Harada, Megumi verfasserin aut The Equivariant Cohomology Rings of Peterson Varieties in All Lie Types 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Let G be a complex semisimple linear algebraic group and let Pet be the associated Peterson variety in the flag variety G/B. The main theorem of this note gives an efficient presentation of the equivariant cohomology ring H^*_S(Pet) of the Peterson variety as a quotient of a polynomial ring by an ideal J generated by quadratic polynomials, in the spirit of the Borel presentation of the cohomology of the flag variety. Here the group S \cong \mathbb{C}^* is a certain subgroup of a maximal torus T of G. Our description of the ideal J uses the Cartan matrix and is uniform across Lie types. In our arguments we use the Monk formula and Giambelli formula for the equivariant cohomology rings of Peterson varieties for all Lie types, as obtained in the work of Drellich. Our result generalizes a previous theorem of Fukukawa-Harada-Masuda, which was only for Lie type A. Secondary: 14N15 Primary: 55N91 Algebraic Geometry Algebraic Topology Mathematics Horiguchi, Tatsuya oth Masuda, Mikiya oth Enthalten in Canadian mathematical bulletin Toronto : Univ. of Toronto Press, 1958 58(2015), 1, Seite 80-90 (DE-627)129852163 (DE-600)280584-4 (DE-576)01515226X 0008-4395 nnns volume:58 year:2015 number:1 pages:80-90 http://dx.doi.org/10.4153/CMB-2014-048-0 Volltext http://arxiv.org/abs/1405.1785 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4324 31.00 AVZ AR 58 2015 1 80-90 |
language |
English |
source |
Enthalten in Canadian mathematical bulletin 58(2015), 1, Seite 80-90 volume:58 year:2015 number:1 pages:80-90 |
sourceStr |
Enthalten in Canadian mathematical bulletin 58(2015), 1, Seite 80-90 volume:58 year:2015 number:1 pages:80-90 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Secondary: 14N15 Primary: 55N91 Algebraic Geometry Algebraic Topology Mathematics |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Canadian mathematical bulletin |
authorswithroles_txt_mv |
Harada, Megumi @@aut@@ Horiguchi, Tatsuya @@oth@@ Masuda, Mikiya @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129852163 |
dewey-sort |
3510 |
id |
OLC1963934474 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963934474</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216101945.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4153/CMB-2014-048-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963934474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963934474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1360-724986126cb26b63484b44e7e3e84930d82e782e515e5d724b10df1041e062620</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0023676420150000058000100080equivariantcohomologyringsofpetersonvarietiesinall</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harada, Megumi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Equivariant Cohomology Rings of Peterson Varieties in All Lie Types</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let G be a complex semisimple linear algebraic group and let Pet be the associated Peterson variety in the flag variety G/B. The main theorem of this note gives an efficient presentation of the equivariant cohomology ring H^*_S(Pet) of the Peterson variety as a quotient of a polynomial ring by an ideal J generated by quadratic polynomials, in the spirit of the Borel presentation of the cohomology of the flag variety. Here the group S \cong \mathbb{C}^* is a certain subgroup of a maximal torus T of G. Our description of the ideal J uses the Cartan matrix and is uniform across Lie types. In our arguments we use the Monk formula and Giambelli formula for the equivariant cohomology rings of Peterson varieties for all Lie types, as obtained in the work of Drellich. Our result generalizes a previous theorem of Fukukawa-Harada-Masuda, which was only for Lie type A.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Secondary: 14N15</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Primary: 55N91</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Horiguchi, Tatsuya</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Masuda, Mikiya</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Canadian mathematical bulletin</subfield><subfield code="d">Toronto : Univ. of Toronto Press, 1958</subfield><subfield code="g">58(2015), 1, Seite 80-90</subfield><subfield code="w">(DE-627)129852163</subfield><subfield code="w">(DE-600)280584-4</subfield><subfield code="w">(DE-576)01515226X</subfield><subfield code="x">0008-4395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:80-90</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.4153/CMB-2014-048-0</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1405.1785</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">80-90</subfield></datafield></record></collection>
|
author |
Harada, Megumi |
spellingShingle |
Harada, Megumi ddc 510 bkl 31.00 misc Secondary: 14N15 misc Primary: 55N91 misc Algebraic Geometry misc Algebraic Topology misc Mathematics The Equivariant Cohomology Rings of Peterson Varieties in All Lie Types |
authorStr |
Harada, Megumi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129852163 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0008-4395 |
topic_title |
510 DNB 31.00 bkl The Equivariant Cohomology Rings of Peterson Varieties in All Lie Types Secondary: 14N15 Primary: 55N91 Algebraic Geometry Algebraic Topology Mathematics |
topic |
ddc 510 bkl 31.00 misc Secondary: 14N15 misc Primary: 55N91 misc Algebraic Geometry misc Algebraic Topology misc Mathematics |
topic_unstemmed |
ddc 510 bkl 31.00 misc Secondary: 14N15 misc Primary: 55N91 misc Algebraic Geometry misc Algebraic Topology misc Mathematics |
topic_browse |
ddc 510 bkl 31.00 misc Secondary: 14N15 misc Primary: 55N91 misc Algebraic Geometry misc Algebraic Topology misc Mathematics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t h th m m mm |
hierarchy_parent_title |
Canadian mathematical bulletin |
hierarchy_parent_id |
129852163 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Canadian mathematical bulletin |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129852163 (DE-600)280584-4 (DE-576)01515226X |
title |
The Equivariant Cohomology Rings of Peterson Varieties in All Lie Types |
ctrlnum |
(DE-627)OLC1963934474 (DE-599)GBVOLC1963934474 (PRQ)a1360-724986126cb26b63484b44e7e3e84930d82e782e515e5d724b10df1041e062620 (KEY)0023676420150000058000100080equivariantcohomologyringsofpetersonvarietiesinall |
title_full |
The Equivariant Cohomology Rings of Peterson Varieties in All Lie Types |
author_sort |
Harada, Megumi |
journal |
Canadian mathematical bulletin |
journalStr |
Canadian mathematical bulletin |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
80 |
author_browse |
Harada, Megumi |
container_volume |
58 |
class |
510 DNB 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Harada, Megumi |
doi_str_mv |
10.4153/CMB-2014-048-0 |
dewey-full |
510 |
title_sort |
equivariant cohomology rings of peterson varieties in all lie types |
title_auth |
The Equivariant Cohomology Rings of Peterson Varieties in All Lie Types |
abstract |
Let G be a complex semisimple linear algebraic group and let Pet be the associated Peterson variety in the flag variety G/B. The main theorem of this note gives an efficient presentation of the equivariant cohomology ring H^*_S(Pet) of the Peterson variety as a quotient of a polynomial ring by an ideal J generated by quadratic polynomials, in the spirit of the Borel presentation of the cohomology of the flag variety. Here the group S \cong \mathbb{C}^* is a certain subgroup of a maximal torus T of G. Our description of the ideal J uses the Cartan matrix and is uniform across Lie types. In our arguments we use the Monk formula and Giambelli formula for the equivariant cohomology rings of Peterson varieties for all Lie types, as obtained in the work of Drellich. Our result generalizes a previous theorem of Fukukawa-Harada-Masuda, which was only for Lie type A. |
abstractGer |
Let G be a complex semisimple linear algebraic group and let Pet be the associated Peterson variety in the flag variety G/B. The main theorem of this note gives an efficient presentation of the equivariant cohomology ring H^*_S(Pet) of the Peterson variety as a quotient of a polynomial ring by an ideal J generated by quadratic polynomials, in the spirit of the Borel presentation of the cohomology of the flag variety. Here the group S \cong \mathbb{C}^* is a certain subgroup of a maximal torus T of G. Our description of the ideal J uses the Cartan matrix and is uniform across Lie types. In our arguments we use the Monk formula and Giambelli formula for the equivariant cohomology rings of Peterson varieties for all Lie types, as obtained in the work of Drellich. Our result generalizes a previous theorem of Fukukawa-Harada-Masuda, which was only for Lie type A. |
abstract_unstemmed |
Let G be a complex semisimple linear algebraic group and let Pet be the associated Peterson variety in the flag variety G/B. The main theorem of this note gives an efficient presentation of the equivariant cohomology ring H^*_S(Pet) of the Peterson variety as a quotient of a polynomial ring by an ideal J generated by quadratic polynomials, in the spirit of the Borel presentation of the cohomology of the flag variety. Here the group S \cong \mathbb{C}^* is a certain subgroup of a maximal torus T of G. Our description of the ideal J uses the Cartan matrix and is uniform across Lie types. In our arguments we use the Monk formula and Giambelli formula for the equivariant cohomology rings of Peterson varieties for all Lie types, as obtained in the work of Drellich. Our result generalizes a previous theorem of Fukukawa-Harada-Masuda, which was only for Lie type A. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4324 |
container_issue |
1 |
title_short |
The Equivariant Cohomology Rings of Peterson Varieties in All Lie Types |
url |
http://dx.doi.org/10.4153/CMB-2014-048-0 http://arxiv.org/abs/1405.1785 |
remote_bool |
false |
author2 |
Horiguchi, Tatsuya Masuda, Mikiya |
author2Str |
Horiguchi, Tatsuya Masuda, Mikiya |
ppnlink |
129852163 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.4153/CMB-2014-048-0 |
up_date |
2024-07-04T06:50:11.388Z |
_version_ |
1803630213993594880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1963934474</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216101945.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4153/CMB-2014-048-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1963934474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1963934474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1360-724986126cb26b63484b44e7e3e84930d82e782e515e5d724b10df1041e062620</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0023676420150000058000100080equivariantcohomologyringsofpetersonvarietiesinall</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harada, Megumi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Equivariant Cohomology Rings of Peterson Varieties in All Lie Types</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let G be a complex semisimple linear algebraic group and let Pet be the associated Peterson variety in the flag variety G/B. The main theorem of this note gives an efficient presentation of the equivariant cohomology ring H^*_S(Pet) of the Peterson variety as a quotient of a polynomial ring by an ideal J generated by quadratic polynomials, in the spirit of the Borel presentation of the cohomology of the flag variety. Here the group S \cong \mathbb{C}^* is a certain subgroup of a maximal torus T of G. Our description of the ideal J uses the Cartan matrix and is uniform across Lie types. In our arguments we use the Monk formula and Giambelli formula for the equivariant cohomology rings of Peterson varieties for all Lie types, as obtained in the work of Drellich. Our result generalizes a previous theorem of Fukukawa-Harada-Masuda, which was only for Lie type A.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Secondary: 14N15</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Primary: 55N91</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Horiguchi, Tatsuya</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Masuda, Mikiya</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Canadian mathematical bulletin</subfield><subfield code="d">Toronto : Univ. of Toronto Press, 1958</subfield><subfield code="g">58(2015), 1, Seite 80-90</subfield><subfield code="w">(DE-627)129852163</subfield><subfield code="w">(DE-600)280584-4</subfield><subfield code="w">(DE-576)01515226X</subfield><subfield code="x">0008-4395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:80-90</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.4153/CMB-2014-048-0</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1405.1785</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">80-90</subfield></datafield></record></collection>
|
score |
7.4001703 |