Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data‐based models
We simulate and compare three phases of the Mars‐solar wind interaction with the 8 March interplanetary coronal mass ejection (ICME) event using Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations in order to derive heavy ion precipitation and escape rates. The MAVEN observations pro...
Ausführliche Beschreibung
Autor*in: |
Curry, S. M [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Geophysical research letters - Washington, DC : Union, 1974, 42(2015), 21, Seite 9095-9102 |
---|---|
Übergeordnetes Werk: |
volume:42 ; year:2015 ; number:21 ; pages:9095-9102 |
Links: |
---|
DOI / URN: |
10.1002/2015GL065304 |
---|
Katalog-ID: |
OLC1964143268 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1964143268 | ||
003 | DE-627 | ||
005 | 20220223170624.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/2015GL065304 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1964143268 | ||
035 | |a (DE-599)GBVOLC1964143268 | ||
035 | |a (PRQ)p952-1f914d63e423ba0efa8a4073e0f877f9561d4f336c398876aae1f0ff58c17a6e0 | ||
035 | |a (KEY)0026932820150000042002109095responseofmarsopickupionstothe8march2015icmeinfere | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
084 | |a 38.70 |2 bkl | ||
100 | 1 | |a Curry, S. M |e verfasserin |4 aut | |
245 | 1 | 0 | |a Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data‐based models |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We simulate and compare three phases of the Mars‐solar wind interaction with the 8 March interplanetary coronal mass ejection (ICME) event using Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations in order to derive heavy ion precipitation and escape rates. The MAVEN observations provide the initial conditions for three steady state MHD model cases, which reproduce the observed features in the solar wind density, velocity, and magnetic field seen along the MAVEN orbit. Applying the MHD results to a kinetic test particle model, we simulate global precipitation and escape maps of O + during the (1) pre‐ICME phase, (2) sheath phase, and (3) ejecta phase. We find that the Case 1 had the lowest precipitation and escape rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , Case 2 had the highest rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , and Case 3 had rates of 3.2 × 10 25 and 1.3 × 10 25 s −1 , respectively. Additionally, Case 2 produced a high‐energy escaping plume >10 keV, which mirrored corresponding STATIC observations. The shock phase of an ICME drives the most ion escape at Mars The shock phase of an ICME has an O + escape rate of 4.1e25/s O sputtering from the shock phase of an ICME may be on the order of 1e26/s | ||
540 | |a Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved. | ||
650 | 4 | |a pickup ions | |
650 | 4 | |a Mars | |
650 | 4 | |a ICME | |
650 | 4 | |a escape | |
650 | 4 | |a precipitation | |
650 | 4 | |a Ions | |
650 | 4 | |a Solar flares | |
650 | 4 | |a Solar physics | |
700 | 1 | |a Luhmann, J. G |4 oth | |
700 | 1 | |a Ma, Y. J |4 oth | |
700 | 1 | |a Dong, C. F |4 oth | |
700 | 1 | |a Brain, D |4 oth | |
700 | 1 | |a Leblanc, F |4 oth | |
700 | 1 | |a Modolo, R |4 oth | |
700 | 1 | |a Dong, Y |4 oth | |
700 | 1 | |a McFadden, J |4 oth | |
700 | 1 | |a Halekas, J |4 oth | |
700 | 1 | |a Connerney, J |4 oth | |
700 | 1 | |a Espley, J |4 oth | |
700 | 1 | |a Hara, T |4 oth | |
700 | 1 | |a Harada, Y |4 oth | |
700 | 1 | |a Lee, C |4 oth | |
700 | 1 | |a Fang, X |4 oth | |
700 | 1 | |a Jakosky, B |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Geophysical research letters |d Washington, DC : Union, 1974 |g 42(2015), 21, Seite 9095-9102 |w (DE-627)129095109 |w (DE-600)7403-2 |w (DE-576)01443122X |x 0094-8276 |7 nnns |
773 | 1 | 8 | |g volume:42 |g year:2015 |g number:21 |g pages:9095-9102 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/2015GL065304 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/2015GL065304/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1756229496 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_2279 | ||
936 | b | k | |a 38.70 |q AVZ |
951 | |a AR | ||
952 | |d 42 |j 2015 |e 21 |h 9095-9102 |
author_variant |
s m c sm smc |
---|---|
matchkey_str |
article:00948276:2015----::epnefaspcuinttemrh05ceneecsr |
hierarchy_sort_str |
2015 |
bklnumber |
38.70 |
publishDate |
2015 |
allfields |
10.1002/2015GL065304 doi PQ20160617 (DE-627)OLC1964143268 (DE-599)GBVOLC1964143268 (PRQ)p952-1f914d63e423ba0efa8a4073e0f877f9561d4f336c398876aae1f0ff58c17a6e0 (KEY)0026932820150000042002109095responseofmarsopickupionstothe8march2015icmeinfere DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Curry, S. M verfasserin aut Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data‐based models 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We simulate and compare three phases of the Mars‐solar wind interaction with the 8 March interplanetary coronal mass ejection (ICME) event using Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations in order to derive heavy ion precipitation and escape rates. The MAVEN observations provide the initial conditions for three steady state MHD model cases, which reproduce the observed features in the solar wind density, velocity, and magnetic field seen along the MAVEN orbit. Applying the MHD results to a kinetic test particle model, we simulate global precipitation and escape maps of O + during the (1) pre‐ICME phase, (2) sheath phase, and (3) ejecta phase. We find that the Case 1 had the lowest precipitation and escape rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , Case 2 had the highest rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , and Case 3 had rates of 3.2 × 10 25 and 1.3 × 10 25 s −1 , respectively. Additionally, Case 2 produced a high‐energy escaping plume >10 keV, which mirrored corresponding STATIC observations. The shock phase of an ICME drives the most ion escape at Mars The shock phase of an ICME has an O + escape rate of 4.1e25/s O sputtering from the shock phase of an ICME may be on the order of 1e26/s Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved. pickup ions Mars ICME escape precipitation Ions Solar flares Solar physics Luhmann, J. G oth Ma, Y. J oth Dong, C. F oth Brain, D oth Leblanc, F oth Modolo, R oth Dong, Y oth McFadden, J oth Halekas, J oth Connerney, J oth Espley, J oth Hara, T oth Harada, Y oth Lee, C oth Fang, X oth Jakosky, B oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 42(2015), 21, Seite 9095-9102 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:42 year:2015 number:21 pages:9095-9102 http://dx.doi.org/10.1002/2015GL065304 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015GL065304/abstract http://search.proquest.com/docview/1756229496 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 42 2015 21 9095-9102 |
spelling |
10.1002/2015GL065304 doi PQ20160617 (DE-627)OLC1964143268 (DE-599)GBVOLC1964143268 (PRQ)p952-1f914d63e423ba0efa8a4073e0f877f9561d4f336c398876aae1f0ff58c17a6e0 (KEY)0026932820150000042002109095responseofmarsopickupionstothe8march2015icmeinfere DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Curry, S. M verfasserin aut Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data‐based models 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We simulate and compare three phases of the Mars‐solar wind interaction with the 8 March interplanetary coronal mass ejection (ICME) event using Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations in order to derive heavy ion precipitation and escape rates. The MAVEN observations provide the initial conditions for three steady state MHD model cases, which reproduce the observed features in the solar wind density, velocity, and magnetic field seen along the MAVEN orbit. Applying the MHD results to a kinetic test particle model, we simulate global precipitation and escape maps of O + during the (1) pre‐ICME phase, (2) sheath phase, and (3) ejecta phase. We find that the Case 1 had the lowest precipitation and escape rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , Case 2 had the highest rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , and Case 3 had rates of 3.2 × 10 25 and 1.3 × 10 25 s −1 , respectively. Additionally, Case 2 produced a high‐energy escaping plume >10 keV, which mirrored corresponding STATIC observations. The shock phase of an ICME drives the most ion escape at Mars The shock phase of an ICME has an O + escape rate of 4.1e25/s O sputtering from the shock phase of an ICME may be on the order of 1e26/s Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved. pickup ions Mars ICME escape precipitation Ions Solar flares Solar physics Luhmann, J. G oth Ma, Y. J oth Dong, C. F oth Brain, D oth Leblanc, F oth Modolo, R oth Dong, Y oth McFadden, J oth Halekas, J oth Connerney, J oth Espley, J oth Hara, T oth Harada, Y oth Lee, C oth Fang, X oth Jakosky, B oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 42(2015), 21, Seite 9095-9102 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:42 year:2015 number:21 pages:9095-9102 http://dx.doi.org/10.1002/2015GL065304 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015GL065304/abstract http://search.proquest.com/docview/1756229496 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 42 2015 21 9095-9102 |
allfields_unstemmed |
10.1002/2015GL065304 doi PQ20160617 (DE-627)OLC1964143268 (DE-599)GBVOLC1964143268 (PRQ)p952-1f914d63e423ba0efa8a4073e0f877f9561d4f336c398876aae1f0ff58c17a6e0 (KEY)0026932820150000042002109095responseofmarsopickupionstothe8march2015icmeinfere DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Curry, S. M verfasserin aut Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data‐based models 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We simulate and compare three phases of the Mars‐solar wind interaction with the 8 March interplanetary coronal mass ejection (ICME) event using Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations in order to derive heavy ion precipitation and escape rates. The MAVEN observations provide the initial conditions for three steady state MHD model cases, which reproduce the observed features in the solar wind density, velocity, and magnetic field seen along the MAVEN orbit. Applying the MHD results to a kinetic test particle model, we simulate global precipitation and escape maps of O + during the (1) pre‐ICME phase, (2) sheath phase, and (3) ejecta phase. We find that the Case 1 had the lowest precipitation and escape rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , Case 2 had the highest rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , and Case 3 had rates of 3.2 × 10 25 and 1.3 × 10 25 s −1 , respectively. Additionally, Case 2 produced a high‐energy escaping plume >10 keV, which mirrored corresponding STATIC observations. The shock phase of an ICME drives the most ion escape at Mars The shock phase of an ICME has an O + escape rate of 4.1e25/s O sputtering from the shock phase of an ICME may be on the order of 1e26/s Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved. pickup ions Mars ICME escape precipitation Ions Solar flares Solar physics Luhmann, J. G oth Ma, Y. J oth Dong, C. F oth Brain, D oth Leblanc, F oth Modolo, R oth Dong, Y oth McFadden, J oth Halekas, J oth Connerney, J oth Espley, J oth Hara, T oth Harada, Y oth Lee, C oth Fang, X oth Jakosky, B oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 42(2015), 21, Seite 9095-9102 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:42 year:2015 number:21 pages:9095-9102 http://dx.doi.org/10.1002/2015GL065304 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015GL065304/abstract http://search.proquest.com/docview/1756229496 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 42 2015 21 9095-9102 |
allfieldsGer |
10.1002/2015GL065304 doi PQ20160617 (DE-627)OLC1964143268 (DE-599)GBVOLC1964143268 (PRQ)p952-1f914d63e423ba0efa8a4073e0f877f9561d4f336c398876aae1f0ff58c17a6e0 (KEY)0026932820150000042002109095responseofmarsopickupionstothe8march2015icmeinfere DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Curry, S. M verfasserin aut Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data‐based models 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We simulate and compare three phases of the Mars‐solar wind interaction with the 8 March interplanetary coronal mass ejection (ICME) event using Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations in order to derive heavy ion precipitation and escape rates. The MAVEN observations provide the initial conditions for three steady state MHD model cases, which reproduce the observed features in the solar wind density, velocity, and magnetic field seen along the MAVEN orbit. Applying the MHD results to a kinetic test particle model, we simulate global precipitation and escape maps of O + during the (1) pre‐ICME phase, (2) sheath phase, and (3) ejecta phase. We find that the Case 1 had the lowest precipitation and escape rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , Case 2 had the highest rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , and Case 3 had rates of 3.2 × 10 25 and 1.3 × 10 25 s −1 , respectively. Additionally, Case 2 produced a high‐energy escaping plume >10 keV, which mirrored corresponding STATIC observations. The shock phase of an ICME drives the most ion escape at Mars The shock phase of an ICME has an O + escape rate of 4.1e25/s O sputtering from the shock phase of an ICME may be on the order of 1e26/s Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved. pickup ions Mars ICME escape precipitation Ions Solar flares Solar physics Luhmann, J. G oth Ma, Y. J oth Dong, C. F oth Brain, D oth Leblanc, F oth Modolo, R oth Dong, Y oth McFadden, J oth Halekas, J oth Connerney, J oth Espley, J oth Hara, T oth Harada, Y oth Lee, C oth Fang, X oth Jakosky, B oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 42(2015), 21, Seite 9095-9102 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:42 year:2015 number:21 pages:9095-9102 http://dx.doi.org/10.1002/2015GL065304 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015GL065304/abstract http://search.proquest.com/docview/1756229496 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 42 2015 21 9095-9102 |
allfieldsSound |
10.1002/2015GL065304 doi PQ20160617 (DE-627)OLC1964143268 (DE-599)GBVOLC1964143268 (PRQ)p952-1f914d63e423ba0efa8a4073e0f877f9561d4f336c398876aae1f0ff58c17a6e0 (KEY)0026932820150000042002109095responseofmarsopickupionstothe8march2015icmeinfere DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Curry, S. M verfasserin aut Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data‐based models 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We simulate and compare three phases of the Mars‐solar wind interaction with the 8 March interplanetary coronal mass ejection (ICME) event using Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations in order to derive heavy ion precipitation and escape rates. The MAVEN observations provide the initial conditions for three steady state MHD model cases, which reproduce the observed features in the solar wind density, velocity, and magnetic field seen along the MAVEN orbit. Applying the MHD results to a kinetic test particle model, we simulate global precipitation and escape maps of O + during the (1) pre‐ICME phase, (2) sheath phase, and (3) ejecta phase. We find that the Case 1 had the lowest precipitation and escape rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , Case 2 had the highest rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , and Case 3 had rates of 3.2 × 10 25 and 1.3 × 10 25 s −1 , respectively. Additionally, Case 2 produced a high‐energy escaping plume >10 keV, which mirrored corresponding STATIC observations. The shock phase of an ICME drives the most ion escape at Mars The shock phase of an ICME has an O + escape rate of 4.1e25/s O sputtering from the shock phase of an ICME may be on the order of 1e26/s Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved. pickup ions Mars ICME escape precipitation Ions Solar flares Solar physics Luhmann, J. G oth Ma, Y. J oth Dong, C. F oth Brain, D oth Leblanc, F oth Modolo, R oth Dong, Y oth McFadden, J oth Halekas, J oth Connerney, J oth Espley, J oth Hara, T oth Harada, Y oth Lee, C oth Fang, X oth Jakosky, B oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 42(2015), 21, Seite 9095-9102 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:42 year:2015 number:21 pages:9095-9102 http://dx.doi.org/10.1002/2015GL065304 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015GL065304/abstract http://search.proquest.com/docview/1756229496 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 42 2015 21 9095-9102 |
language |
English |
source |
Enthalten in Geophysical research letters 42(2015), 21, Seite 9095-9102 volume:42 year:2015 number:21 pages:9095-9102 |
sourceStr |
Enthalten in Geophysical research letters 42(2015), 21, Seite 9095-9102 volume:42 year:2015 number:21 pages:9095-9102 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
pickup ions Mars ICME escape precipitation Ions Solar flares Solar physics |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Geophysical research letters |
authorswithroles_txt_mv |
Curry, S. M @@aut@@ Luhmann, J. G @@oth@@ Ma, Y. J @@oth@@ Dong, C. F @@oth@@ Brain, D @@oth@@ Leblanc, F @@oth@@ Modolo, R @@oth@@ Dong, Y @@oth@@ McFadden, J @@oth@@ Halekas, J @@oth@@ Connerney, J @@oth@@ Espley, J @@oth@@ Hara, T @@oth@@ Harada, Y @@oth@@ Lee, C @@oth@@ Fang, X @@oth@@ Jakosky, B @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129095109 |
dewey-sort |
3550 |
id |
OLC1964143268 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1964143268</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223170624.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2015GL065304</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1964143268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1964143268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p952-1f914d63e423ba0efa8a4073e0f877f9561d4f336c398876aae1f0ff58c17a6e0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0026932820150000042002109095responseofmarsopickupionstothe8march2015icmeinfere</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Curry, S. M</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data‐based models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We simulate and compare three phases of the Mars‐solar wind interaction with the 8 March interplanetary coronal mass ejection (ICME) event using Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations in order to derive heavy ion precipitation and escape rates. The MAVEN observations provide the initial conditions for three steady state MHD model cases, which reproduce the observed features in the solar wind density, velocity, and magnetic field seen along the MAVEN orbit. Applying the MHD results to a kinetic test particle model, we simulate global precipitation and escape maps of O + during the (1) pre‐ICME phase, (2) sheath phase, and (3) ejecta phase. We find that the Case 1 had the lowest precipitation and escape rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , Case 2 had the highest rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , and Case 3 had rates of 3.2 × 10 25 and 1.3 × 10 25 s −1 , respectively. Additionally, Case 2 produced a high‐energy escaping plume >10 keV, which mirrored corresponding STATIC observations. The shock phase of an ICME drives the most ion escape at Mars The shock phase of an ICME has an O + escape rate of 4.1e25/s O sputtering from the shock phase of an ICME may be on the order of 1e26/s</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pickup ions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ICME</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">escape</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar flares</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luhmann, J. G</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Y. J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, C. F</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brain, D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leblanc, F</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Modolo, R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Y</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McFadden, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Halekas, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Connerney, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Espley, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hara, T</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harada, Y</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jakosky, B</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geophysical research letters</subfield><subfield code="d">Washington, DC : Union, 1974</subfield><subfield code="g">42(2015), 21, Seite 9095-9102</subfield><subfield code="w">(DE-627)129095109</subfield><subfield code="w">(DE-600)7403-2</subfield><subfield code="w">(DE-576)01443122X</subfield><subfield code="x">0094-8276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:21</subfield><subfield code="g">pages:9095-9102</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2015GL065304</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2015GL065304/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1756229496</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2015</subfield><subfield code="e">21</subfield><subfield code="h">9095-9102</subfield></datafield></record></collection>
|
author |
Curry, S. M |
spellingShingle |
Curry, S. M ddc 550 bkl 38.70 misc pickup ions misc Mars misc ICME misc escape misc precipitation misc Ions misc Solar flares misc Solar physics Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data‐based models |
authorStr |
Curry, S. M |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129095109 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0094-8276 |
topic_title |
550 DNB 38.70 bkl Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data‐based models pickup ions Mars ICME escape precipitation Ions Solar flares Solar physics |
topic |
ddc 550 bkl 38.70 misc pickup ions misc Mars misc ICME misc escape misc precipitation misc Ions misc Solar flares misc Solar physics |
topic_unstemmed |
ddc 550 bkl 38.70 misc pickup ions misc Mars misc ICME misc escape misc precipitation misc Ions misc Solar flares misc Solar physics |
topic_browse |
ddc 550 bkl 38.70 misc pickup ions misc Mars misc ICME misc escape misc precipitation misc Ions misc Solar flares misc Solar physics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j g l jg jgl y j m yj yjm c f d cf cfd d b db f l fl r m rm y d yd j m jm j h jh j c jc j e je t h th y h yh c l cl x f xf b j bj |
hierarchy_parent_title |
Geophysical research letters |
hierarchy_parent_id |
129095109 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Geophysical research letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X |
title |
Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data‐based models |
ctrlnum |
(DE-627)OLC1964143268 (DE-599)GBVOLC1964143268 (PRQ)p952-1f914d63e423ba0efa8a4073e0f877f9561d4f336c398876aae1f0ff58c17a6e0 (KEY)0026932820150000042002109095responseofmarsopickupionstothe8march2015icmeinfere |
title_full |
Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data‐based models |
author_sort |
Curry, S. M |
journal |
Geophysical research letters |
journalStr |
Geophysical research letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
9095 |
author_browse |
Curry, S. M |
container_volume |
42 |
class |
550 DNB 38.70 bkl |
format_se |
Aufsätze |
author-letter |
Curry, S. M |
doi_str_mv |
10.1002/2015GL065304 |
dewey-full |
550 |
title_sort |
response of mars o+ pickup ions to the 8 march 2015 icme: inferences from maven data‐based models |
title_auth |
Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data‐based models |
abstract |
We simulate and compare three phases of the Mars‐solar wind interaction with the 8 March interplanetary coronal mass ejection (ICME) event using Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations in order to derive heavy ion precipitation and escape rates. The MAVEN observations provide the initial conditions for three steady state MHD model cases, which reproduce the observed features in the solar wind density, velocity, and magnetic field seen along the MAVEN orbit. Applying the MHD results to a kinetic test particle model, we simulate global precipitation and escape maps of O + during the (1) pre‐ICME phase, (2) sheath phase, and (3) ejecta phase. We find that the Case 1 had the lowest precipitation and escape rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , Case 2 had the highest rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , and Case 3 had rates of 3.2 × 10 25 and 1.3 × 10 25 s −1 , respectively. Additionally, Case 2 produced a high‐energy escaping plume >10 keV, which mirrored corresponding STATIC observations. The shock phase of an ICME drives the most ion escape at Mars The shock phase of an ICME has an O + escape rate of 4.1e25/s O sputtering from the shock phase of an ICME may be on the order of 1e26/s |
abstractGer |
We simulate and compare three phases of the Mars‐solar wind interaction with the 8 March interplanetary coronal mass ejection (ICME) event using Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations in order to derive heavy ion precipitation and escape rates. The MAVEN observations provide the initial conditions for three steady state MHD model cases, which reproduce the observed features in the solar wind density, velocity, and magnetic field seen along the MAVEN orbit. Applying the MHD results to a kinetic test particle model, we simulate global precipitation and escape maps of O + during the (1) pre‐ICME phase, (2) sheath phase, and (3) ejecta phase. We find that the Case 1 had the lowest precipitation and escape rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , Case 2 had the highest rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , and Case 3 had rates of 3.2 × 10 25 and 1.3 × 10 25 s −1 , respectively. Additionally, Case 2 produced a high‐energy escaping plume >10 keV, which mirrored corresponding STATIC observations. The shock phase of an ICME drives the most ion escape at Mars The shock phase of an ICME has an O + escape rate of 4.1e25/s O sputtering from the shock phase of an ICME may be on the order of 1e26/s |
abstract_unstemmed |
We simulate and compare three phases of the Mars‐solar wind interaction with the 8 March interplanetary coronal mass ejection (ICME) event using Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations in order to derive heavy ion precipitation and escape rates. The MAVEN observations provide the initial conditions for three steady state MHD model cases, which reproduce the observed features in the solar wind density, velocity, and magnetic field seen along the MAVEN orbit. Applying the MHD results to a kinetic test particle model, we simulate global precipitation and escape maps of O + during the (1) pre‐ICME phase, (2) sheath phase, and (3) ejecta phase. We find that the Case 1 had the lowest precipitation and escape rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , Case 2 had the highest rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , and Case 3 had rates of 3.2 × 10 25 and 1.3 × 10 25 s −1 , respectively. Additionally, Case 2 produced a high‐energy escaping plume >10 keV, which mirrored corresponding STATIC observations. The shock phase of an ICME drives the most ion escape at Mars The shock phase of an ICME has an O + escape rate of 4.1e25/s O sputtering from the shock phase of an ICME may be on the order of 1e26/s |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 |
container_issue |
21 |
title_short |
Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data‐based models |
url |
http://dx.doi.org/10.1002/2015GL065304 http://onlinelibrary.wiley.com/doi/10.1002/2015GL065304/abstract http://search.proquest.com/docview/1756229496 |
remote_bool |
false |
author2 |
Luhmann, J. G Ma, Y. J Dong, C. F Brain, D Leblanc, F Modolo, R Dong, Y McFadden, J Halekas, J Connerney, J Espley, J Hara, T Harada, Y Lee, C Fang, X Jakosky, B |
author2Str |
Luhmann, J. G Ma, Y. J Dong, C. F Brain, D Leblanc, F Modolo, R Dong, Y McFadden, J Halekas, J Connerney, J Espley, J Hara, T Harada, Y Lee, C Fang, X Jakosky, B |
ppnlink |
129095109 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1002/2015GL065304 |
up_date |
2024-07-04T07:16:41.502Z |
_version_ |
1803631881353166848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1964143268</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223170624.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2015GL065304</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1964143268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1964143268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p952-1f914d63e423ba0efa8a4073e0f877f9561d4f336c398876aae1f0ff58c17a6e0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0026932820150000042002109095responseofmarsopickupionstothe8march2015icmeinfere</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Curry, S. M</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data‐based models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We simulate and compare three phases of the Mars‐solar wind interaction with the 8 March interplanetary coronal mass ejection (ICME) event using Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations in order to derive heavy ion precipitation and escape rates. The MAVEN observations provide the initial conditions for three steady state MHD model cases, which reproduce the observed features in the solar wind density, velocity, and magnetic field seen along the MAVEN orbit. Applying the MHD results to a kinetic test particle model, we simulate global precipitation and escape maps of O + during the (1) pre‐ICME phase, (2) sheath phase, and (3) ejecta phase. We find that the Case 1 had the lowest precipitation and escape rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , Case 2 had the highest rates of 9.5 × 10 25 and 4.1 × 10 25 s −1 , and Case 3 had rates of 3.2 × 10 25 and 1.3 × 10 25 s −1 , respectively. Additionally, Case 2 produced a high‐energy escaping plume >10 keV, which mirrored corresponding STATIC observations. The shock phase of an ICME drives the most ion escape at Mars The shock phase of an ICME has an O + escape rate of 4.1e25/s O sputtering from the shock phase of an ICME may be on the order of 1e26/s</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pickup ions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ICME</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">escape</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar flares</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luhmann, J. G</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Y. J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, C. F</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brain, D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leblanc, F</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Modolo, R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Y</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McFadden, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Halekas, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Connerney, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Espley, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hara, T</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harada, Y</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jakosky, B</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geophysical research letters</subfield><subfield code="d">Washington, DC : Union, 1974</subfield><subfield code="g">42(2015), 21, Seite 9095-9102</subfield><subfield code="w">(DE-627)129095109</subfield><subfield code="w">(DE-600)7403-2</subfield><subfield code="w">(DE-576)01443122X</subfield><subfield code="x">0094-8276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:21</subfield><subfield code="g">pages:9095-9102</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2015GL065304</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2015GL065304/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1756229496</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2015</subfield><subfield code="e">21</subfield><subfield code="h">9095-9102</subfield></datafield></record></collection>
|
score |
7.4018393 |