CogCell: cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era
The rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e. 5G. Legacy 2G-4G systems covering large areas were envisioned to serve both indoor and outdoor environments....
Ausführliche Beschreibung
Autor*in: |
Chandra, Kishor [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE communications magazine - New York, NY : IEEE, 1979, 53(2015), 7, Seite 118-125 |
---|---|
Übergeordnetes Werk: |
volume:53 ; year:2015 ; number:7 ; pages:118-125 |
Links: |
---|
DOI / URN: |
10.1109/MCOM.2015.7158274 |
---|
Katalog-ID: |
OLC196468093X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC196468093X | ||
003 | DE-627 | ||
005 | 20220221011019.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/MCOM.2015.7158274 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC196468093X | ||
035 | |a (DE-599)GBVOLC196468093X | ||
035 | |a (PRQ)c2117-3f2db609e38a595c0623fa9d076c0417ad4998cb873d93ef3242bbcb012ebe640 | ||
035 | |a (KEY)0033889320150000053000700118cogcellcognitiveinterplaybetween60ghzpicocellsand2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a 53.70 |2 bkl | ||
084 | |a 53.00 |2 bkl | ||
100 | 1 | |a Chandra, Kishor |e verfasserin |4 aut | |
245 | 1 | 0 | |a CogCell: cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e. 5G. Legacy 2G-4G systems covering large areas were envisioned to serve both indoor and outdoor environments. However, in the 5G era, 80 percent of all traffic is expected to be generated indoors. Hence, the current approach of macrocell mobile networks, where there is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60 GHz mmWave picocell architecture to support highspeed indoor and hotspot communications. We envisage the 5G indoor network as a combination of, and interplay between, 2.4/5 GHz having robust coverage and 60 GHz links offering a high data rate. This requires intelligent coordination and cooperation. We propose a 60 GHz picocellular network architecture, called CogCell, leveraging ubiquitous WiFi. We propose to use 60 GHz for the data plane and 2.4/5GHz for the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5 GHz in case of poor connectivity in the 60 GHz domain. Further, to avoid the frequent re-beamforming in 60 GHz directional links due to mobility, we propose a cognitive module, a sensor- assisted intelligent beam switching procedure, that reduces communication overhead. We believe that the CogCell concept will help future indoor communications and possibly outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience. | ||
650 | 4 | |a millimetre wave devices | |
650 | 4 | |a legacy 2G-4G systems | |
650 | 4 | |a IEEE 802.11 Standards | |
650 | 4 | |a CogCell | |
650 | 4 | |a Array signal processing | |
650 | 4 | |a frequency 2.4 GHz | |
650 | 4 | |a indoor environment | |
650 | 4 | |a control plane | |
650 | 4 | |a macrocell mobile networks | |
650 | 4 | |a frequency 5 GHz | |
650 | 4 | |a cognitive module | |
650 | 4 | |a picocellular radio | |
650 | 4 | |a outdoor environment | |
650 | 4 | |a ubiquitous WiFi | |
650 | 4 | |a indoor radio | |
650 | 4 | |a wireless sensor networks | |
650 | 4 | |a millimetre wave picocellular network architecture | |
650 | 4 | |a telecommunication traffic | |
650 | 4 | |a hotspot communication | |
650 | 4 | |a mobility management (mobile radio) | |
650 | 4 | |a cognitive radio | |
650 | 4 | |a communication overhead reduction | |
650 | 4 | |a data plane | |
650 | 4 | |a Computer architecture | |
650 | 4 | |a indoor communication | |
650 | 4 | |a mobile computing | |
650 | 4 | |a access points | |
650 | 4 | |a broadband networks | |
650 | 4 | |a wireless LAN | |
650 | 4 | |a wireless communication devices | |
650 | 4 | |a frequency 60 GHz | |
650 | 4 | |a opportunistic fall-back | |
650 | 4 | |a next-generation mobile broadband systems | |
650 | 4 | |a next generation networks | |
650 | 4 | |a user experience improvement | |
650 | 4 | |a 5G mobile communication | |
650 | 4 | |a sensor-assisted intelligent beam switching procedure | |
650 | 4 | |a mobile stations | |
650 | 4 | |a Technological planning | |
650 | 4 | |a Wireless communication systems | |
650 | 4 | |a Research | |
650 | 4 | |a Mobile communication systems | |
650 | 4 | |a Engineering research | |
700 | 1 | |a Prasad, R. Venkatesha |4 oth | |
700 | 0 | |a Bien Quang |4 oth | |
700 | 1 | |a Niemegeers, I. G. M. M |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE communications magazine |d New York, NY : IEEE, 1979 |g 53(2015), 7, Seite 118-125 |w (DE-627)12961632X |w (DE-600)244028-3 |w (DE-576)015114236 |x 0163-6804 |7 nnns |
773 | 1 | 8 | |g volume:53 |g year:2015 |g number:7 |g pages:118-125 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/MCOM.2015.7158274 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7158274 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1697923390 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MKW | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2111 | ||
936 | b | k | |a 53.70 |q AVZ |
936 | b | k | |a 53.00 |q AVZ |
951 | |a AR | ||
952 | |d 53 |j 2015 |e 7 |h 118-125 |
author_variant |
k c kc |
---|---|
matchkey_str |
article:01636804:2015----::oclcgiienepabten0hpcclsn25h |
hierarchy_sort_str |
2015 |
bklnumber |
53.70 53.00 |
publishDate |
2015 |
allfields |
10.1109/MCOM.2015.7158274 doi PQ20160617 (DE-627)OLC196468093X (DE-599)GBVOLC196468093X (PRQ)c2117-3f2db609e38a595c0623fa9d076c0417ad4998cb873d93ef3242bbcb012ebe640 (KEY)0033889320150000053000700118cogcellcognitiveinterplaybetween60ghzpicocellsand2 DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.00 bkl Chandra, Kishor verfasserin aut CogCell: cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e. 5G. Legacy 2G-4G systems covering large areas were envisioned to serve both indoor and outdoor environments. However, in the 5G era, 80 percent of all traffic is expected to be generated indoors. Hence, the current approach of macrocell mobile networks, where there is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60 GHz mmWave picocell architecture to support highspeed indoor and hotspot communications. We envisage the 5G indoor network as a combination of, and interplay between, 2.4/5 GHz having robust coverage and 60 GHz links offering a high data rate. This requires intelligent coordination and cooperation. We propose a 60 GHz picocellular network architecture, called CogCell, leveraging ubiquitous WiFi. We propose to use 60 GHz for the data plane and 2.4/5GHz for the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5 GHz in case of poor connectivity in the 60 GHz domain. Further, to avoid the frequent re-beamforming in 60 GHz directional links due to mobility, we propose a cognitive module, a sensor- assisted intelligent beam switching procedure, that reduces communication overhead. We believe that the CogCell concept will help future indoor communications and possibly outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience. millimetre wave devices legacy 2G-4G systems IEEE 802.11 Standards CogCell Array signal processing frequency 2.4 GHz indoor environment control plane macrocell mobile networks frequency 5 GHz cognitive module picocellular radio outdoor environment ubiquitous WiFi indoor radio wireless sensor networks millimetre wave picocellular network architecture telecommunication traffic hotspot communication mobility management (mobile radio) cognitive radio communication overhead reduction data plane Computer architecture indoor communication mobile computing access points broadband networks wireless LAN wireless communication devices frequency 60 GHz opportunistic fall-back next-generation mobile broadband systems next generation networks user experience improvement 5G mobile communication sensor-assisted intelligent beam switching procedure mobile stations Technological planning Wireless communication systems Research Mobile communication systems Engineering research Prasad, R. Venkatesha oth Bien Quang oth Niemegeers, I. G. M. M oth Enthalten in IEEE communications magazine New York, NY : IEEE, 1979 53(2015), 7, Seite 118-125 (DE-627)12961632X (DE-600)244028-3 (DE-576)015114236 0163-6804 nnns volume:53 year:2015 number:7 pages:118-125 http://dx.doi.org/10.1109/MCOM.2015.7158274 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7158274 http://search.proquest.com/docview/1697923390 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2111 53.70 AVZ 53.00 AVZ AR 53 2015 7 118-125 |
spelling |
10.1109/MCOM.2015.7158274 doi PQ20160617 (DE-627)OLC196468093X (DE-599)GBVOLC196468093X (PRQ)c2117-3f2db609e38a595c0623fa9d076c0417ad4998cb873d93ef3242bbcb012ebe640 (KEY)0033889320150000053000700118cogcellcognitiveinterplaybetween60ghzpicocellsand2 DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.00 bkl Chandra, Kishor verfasserin aut CogCell: cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e. 5G. Legacy 2G-4G systems covering large areas were envisioned to serve both indoor and outdoor environments. However, in the 5G era, 80 percent of all traffic is expected to be generated indoors. Hence, the current approach of macrocell mobile networks, where there is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60 GHz mmWave picocell architecture to support highspeed indoor and hotspot communications. We envisage the 5G indoor network as a combination of, and interplay between, 2.4/5 GHz having robust coverage and 60 GHz links offering a high data rate. This requires intelligent coordination and cooperation. We propose a 60 GHz picocellular network architecture, called CogCell, leveraging ubiquitous WiFi. We propose to use 60 GHz for the data plane and 2.4/5GHz for the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5 GHz in case of poor connectivity in the 60 GHz domain. Further, to avoid the frequent re-beamforming in 60 GHz directional links due to mobility, we propose a cognitive module, a sensor- assisted intelligent beam switching procedure, that reduces communication overhead. We believe that the CogCell concept will help future indoor communications and possibly outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience. millimetre wave devices legacy 2G-4G systems IEEE 802.11 Standards CogCell Array signal processing frequency 2.4 GHz indoor environment control plane macrocell mobile networks frequency 5 GHz cognitive module picocellular radio outdoor environment ubiquitous WiFi indoor radio wireless sensor networks millimetre wave picocellular network architecture telecommunication traffic hotspot communication mobility management (mobile radio) cognitive radio communication overhead reduction data plane Computer architecture indoor communication mobile computing access points broadband networks wireless LAN wireless communication devices frequency 60 GHz opportunistic fall-back next-generation mobile broadband systems next generation networks user experience improvement 5G mobile communication sensor-assisted intelligent beam switching procedure mobile stations Technological planning Wireless communication systems Research Mobile communication systems Engineering research Prasad, R. Venkatesha oth Bien Quang oth Niemegeers, I. G. M. M oth Enthalten in IEEE communications magazine New York, NY : IEEE, 1979 53(2015), 7, Seite 118-125 (DE-627)12961632X (DE-600)244028-3 (DE-576)015114236 0163-6804 nnns volume:53 year:2015 number:7 pages:118-125 http://dx.doi.org/10.1109/MCOM.2015.7158274 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7158274 http://search.proquest.com/docview/1697923390 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2111 53.70 AVZ 53.00 AVZ AR 53 2015 7 118-125 |
allfields_unstemmed |
10.1109/MCOM.2015.7158274 doi PQ20160617 (DE-627)OLC196468093X (DE-599)GBVOLC196468093X (PRQ)c2117-3f2db609e38a595c0623fa9d076c0417ad4998cb873d93ef3242bbcb012ebe640 (KEY)0033889320150000053000700118cogcellcognitiveinterplaybetween60ghzpicocellsand2 DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.00 bkl Chandra, Kishor verfasserin aut CogCell: cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e. 5G. Legacy 2G-4G systems covering large areas were envisioned to serve both indoor and outdoor environments. However, in the 5G era, 80 percent of all traffic is expected to be generated indoors. Hence, the current approach of macrocell mobile networks, where there is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60 GHz mmWave picocell architecture to support highspeed indoor and hotspot communications. We envisage the 5G indoor network as a combination of, and interplay between, 2.4/5 GHz having robust coverage and 60 GHz links offering a high data rate. This requires intelligent coordination and cooperation. We propose a 60 GHz picocellular network architecture, called CogCell, leveraging ubiquitous WiFi. We propose to use 60 GHz for the data plane and 2.4/5GHz for the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5 GHz in case of poor connectivity in the 60 GHz domain. Further, to avoid the frequent re-beamforming in 60 GHz directional links due to mobility, we propose a cognitive module, a sensor- assisted intelligent beam switching procedure, that reduces communication overhead. We believe that the CogCell concept will help future indoor communications and possibly outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience. millimetre wave devices legacy 2G-4G systems IEEE 802.11 Standards CogCell Array signal processing frequency 2.4 GHz indoor environment control plane macrocell mobile networks frequency 5 GHz cognitive module picocellular radio outdoor environment ubiquitous WiFi indoor radio wireless sensor networks millimetre wave picocellular network architecture telecommunication traffic hotspot communication mobility management (mobile radio) cognitive radio communication overhead reduction data plane Computer architecture indoor communication mobile computing access points broadband networks wireless LAN wireless communication devices frequency 60 GHz opportunistic fall-back next-generation mobile broadband systems next generation networks user experience improvement 5G mobile communication sensor-assisted intelligent beam switching procedure mobile stations Technological planning Wireless communication systems Research Mobile communication systems Engineering research Prasad, R. Venkatesha oth Bien Quang oth Niemegeers, I. G. M. M oth Enthalten in IEEE communications magazine New York, NY : IEEE, 1979 53(2015), 7, Seite 118-125 (DE-627)12961632X (DE-600)244028-3 (DE-576)015114236 0163-6804 nnns volume:53 year:2015 number:7 pages:118-125 http://dx.doi.org/10.1109/MCOM.2015.7158274 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7158274 http://search.proquest.com/docview/1697923390 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2111 53.70 AVZ 53.00 AVZ AR 53 2015 7 118-125 |
allfieldsGer |
10.1109/MCOM.2015.7158274 doi PQ20160617 (DE-627)OLC196468093X (DE-599)GBVOLC196468093X (PRQ)c2117-3f2db609e38a595c0623fa9d076c0417ad4998cb873d93ef3242bbcb012ebe640 (KEY)0033889320150000053000700118cogcellcognitiveinterplaybetween60ghzpicocellsand2 DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.00 bkl Chandra, Kishor verfasserin aut CogCell: cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e. 5G. Legacy 2G-4G systems covering large areas were envisioned to serve both indoor and outdoor environments. However, in the 5G era, 80 percent of all traffic is expected to be generated indoors. Hence, the current approach of macrocell mobile networks, where there is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60 GHz mmWave picocell architecture to support highspeed indoor and hotspot communications. We envisage the 5G indoor network as a combination of, and interplay between, 2.4/5 GHz having robust coverage and 60 GHz links offering a high data rate. This requires intelligent coordination and cooperation. We propose a 60 GHz picocellular network architecture, called CogCell, leveraging ubiquitous WiFi. We propose to use 60 GHz for the data plane and 2.4/5GHz for the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5 GHz in case of poor connectivity in the 60 GHz domain. Further, to avoid the frequent re-beamforming in 60 GHz directional links due to mobility, we propose a cognitive module, a sensor- assisted intelligent beam switching procedure, that reduces communication overhead. We believe that the CogCell concept will help future indoor communications and possibly outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience. millimetre wave devices legacy 2G-4G systems IEEE 802.11 Standards CogCell Array signal processing frequency 2.4 GHz indoor environment control plane macrocell mobile networks frequency 5 GHz cognitive module picocellular radio outdoor environment ubiquitous WiFi indoor radio wireless sensor networks millimetre wave picocellular network architecture telecommunication traffic hotspot communication mobility management (mobile radio) cognitive radio communication overhead reduction data plane Computer architecture indoor communication mobile computing access points broadband networks wireless LAN wireless communication devices frequency 60 GHz opportunistic fall-back next-generation mobile broadband systems next generation networks user experience improvement 5G mobile communication sensor-assisted intelligent beam switching procedure mobile stations Technological planning Wireless communication systems Research Mobile communication systems Engineering research Prasad, R. Venkatesha oth Bien Quang oth Niemegeers, I. G. M. M oth Enthalten in IEEE communications magazine New York, NY : IEEE, 1979 53(2015), 7, Seite 118-125 (DE-627)12961632X (DE-600)244028-3 (DE-576)015114236 0163-6804 nnns volume:53 year:2015 number:7 pages:118-125 http://dx.doi.org/10.1109/MCOM.2015.7158274 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7158274 http://search.proquest.com/docview/1697923390 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2111 53.70 AVZ 53.00 AVZ AR 53 2015 7 118-125 |
allfieldsSound |
10.1109/MCOM.2015.7158274 doi PQ20160617 (DE-627)OLC196468093X (DE-599)GBVOLC196468093X (PRQ)c2117-3f2db609e38a595c0623fa9d076c0417ad4998cb873d93ef3242bbcb012ebe640 (KEY)0033889320150000053000700118cogcellcognitiveinterplaybetween60ghzpicocellsand2 DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.00 bkl Chandra, Kishor verfasserin aut CogCell: cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e. 5G. Legacy 2G-4G systems covering large areas were envisioned to serve both indoor and outdoor environments. However, in the 5G era, 80 percent of all traffic is expected to be generated indoors. Hence, the current approach of macrocell mobile networks, where there is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60 GHz mmWave picocell architecture to support highspeed indoor and hotspot communications. We envisage the 5G indoor network as a combination of, and interplay between, 2.4/5 GHz having robust coverage and 60 GHz links offering a high data rate. This requires intelligent coordination and cooperation. We propose a 60 GHz picocellular network architecture, called CogCell, leveraging ubiquitous WiFi. We propose to use 60 GHz for the data plane and 2.4/5GHz for the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5 GHz in case of poor connectivity in the 60 GHz domain. Further, to avoid the frequent re-beamforming in 60 GHz directional links due to mobility, we propose a cognitive module, a sensor- assisted intelligent beam switching procedure, that reduces communication overhead. We believe that the CogCell concept will help future indoor communications and possibly outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience. millimetre wave devices legacy 2G-4G systems IEEE 802.11 Standards CogCell Array signal processing frequency 2.4 GHz indoor environment control plane macrocell mobile networks frequency 5 GHz cognitive module picocellular radio outdoor environment ubiquitous WiFi indoor radio wireless sensor networks millimetre wave picocellular network architecture telecommunication traffic hotspot communication mobility management (mobile radio) cognitive radio communication overhead reduction data plane Computer architecture indoor communication mobile computing access points broadband networks wireless LAN wireless communication devices frequency 60 GHz opportunistic fall-back next-generation mobile broadband systems next generation networks user experience improvement 5G mobile communication sensor-assisted intelligent beam switching procedure mobile stations Technological planning Wireless communication systems Research Mobile communication systems Engineering research Prasad, R. Venkatesha oth Bien Quang oth Niemegeers, I. G. M. M oth Enthalten in IEEE communications magazine New York, NY : IEEE, 1979 53(2015), 7, Seite 118-125 (DE-627)12961632X (DE-600)244028-3 (DE-576)015114236 0163-6804 nnns volume:53 year:2015 number:7 pages:118-125 http://dx.doi.org/10.1109/MCOM.2015.7158274 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7158274 http://search.proquest.com/docview/1697923390 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2111 53.70 AVZ 53.00 AVZ AR 53 2015 7 118-125 |
language |
English |
source |
Enthalten in IEEE communications magazine 53(2015), 7, Seite 118-125 volume:53 year:2015 number:7 pages:118-125 |
sourceStr |
Enthalten in IEEE communications magazine 53(2015), 7, Seite 118-125 volume:53 year:2015 number:7 pages:118-125 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
millimetre wave devices legacy 2G-4G systems IEEE 802.11 Standards CogCell Array signal processing frequency 2.4 GHz indoor environment control plane macrocell mobile networks frequency 5 GHz cognitive module picocellular radio outdoor environment ubiquitous WiFi indoor radio wireless sensor networks millimetre wave picocellular network architecture telecommunication traffic hotspot communication mobility management (mobile radio) cognitive radio communication overhead reduction data plane Computer architecture indoor communication mobile computing access points broadband networks wireless LAN wireless communication devices frequency 60 GHz opportunistic fall-back next-generation mobile broadband systems next generation networks user experience improvement 5G mobile communication sensor-assisted intelligent beam switching procedure mobile stations Technological planning Wireless communication systems Research Mobile communication systems Engineering research |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE communications magazine |
authorswithroles_txt_mv |
Chandra, Kishor @@aut@@ Prasad, R. Venkatesha @@oth@@ Bien Quang @@oth@@ Niemegeers, I. G. M. M @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
12961632X |
dewey-sort |
3620 |
id |
OLC196468093X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC196468093X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221011019.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/MCOM.2015.7158274</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC196468093X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC196468093X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2117-3f2db609e38a595c0623fa9d076c0417ad4998cb873d93ef3242bbcb012ebe640</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0033889320150000053000700118cogcellcognitiveinterplaybetween60ghzpicocellsand2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chandra, Kishor</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CogCell: cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e. 5G. Legacy 2G-4G systems covering large areas were envisioned to serve both indoor and outdoor environments. However, in the 5G era, 80 percent of all traffic is expected to be generated indoors. Hence, the current approach of macrocell mobile networks, where there is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60 GHz mmWave picocell architecture to support highspeed indoor and hotspot communications. We envisage the 5G indoor network as a combination of, and interplay between, 2.4/5 GHz having robust coverage and 60 GHz links offering a high data rate. This requires intelligent coordination and cooperation. We propose a 60 GHz picocellular network architecture, called CogCell, leveraging ubiquitous WiFi. We propose to use 60 GHz for the data plane and 2.4/5GHz for the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5 GHz in case of poor connectivity in the 60 GHz domain. Further, to avoid the frequent re-beamforming in 60 GHz directional links due to mobility, we propose a cognitive module, a sensor- assisted intelligent beam switching procedure, that reduces communication overhead. We believe that the CogCell concept will help future indoor communications and possibly outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">millimetre wave devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">legacy 2G-4G systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IEEE 802.11 Standards</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CogCell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Array signal processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency 2.4 GHz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">indoor environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control plane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">macrocell mobile networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency 5 GHz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cognitive module</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">picocellular radio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">outdoor environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ubiquitous WiFi</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">indoor radio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wireless sensor networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">millimetre wave picocellular network architecture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">telecommunication traffic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hotspot communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobility management (mobile radio)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cognitive radio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">communication overhead reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data plane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer architecture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">indoor communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobile computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">access points</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">broadband networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wireless LAN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wireless communication devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency 60 GHz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">opportunistic fall-back</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">next-generation mobile broadband systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">next generation networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">user experience improvement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">5G mobile communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sensor-assisted intelligent beam switching procedure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobile stations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technological planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wireless communication systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile communication systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering research</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prasad, R. Venkatesha</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bien Quang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niemegeers, I. G. M. M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE communications magazine</subfield><subfield code="d">New York, NY : IEEE, 1979</subfield><subfield code="g">53(2015), 7, Seite 118-125</subfield><subfield code="w">(DE-627)12961632X</subfield><subfield code="w">(DE-600)244028-3</subfield><subfield code="w">(DE-576)015114236</subfield><subfield code="x">0163-6804</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:118-125</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/MCOM.2015.7158274</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7158274</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1697923390</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2015</subfield><subfield code="e">7</subfield><subfield code="h">118-125</subfield></datafield></record></collection>
|
author |
Chandra, Kishor |
spellingShingle |
Chandra, Kishor ddc 620 bkl 53.70 bkl 53.00 misc millimetre wave devices misc legacy 2G-4G systems misc IEEE 802.11 Standards misc CogCell misc Array signal processing misc frequency 2.4 GHz misc indoor environment misc control plane misc macrocell mobile networks misc frequency 5 GHz misc cognitive module misc picocellular radio misc outdoor environment misc ubiquitous WiFi misc indoor radio misc wireless sensor networks misc millimetre wave picocellular network architecture misc telecommunication traffic misc hotspot communication misc mobility management (mobile radio) misc cognitive radio misc communication overhead reduction misc data plane misc Computer architecture misc indoor communication misc mobile computing misc access points misc broadband networks misc wireless LAN misc wireless communication devices misc frequency 60 GHz misc opportunistic fall-back misc next-generation mobile broadband systems misc next generation networks misc user experience improvement misc 5G mobile communication misc sensor-assisted intelligent beam switching procedure misc mobile stations misc Technological planning misc Wireless communication systems misc Research misc Mobile communication systems misc Engineering research CogCell: cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era |
authorStr |
Chandra, Kishor |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12961632X |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0163-6804 |
topic_title |
620 DNB 53.70 bkl 53.00 bkl CogCell: cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era millimetre wave devices legacy 2G-4G systems IEEE 802.11 Standards CogCell Array signal processing frequency 2.4 GHz indoor environment control plane macrocell mobile networks frequency 5 GHz cognitive module picocellular radio outdoor environment ubiquitous WiFi indoor radio wireless sensor networks millimetre wave picocellular network architecture telecommunication traffic hotspot communication mobility management (mobile radio) cognitive radio communication overhead reduction data plane Computer architecture indoor communication mobile computing access points broadband networks wireless LAN wireless communication devices frequency 60 GHz opportunistic fall-back next-generation mobile broadband systems next generation networks user experience improvement 5G mobile communication sensor-assisted intelligent beam switching procedure mobile stations Technological planning Wireless communication systems Research Mobile communication systems Engineering research |
topic |
ddc 620 bkl 53.70 bkl 53.00 misc millimetre wave devices misc legacy 2G-4G systems misc IEEE 802.11 Standards misc CogCell misc Array signal processing misc frequency 2.4 GHz misc indoor environment misc control plane misc macrocell mobile networks misc frequency 5 GHz misc cognitive module misc picocellular radio misc outdoor environment misc ubiquitous WiFi misc indoor radio misc wireless sensor networks misc millimetre wave picocellular network architecture misc telecommunication traffic misc hotspot communication misc mobility management (mobile radio) misc cognitive radio misc communication overhead reduction misc data plane misc Computer architecture misc indoor communication misc mobile computing misc access points misc broadband networks misc wireless LAN misc wireless communication devices misc frequency 60 GHz misc opportunistic fall-back misc next-generation mobile broadband systems misc next generation networks misc user experience improvement misc 5G mobile communication misc sensor-assisted intelligent beam switching procedure misc mobile stations misc Technological planning misc Wireless communication systems misc Research misc Mobile communication systems misc Engineering research |
topic_unstemmed |
ddc 620 bkl 53.70 bkl 53.00 misc millimetre wave devices misc legacy 2G-4G systems misc IEEE 802.11 Standards misc CogCell misc Array signal processing misc frequency 2.4 GHz misc indoor environment misc control plane misc macrocell mobile networks misc frequency 5 GHz misc cognitive module misc picocellular radio misc outdoor environment misc ubiquitous WiFi misc indoor radio misc wireless sensor networks misc millimetre wave picocellular network architecture misc telecommunication traffic misc hotspot communication misc mobility management (mobile radio) misc cognitive radio misc communication overhead reduction misc data plane misc Computer architecture misc indoor communication misc mobile computing misc access points misc broadband networks misc wireless LAN misc wireless communication devices misc frequency 60 GHz misc opportunistic fall-back misc next-generation mobile broadband systems misc next generation networks misc user experience improvement misc 5G mobile communication misc sensor-assisted intelligent beam switching procedure misc mobile stations misc Technological planning misc Wireless communication systems misc Research misc Mobile communication systems misc Engineering research |
topic_browse |
ddc 620 bkl 53.70 bkl 53.00 misc millimetre wave devices misc legacy 2G-4G systems misc IEEE 802.11 Standards misc CogCell misc Array signal processing misc frequency 2.4 GHz misc indoor environment misc control plane misc macrocell mobile networks misc frequency 5 GHz misc cognitive module misc picocellular radio misc outdoor environment misc ubiquitous WiFi misc indoor radio misc wireless sensor networks misc millimetre wave picocellular network architecture misc telecommunication traffic misc hotspot communication misc mobility management (mobile radio) misc cognitive radio misc communication overhead reduction misc data plane misc Computer architecture misc indoor communication misc mobile computing misc access points misc broadband networks misc wireless LAN misc wireless communication devices misc frequency 60 GHz misc opportunistic fall-back misc next-generation mobile broadband systems misc next generation networks misc user experience improvement misc 5G mobile communication misc sensor-assisted intelligent beam switching procedure misc mobile stations misc Technological planning misc Wireless communication systems misc Research misc Mobile communication systems misc Engineering research |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
r v p rv rvp b q bq i g m m n igmm igmmn |
hierarchy_parent_title |
IEEE communications magazine |
hierarchy_parent_id |
12961632X |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE communications magazine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12961632X (DE-600)244028-3 (DE-576)015114236 |
title |
CogCell: cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era |
ctrlnum |
(DE-627)OLC196468093X (DE-599)GBVOLC196468093X (PRQ)c2117-3f2db609e38a595c0623fa9d076c0417ad4998cb873d93ef3242bbcb012ebe640 (KEY)0033889320150000053000700118cogcellcognitiveinterplaybetween60ghzpicocellsand2 |
title_full |
CogCell: cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era |
author_sort |
Chandra, Kishor |
journal |
IEEE communications magazine |
journalStr |
IEEE communications magazine |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
118 |
author_browse |
Chandra, Kishor |
container_volume |
53 |
class |
620 DNB 53.70 bkl 53.00 bkl |
format_se |
Aufsätze |
author-letter |
Chandra, Kishor |
doi_str_mv |
10.1109/MCOM.2015.7158274 |
dewey-full |
620 |
title_sort |
cogcell: cognitive interplay between 60 ghz picocells and 2.4/5 ghz hotspots in the 5g era |
title_auth |
CogCell: cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era |
abstract |
The rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e. 5G. Legacy 2G-4G systems covering large areas were envisioned to serve both indoor and outdoor environments. However, in the 5G era, 80 percent of all traffic is expected to be generated indoors. Hence, the current approach of macrocell mobile networks, where there is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60 GHz mmWave picocell architecture to support highspeed indoor and hotspot communications. We envisage the 5G indoor network as a combination of, and interplay between, 2.4/5 GHz having robust coverage and 60 GHz links offering a high data rate. This requires intelligent coordination and cooperation. We propose a 60 GHz picocellular network architecture, called CogCell, leveraging ubiquitous WiFi. We propose to use 60 GHz for the data plane and 2.4/5GHz for the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5 GHz in case of poor connectivity in the 60 GHz domain. Further, to avoid the frequent re-beamforming in 60 GHz directional links due to mobility, we propose a cognitive module, a sensor- assisted intelligent beam switching procedure, that reduces communication overhead. We believe that the CogCell concept will help future indoor communications and possibly outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience. |
abstractGer |
The rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e. 5G. Legacy 2G-4G systems covering large areas were envisioned to serve both indoor and outdoor environments. However, in the 5G era, 80 percent of all traffic is expected to be generated indoors. Hence, the current approach of macrocell mobile networks, where there is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60 GHz mmWave picocell architecture to support highspeed indoor and hotspot communications. We envisage the 5G indoor network as a combination of, and interplay between, 2.4/5 GHz having robust coverage and 60 GHz links offering a high data rate. This requires intelligent coordination and cooperation. We propose a 60 GHz picocellular network architecture, called CogCell, leveraging ubiquitous WiFi. We propose to use 60 GHz for the data plane and 2.4/5GHz for the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5 GHz in case of poor connectivity in the 60 GHz domain. Further, to avoid the frequent re-beamforming in 60 GHz directional links due to mobility, we propose a cognitive module, a sensor- assisted intelligent beam switching procedure, that reduces communication overhead. We believe that the CogCell concept will help future indoor communications and possibly outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience. |
abstract_unstemmed |
The rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e. 5G. Legacy 2G-4G systems covering large areas were envisioned to serve both indoor and outdoor environments. However, in the 5G era, 80 percent of all traffic is expected to be generated indoors. Hence, the current approach of macrocell mobile networks, where there is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60 GHz mmWave picocell architecture to support highspeed indoor and hotspot communications. We envisage the 5G indoor network as a combination of, and interplay between, 2.4/5 GHz having robust coverage and 60 GHz links offering a high data rate. This requires intelligent coordination and cooperation. We propose a 60 GHz picocellular network architecture, called CogCell, leveraging ubiquitous WiFi. We propose to use 60 GHz for the data plane and 2.4/5GHz for the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5 GHz in case of poor connectivity in the 60 GHz domain. Further, to avoid the frequent re-beamforming in 60 GHz directional links due to mobility, we propose a cognitive module, a sensor- assisted intelligent beam switching procedure, that reduces communication overhead. We believe that the CogCell concept will help future indoor communications and possibly outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2111 |
container_issue |
7 |
title_short |
CogCell: cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era |
url |
http://dx.doi.org/10.1109/MCOM.2015.7158274 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7158274 http://search.proquest.com/docview/1697923390 |
remote_bool |
false |
author2 |
Prasad, R. Venkatesha Bien Quang Niemegeers, I. G. M. M |
author2Str |
Prasad, R. Venkatesha Bien Quang Niemegeers, I. G. M. M |
ppnlink |
12961632X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1109/MCOM.2015.7158274 |
up_date |
2024-07-03T14:54:31.458Z |
_version_ |
1803570088731738112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC196468093X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221011019.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/MCOM.2015.7158274</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC196468093X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC196468093X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2117-3f2db609e38a595c0623fa9d076c0417ad4998cb873d93ef3242bbcb012ebe640</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0033889320150000053000700118cogcellcognitiveinterplaybetween60ghzpicocellsand2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chandra, Kishor</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CogCell: cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e. 5G. Legacy 2G-4G systems covering large areas were envisioned to serve both indoor and outdoor environments. However, in the 5G era, 80 percent of all traffic is expected to be generated indoors. Hence, the current approach of macrocell mobile networks, where there is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60 GHz mmWave picocell architecture to support highspeed indoor and hotspot communications. We envisage the 5G indoor network as a combination of, and interplay between, 2.4/5 GHz having robust coverage and 60 GHz links offering a high data rate. This requires intelligent coordination and cooperation. We propose a 60 GHz picocellular network architecture, called CogCell, leveraging ubiquitous WiFi. We propose to use 60 GHz for the data plane and 2.4/5GHz for the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5 GHz in case of poor connectivity in the 60 GHz domain. Further, to avoid the frequent re-beamforming in 60 GHz directional links due to mobility, we propose a cognitive module, a sensor- assisted intelligent beam switching procedure, that reduces communication overhead. We believe that the CogCell concept will help future indoor communications and possibly outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">millimetre wave devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">legacy 2G-4G systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IEEE 802.11 Standards</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CogCell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Array signal processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency 2.4 GHz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">indoor environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">control plane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">macrocell mobile networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency 5 GHz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cognitive module</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">picocellular radio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">outdoor environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ubiquitous WiFi</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">indoor radio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wireless sensor networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">millimetre wave picocellular network architecture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">telecommunication traffic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hotspot communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobility management (mobile radio)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cognitive radio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">communication overhead reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data plane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer architecture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">indoor communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobile computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">access points</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">broadband networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wireless LAN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wireless communication devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency 60 GHz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">opportunistic fall-back</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">next-generation mobile broadband systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">next generation networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">user experience improvement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">5G mobile communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sensor-assisted intelligent beam switching procedure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobile stations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technological planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wireless communication systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile communication systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering research</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prasad, R. Venkatesha</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bien Quang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niemegeers, I. G. M. M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE communications magazine</subfield><subfield code="d">New York, NY : IEEE, 1979</subfield><subfield code="g">53(2015), 7, Seite 118-125</subfield><subfield code="w">(DE-627)12961632X</subfield><subfield code="w">(DE-600)244028-3</subfield><subfield code="w">(DE-576)015114236</subfield><subfield code="x">0163-6804</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:118-125</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/MCOM.2015.7158274</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7158274</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1697923390</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2015</subfield><subfield code="e">7</subfield><subfield code="h">118-125</subfield></datafield></record></collection>
|
score |
7.399624 |