Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems
Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in th...
Ausführliche Beschreibung
Autor*in: |
Lu, Fei [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of computational physics - Amsterdam : Elsevier, 1966, 282(2015), Seite 138-147 |
---|---|
Übergeordnetes Werk: |
volume:282 ; year:2015 ; pages:138-147 |
Links: |
---|
DOI / URN: |
10.1016/j.jcp.2014.11.010 |
---|
Katalog-ID: |
OLC1964692202 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1964692202 | ||
003 | DE-627 | ||
005 | 20220221174634.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jcp.2014.11.010 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1964692202 | ||
035 | |a (DE-599)GBVOLC1964692202 | ||
035 | |a (PRQ)a1680-59edea7579bb04b5ebb9db8e89cab032feded125f3ebca29efad04b56773cc20 | ||
035 | |a (KEY)0034221120150000282000000138limitationsofpolynomialchaosexpansionsinthebayesia | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |a 000 |q DNB |
100 | 1 | |a Lu, Fei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior. | ||
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Computation | |
650 | 4 | |a Statistics | |
650 | 4 | |a Mathematics | |
700 | 1 | |a Morzfeld, Matthias |4 oth | |
700 | 1 | |a Tu, Xuemin |4 oth | |
700 | 1 | |a Chorin, Alexandre J |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of computational physics |d Amsterdam : Elsevier, 1966 |g 282(2015), Seite 138-147 |w (DE-627)129359084 |w (DE-600)160508-2 |w (DE-576)014731401 |x 0021-9991 |7 nnns |
773 | 1 | 8 | |g volume:282 |g year:2015 |g pages:138-147 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.jcp.2014.11.010 |3 Volltext |
856 | 4 | 2 | |u http://arxiv.org/abs/1404.7188 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 282 |j 2015 |h 138-147 |
author_variant |
f l fl |
---|---|
matchkey_str |
article:00219991:2015----::iiainoplnmacasxasosnhbysaslt |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1016/j.jcp.2014.11.010 doi PQ20160617 (DE-627)OLC1964692202 (DE-599)GBVOLC1964692202 (PRQ)a1680-59edea7579bb04b5ebb9db8e89cab032feded125f3ebca29efad04b56773cc20 (KEY)0034221120150000282000000138limitationsofpolynomialchaosexpansionsinthebayesia DE-627 ger DE-627 rakwb eng 530 510 000 DNB Lu, Fei verfasserin aut Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior. Numerical Analysis Computation Statistics Mathematics Morzfeld, Matthias oth Tu, Xuemin oth Chorin, Alexandre J oth Enthalten in Journal of computational physics Amsterdam : Elsevier, 1966 282(2015), Seite 138-147 (DE-627)129359084 (DE-600)160508-2 (DE-576)014731401 0021-9991 nnns volume:282 year:2015 pages:138-147 http://dx.doi.org/10.1016/j.jcp.2014.11.010 Volltext http://arxiv.org/abs/1404.7188 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 AR 282 2015 138-147 |
spelling |
10.1016/j.jcp.2014.11.010 doi PQ20160617 (DE-627)OLC1964692202 (DE-599)GBVOLC1964692202 (PRQ)a1680-59edea7579bb04b5ebb9db8e89cab032feded125f3ebca29efad04b56773cc20 (KEY)0034221120150000282000000138limitationsofpolynomialchaosexpansionsinthebayesia DE-627 ger DE-627 rakwb eng 530 510 000 DNB Lu, Fei verfasserin aut Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior. Numerical Analysis Computation Statistics Mathematics Morzfeld, Matthias oth Tu, Xuemin oth Chorin, Alexandre J oth Enthalten in Journal of computational physics Amsterdam : Elsevier, 1966 282(2015), Seite 138-147 (DE-627)129359084 (DE-600)160508-2 (DE-576)014731401 0021-9991 nnns volume:282 year:2015 pages:138-147 http://dx.doi.org/10.1016/j.jcp.2014.11.010 Volltext http://arxiv.org/abs/1404.7188 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 AR 282 2015 138-147 |
allfields_unstemmed |
10.1016/j.jcp.2014.11.010 doi PQ20160617 (DE-627)OLC1964692202 (DE-599)GBVOLC1964692202 (PRQ)a1680-59edea7579bb04b5ebb9db8e89cab032feded125f3ebca29efad04b56773cc20 (KEY)0034221120150000282000000138limitationsofpolynomialchaosexpansionsinthebayesia DE-627 ger DE-627 rakwb eng 530 510 000 DNB Lu, Fei verfasserin aut Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior. Numerical Analysis Computation Statistics Mathematics Morzfeld, Matthias oth Tu, Xuemin oth Chorin, Alexandre J oth Enthalten in Journal of computational physics Amsterdam : Elsevier, 1966 282(2015), Seite 138-147 (DE-627)129359084 (DE-600)160508-2 (DE-576)014731401 0021-9991 nnns volume:282 year:2015 pages:138-147 http://dx.doi.org/10.1016/j.jcp.2014.11.010 Volltext http://arxiv.org/abs/1404.7188 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 AR 282 2015 138-147 |
allfieldsGer |
10.1016/j.jcp.2014.11.010 doi PQ20160617 (DE-627)OLC1964692202 (DE-599)GBVOLC1964692202 (PRQ)a1680-59edea7579bb04b5ebb9db8e89cab032feded125f3ebca29efad04b56773cc20 (KEY)0034221120150000282000000138limitationsofpolynomialchaosexpansionsinthebayesia DE-627 ger DE-627 rakwb eng 530 510 000 DNB Lu, Fei verfasserin aut Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior. Numerical Analysis Computation Statistics Mathematics Morzfeld, Matthias oth Tu, Xuemin oth Chorin, Alexandre J oth Enthalten in Journal of computational physics Amsterdam : Elsevier, 1966 282(2015), Seite 138-147 (DE-627)129359084 (DE-600)160508-2 (DE-576)014731401 0021-9991 nnns volume:282 year:2015 pages:138-147 http://dx.doi.org/10.1016/j.jcp.2014.11.010 Volltext http://arxiv.org/abs/1404.7188 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 AR 282 2015 138-147 |
allfieldsSound |
10.1016/j.jcp.2014.11.010 doi PQ20160617 (DE-627)OLC1964692202 (DE-599)GBVOLC1964692202 (PRQ)a1680-59edea7579bb04b5ebb9db8e89cab032feded125f3ebca29efad04b56773cc20 (KEY)0034221120150000282000000138limitationsofpolynomialchaosexpansionsinthebayesia DE-627 ger DE-627 rakwb eng 530 510 000 DNB Lu, Fei verfasserin aut Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior. Numerical Analysis Computation Statistics Mathematics Morzfeld, Matthias oth Tu, Xuemin oth Chorin, Alexandre J oth Enthalten in Journal of computational physics Amsterdam : Elsevier, 1966 282(2015), Seite 138-147 (DE-627)129359084 (DE-600)160508-2 (DE-576)014731401 0021-9991 nnns volume:282 year:2015 pages:138-147 http://dx.doi.org/10.1016/j.jcp.2014.11.010 Volltext http://arxiv.org/abs/1404.7188 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 AR 282 2015 138-147 |
language |
English |
source |
Enthalten in Journal of computational physics 282(2015), Seite 138-147 volume:282 year:2015 pages:138-147 |
sourceStr |
Enthalten in Journal of computational physics 282(2015), Seite 138-147 volume:282 year:2015 pages:138-147 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Numerical Analysis Computation Statistics Mathematics |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of computational physics |
authorswithroles_txt_mv |
Lu, Fei @@aut@@ Morzfeld, Matthias @@oth@@ Tu, Xuemin @@oth@@ Chorin, Alexandre J @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129359084 |
dewey-sort |
3530 |
id |
OLC1964692202 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1964692202</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221174634.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcp.2014.11.010</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1964692202</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1964692202</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1680-59edea7579bb04b5ebb9db8e89cab032feded125f3ebca29efad04b56773cc20</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0034221120150000282000000138limitationsofpolynomialchaosexpansionsinthebayesia</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lu, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morzfeld, Matthias</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tu, Xuemin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chorin, Alexandre J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of computational physics</subfield><subfield code="d">Amsterdam : Elsevier, 1966</subfield><subfield code="g">282(2015), Seite 138-147</subfield><subfield code="w">(DE-627)129359084</subfield><subfield code="w">(DE-600)160508-2</subfield><subfield code="w">(DE-576)014731401</subfield><subfield code="x">0021-9991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:282</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:138-147</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.jcp.2014.11.010</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1404.7188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">282</subfield><subfield code="j">2015</subfield><subfield code="h">138-147</subfield></datafield></record></collection>
|
author |
Lu, Fei |
spellingShingle |
Lu, Fei ddc 530 misc Numerical Analysis misc Computation misc Statistics misc Mathematics Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems |
authorStr |
Lu, Fei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129359084 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics 000 - Computer science, information & general works |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0021-9991 |
topic_title |
530 510 000 DNB Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems Numerical Analysis Computation Statistics Mathematics |
topic |
ddc 530 misc Numerical Analysis misc Computation misc Statistics misc Mathematics |
topic_unstemmed |
ddc 530 misc Numerical Analysis misc Computation misc Statistics misc Mathematics |
topic_browse |
ddc 530 misc Numerical Analysis misc Computation misc Statistics misc Mathematics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m m mm x t xt a j c aj ajc |
hierarchy_parent_title |
Journal of computational physics |
hierarchy_parent_id |
129359084 |
dewey-tens |
530 - Physics 510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of computational physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129359084 (DE-600)160508-2 (DE-576)014731401 |
title |
Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems |
ctrlnum |
(DE-627)OLC1964692202 (DE-599)GBVOLC1964692202 (PRQ)a1680-59edea7579bb04b5ebb9db8e89cab032feded125f3ebca29efad04b56773cc20 (KEY)0034221120150000282000000138limitationsofpolynomialchaosexpansionsinthebayesia |
title_full |
Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems |
author_sort |
Lu, Fei |
journal |
Journal of computational physics |
journalStr |
Journal of computational physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
138 |
author_browse |
Lu, Fei |
container_volume |
282 |
class |
530 510 000 DNB |
format_se |
Aufsätze |
author-letter |
Lu, Fei |
doi_str_mv |
10.1016/j.jcp.2014.11.010 |
dewey-full |
530 510 000 |
title_sort |
limitations of polynomial chaos expansions in the bayesian solution of inverse problems |
title_auth |
Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems |
abstract |
Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior. |
abstractGer |
Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior. |
abstract_unstemmed |
Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_21 GBV_ILN_70 |
title_short |
Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems |
url |
http://dx.doi.org/10.1016/j.jcp.2014.11.010 http://arxiv.org/abs/1404.7188 |
remote_bool |
false |
author2 |
Morzfeld, Matthias Tu, Xuemin Chorin, Alexandre J |
author2Str |
Morzfeld, Matthias Tu, Xuemin Chorin, Alexandre J |
ppnlink |
129359084 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.jcp.2014.11.010 |
up_date |
2024-07-03T14:57:05.887Z |
_version_ |
1803570250654941184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1964692202</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221174634.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcp.2014.11.010</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1964692202</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1964692202</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1680-59edea7579bb04b5ebb9db8e89cab032feded125f3ebca29efad04b56773cc20</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0034221120150000282000000138limitationsofpolynomialchaosexpansionsinthebayesia</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lu, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morzfeld, Matthias</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tu, Xuemin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chorin, Alexandre J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of computational physics</subfield><subfield code="d">Amsterdam : Elsevier, 1966</subfield><subfield code="g">282(2015), Seite 138-147</subfield><subfield code="w">(DE-627)129359084</subfield><subfield code="w">(DE-600)160508-2</subfield><subfield code="w">(DE-576)014731401</subfield><subfield code="x">0021-9991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:282</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:138-147</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.jcp.2014.11.010</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1404.7188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">282</subfield><subfield code="j">2015</subfield><subfield code="h">138-147</subfield></datafield></record></collection>
|
score |
7.401165 |