Landmark Detection for Fusion of Fundus and MRI Toward a Patient-Specific Multimodal Eye Model
Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies i...
Ausführliche Beschreibung
Autor*in: |
De Zanet, Sandro I [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
automatic vitreous humor segmentation automatic optic axis detection patient-specific multimodal eye model automatic optic disc detection |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on biomedical engineering - New York, NY : IEEE, 1964, 62(2015), 2, Seite 532-540 |
---|---|
Übergeordnetes Werk: |
volume:62 ; year:2015 ; number:2 ; pages:532-540 |
Links: |
---|
DOI / URN: |
10.1109/TBME.2014.2359676 |
---|
Katalog-ID: |
OLC1964906385 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1964906385 | ||
003 | DE-627 | ||
005 | 20220220115736.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TBME.2014.2359676 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1964906385 | ||
035 | |a (DE-599)GBVOLC1964906385 | ||
035 | |a (PRQ)c1545-962539931605e48d07430a9b0d8421dec30e02a842636d97893f084affe05ddd0 | ||
035 | |a (KEY)0037705820150000062000200532landmarkdetectionforfusionoffundusandmritowardapat | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 610 |q DNB |
084 | |a XA 48665 |q AVZ |2 rvk | ||
084 | |a 44.09 |2 bkl | ||
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a De Zanet, Sandro I |e verfasserin |4 aut | |
245 | 1 | 0 | |a Landmark Detection for Fusion of Fundus and MRI Toward a Patient-Specific Multimodal Eye Model |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye. | ||
650 | 4 | |a automatic fovea detection | |
650 | 4 | |a optical tomography | |
650 | 4 | |a biomedical MRI | |
650 | 4 | |a fundus fusion | |
650 | 4 | |a Retina | |
650 | 4 | |a Lenses | |
650 | 4 | |a Optical imaging | |
650 | 4 | |a magnetic resonance imaging | |
650 | 4 | |a automatic vitreous humor segmentation | |
650 | 4 | |a computerised tomography | |
650 | 4 | |a ophthalmologist | |
650 | 4 | |a automatic optic axis detection | |
650 | 4 | |a patient-specific multimodal eye model | |
650 | 4 | |a automatic optic disc detection | |
650 | 4 | |a image segmentation | |
650 | 4 | |a eye | |
650 | 4 | |a Biomedical optical imaging | |
650 | 4 | |a eye pathology diagnosis | |
650 | 4 | |a medical image processing | |
650 | 4 | |a computed tomography | |
650 | 4 | |a fundus photography | |
650 | 4 | |a MRI | |
650 | 4 | |a landmark detection | |
650 | 4 | |a optical coherence tomography | |
650 | 4 | |a Photography | |
650 | 4 | |a Optical filters | |
650 | 4 | |a Retinoscopy - methods | |
650 | 4 | |a Retinoblastoma - pathology | |
650 | 4 | |a Image Interpretation, Computer-Assisted - methods | |
650 | 4 | |a Retinal Neoplasms - pathology | |
650 | 4 | |a Pattern Recognition, Automated - methods | |
700 | 1 | |a Ciller, Carlos |4 oth | |
700 | 1 | |a Rudolph, Tobias |4 oth | |
700 | 1 | |a Maeder, Philippe |4 oth | |
700 | 1 | |a Munier, Francis |4 oth | |
700 | 1 | |a Balmer, Aubin |4 oth | |
700 | 1 | |a Cuadra, Meritxell Bach |4 oth | |
700 | 1 | |a Kowal, Jens H |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on biomedical engineering |d New York, NY : IEEE, 1964 |g 62(2015), 2, Seite 532-540 |w (DE-627)129358452 |w (DE-600)160429-6 |w (DE-576)01473074X |x 0018-9294 |7 nnns |
773 | 1 | 8 | |g volume:62 |g year:2015 |g number:2 |g pages:532-540 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TBME.2014.2359676 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6906270 |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25265602 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OPC-PHA | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2410 | ||
912 | |a GBV_ILN_4219 | ||
936 | r | v | |a XA 48665 |
936 | b | k | |a 44.09 |q AVZ |
936 | b | k | |a 44.40 |q AVZ |
951 | |a AR | ||
952 | |d 62 |j 2015 |e 2 |h 532-540 |
author_variant |
z s i d zsi zsid |
---|---|
matchkey_str |
article:00189294:2015----::adakeetofruinfudsnmioadptetpcf |
hierarchy_sort_str |
2015 |
bklnumber |
44.09 44.40 |
publishDate |
2015 |
allfields |
10.1109/TBME.2014.2359676 doi PQ20160617 (DE-627)OLC1964906385 (DE-599)GBVOLC1964906385 (PRQ)c1545-962539931605e48d07430a9b0d8421dec30e02a842636d97893f084affe05ddd0 (KEY)0037705820150000062000200532landmarkdetectionforfusionoffundusandmritowardapat DE-627 ger DE-627 rakwb eng 620 610 DNB XA 48665 AVZ rvk 44.09 bkl 44.40 bkl De Zanet, Sandro I verfasserin aut Landmark Detection for Fusion of Fundus and MRI Toward a Patient-Specific Multimodal Eye Model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye. automatic fovea detection optical tomography biomedical MRI fundus fusion Retina Lenses Optical imaging magnetic resonance imaging automatic vitreous humor segmentation computerised tomography ophthalmologist automatic optic axis detection patient-specific multimodal eye model automatic optic disc detection image segmentation eye Biomedical optical imaging eye pathology diagnosis medical image processing computed tomography fundus photography MRI landmark detection optical coherence tomography Photography Optical filters Retinoscopy - methods Retinoblastoma - pathology Image Interpretation, Computer-Assisted - methods Retinal Neoplasms - pathology Pattern Recognition, Automated - methods Ciller, Carlos oth Rudolph, Tobias oth Maeder, Philippe oth Munier, Francis oth Balmer, Aubin oth Cuadra, Meritxell Bach oth Kowal, Jens H oth Enthalten in IEEE transactions on biomedical engineering New York, NY : IEEE, 1964 62(2015), 2, Seite 532-540 (DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X 0018-9294 nnns volume:62 year:2015 number:2 pages:532-540 http://dx.doi.org/10.1109/TBME.2014.2359676 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6906270 http://www.ncbi.nlm.nih.gov/pubmed/25265602 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OPC-PHA GBV_ILN_70 GBV_ILN_170 GBV_ILN_2061 GBV_ILN_2410 GBV_ILN_4219 XA 48665 44.09 AVZ 44.40 AVZ AR 62 2015 2 532-540 |
spelling |
10.1109/TBME.2014.2359676 doi PQ20160617 (DE-627)OLC1964906385 (DE-599)GBVOLC1964906385 (PRQ)c1545-962539931605e48d07430a9b0d8421dec30e02a842636d97893f084affe05ddd0 (KEY)0037705820150000062000200532landmarkdetectionforfusionoffundusandmritowardapat DE-627 ger DE-627 rakwb eng 620 610 DNB XA 48665 AVZ rvk 44.09 bkl 44.40 bkl De Zanet, Sandro I verfasserin aut Landmark Detection for Fusion of Fundus and MRI Toward a Patient-Specific Multimodal Eye Model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye. automatic fovea detection optical tomography biomedical MRI fundus fusion Retina Lenses Optical imaging magnetic resonance imaging automatic vitreous humor segmentation computerised tomography ophthalmologist automatic optic axis detection patient-specific multimodal eye model automatic optic disc detection image segmentation eye Biomedical optical imaging eye pathology diagnosis medical image processing computed tomography fundus photography MRI landmark detection optical coherence tomography Photography Optical filters Retinoscopy - methods Retinoblastoma - pathology Image Interpretation, Computer-Assisted - methods Retinal Neoplasms - pathology Pattern Recognition, Automated - methods Ciller, Carlos oth Rudolph, Tobias oth Maeder, Philippe oth Munier, Francis oth Balmer, Aubin oth Cuadra, Meritxell Bach oth Kowal, Jens H oth Enthalten in IEEE transactions on biomedical engineering New York, NY : IEEE, 1964 62(2015), 2, Seite 532-540 (DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X 0018-9294 nnns volume:62 year:2015 number:2 pages:532-540 http://dx.doi.org/10.1109/TBME.2014.2359676 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6906270 http://www.ncbi.nlm.nih.gov/pubmed/25265602 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OPC-PHA GBV_ILN_70 GBV_ILN_170 GBV_ILN_2061 GBV_ILN_2410 GBV_ILN_4219 XA 48665 44.09 AVZ 44.40 AVZ AR 62 2015 2 532-540 |
allfields_unstemmed |
10.1109/TBME.2014.2359676 doi PQ20160617 (DE-627)OLC1964906385 (DE-599)GBVOLC1964906385 (PRQ)c1545-962539931605e48d07430a9b0d8421dec30e02a842636d97893f084affe05ddd0 (KEY)0037705820150000062000200532landmarkdetectionforfusionoffundusandmritowardapat DE-627 ger DE-627 rakwb eng 620 610 DNB XA 48665 AVZ rvk 44.09 bkl 44.40 bkl De Zanet, Sandro I verfasserin aut Landmark Detection for Fusion of Fundus and MRI Toward a Patient-Specific Multimodal Eye Model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye. automatic fovea detection optical tomography biomedical MRI fundus fusion Retina Lenses Optical imaging magnetic resonance imaging automatic vitreous humor segmentation computerised tomography ophthalmologist automatic optic axis detection patient-specific multimodal eye model automatic optic disc detection image segmentation eye Biomedical optical imaging eye pathology diagnosis medical image processing computed tomography fundus photography MRI landmark detection optical coherence tomography Photography Optical filters Retinoscopy - methods Retinoblastoma - pathology Image Interpretation, Computer-Assisted - methods Retinal Neoplasms - pathology Pattern Recognition, Automated - methods Ciller, Carlos oth Rudolph, Tobias oth Maeder, Philippe oth Munier, Francis oth Balmer, Aubin oth Cuadra, Meritxell Bach oth Kowal, Jens H oth Enthalten in IEEE transactions on biomedical engineering New York, NY : IEEE, 1964 62(2015), 2, Seite 532-540 (DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X 0018-9294 nnns volume:62 year:2015 number:2 pages:532-540 http://dx.doi.org/10.1109/TBME.2014.2359676 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6906270 http://www.ncbi.nlm.nih.gov/pubmed/25265602 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OPC-PHA GBV_ILN_70 GBV_ILN_170 GBV_ILN_2061 GBV_ILN_2410 GBV_ILN_4219 XA 48665 44.09 AVZ 44.40 AVZ AR 62 2015 2 532-540 |
allfieldsGer |
10.1109/TBME.2014.2359676 doi PQ20160617 (DE-627)OLC1964906385 (DE-599)GBVOLC1964906385 (PRQ)c1545-962539931605e48d07430a9b0d8421dec30e02a842636d97893f084affe05ddd0 (KEY)0037705820150000062000200532landmarkdetectionforfusionoffundusandmritowardapat DE-627 ger DE-627 rakwb eng 620 610 DNB XA 48665 AVZ rvk 44.09 bkl 44.40 bkl De Zanet, Sandro I verfasserin aut Landmark Detection for Fusion of Fundus and MRI Toward a Patient-Specific Multimodal Eye Model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye. automatic fovea detection optical tomography biomedical MRI fundus fusion Retina Lenses Optical imaging magnetic resonance imaging automatic vitreous humor segmentation computerised tomography ophthalmologist automatic optic axis detection patient-specific multimodal eye model automatic optic disc detection image segmentation eye Biomedical optical imaging eye pathology diagnosis medical image processing computed tomography fundus photography MRI landmark detection optical coherence tomography Photography Optical filters Retinoscopy - methods Retinoblastoma - pathology Image Interpretation, Computer-Assisted - methods Retinal Neoplasms - pathology Pattern Recognition, Automated - methods Ciller, Carlos oth Rudolph, Tobias oth Maeder, Philippe oth Munier, Francis oth Balmer, Aubin oth Cuadra, Meritxell Bach oth Kowal, Jens H oth Enthalten in IEEE transactions on biomedical engineering New York, NY : IEEE, 1964 62(2015), 2, Seite 532-540 (DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X 0018-9294 nnns volume:62 year:2015 number:2 pages:532-540 http://dx.doi.org/10.1109/TBME.2014.2359676 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6906270 http://www.ncbi.nlm.nih.gov/pubmed/25265602 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OPC-PHA GBV_ILN_70 GBV_ILN_170 GBV_ILN_2061 GBV_ILN_2410 GBV_ILN_4219 XA 48665 44.09 AVZ 44.40 AVZ AR 62 2015 2 532-540 |
allfieldsSound |
10.1109/TBME.2014.2359676 doi PQ20160617 (DE-627)OLC1964906385 (DE-599)GBVOLC1964906385 (PRQ)c1545-962539931605e48d07430a9b0d8421dec30e02a842636d97893f084affe05ddd0 (KEY)0037705820150000062000200532landmarkdetectionforfusionoffundusandmritowardapat DE-627 ger DE-627 rakwb eng 620 610 DNB XA 48665 AVZ rvk 44.09 bkl 44.40 bkl De Zanet, Sandro I verfasserin aut Landmark Detection for Fusion of Fundus and MRI Toward a Patient-Specific Multimodal Eye Model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye. automatic fovea detection optical tomography biomedical MRI fundus fusion Retina Lenses Optical imaging magnetic resonance imaging automatic vitreous humor segmentation computerised tomography ophthalmologist automatic optic axis detection patient-specific multimodal eye model automatic optic disc detection image segmentation eye Biomedical optical imaging eye pathology diagnosis medical image processing computed tomography fundus photography MRI landmark detection optical coherence tomography Photography Optical filters Retinoscopy - methods Retinoblastoma - pathology Image Interpretation, Computer-Assisted - methods Retinal Neoplasms - pathology Pattern Recognition, Automated - methods Ciller, Carlos oth Rudolph, Tobias oth Maeder, Philippe oth Munier, Francis oth Balmer, Aubin oth Cuadra, Meritxell Bach oth Kowal, Jens H oth Enthalten in IEEE transactions on biomedical engineering New York, NY : IEEE, 1964 62(2015), 2, Seite 532-540 (DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X 0018-9294 nnns volume:62 year:2015 number:2 pages:532-540 http://dx.doi.org/10.1109/TBME.2014.2359676 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6906270 http://www.ncbi.nlm.nih.gov/pubmed/25265602 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OPC-PHA GBV_ILN_70 GBV_ILN_170 GBV_ILN_2061 GBV_ILN_2410 GBV_ILN_4219 XA 48665 44.09 AVZ 44.40 AVZ AR 62 2015 2 532-540 |
language |
English |
source |
Enthalten in IEEE transactions on biomedical engineering 62(2015), 2, Seite 532-540 volume:62 year:2015 number:2 pages:532-540 |
sourceStr |
Enthalten in IEEE transactions on biomedical engineering 62(2015), 2, Seite 532-540 volume:62 year:2015 number:2 pages:532-540 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
automatic fovea detection optical tomography biomedical MRI fundus fusion Retina Lenses Optical imaging magnetic resonance imaging automatic vitreous humor segmentation computerised tomography ophthalmologist automatic optic axis detection patient-specific multimodal eye model automatic optic disc detection image segmentation eye Biomedical optical imaging eye pathology diagnosis medical image processing computed tomography fundus photography MRI landmark detection optical coherence tomography Photography Optical filters Retinoscopy - methods Retinoblastoma - pathology Image Interpretation, Computer-Assisted - methods Retinal Neoplasms - pathology Pattern Recognition, Automated - methods |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on biomedical engineering |
authorswithroles_txt_mv |
De Zanet, Sandro I @@aut@@ Ciller, Carlos @@oth@@ Rudolph, Tobias @@oth@@ Maeder, Philippe @@oth@@ Munier, Francis @@oth@@ Balmer, Aubin @@oth@@ Cuadra, Meritxell Bach @@oth@@ Kowal, Jens H @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129358452 |
dewey-sort |
3620 |
id |
OLC1964906385 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1964906385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220115736.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TBME.2014.2359676</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1964906385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1964906385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1545-962539931605e48d07430a9b0d8421dec30e02a842636d97893f084affe05ddd0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0037705820150000062000200532landmarkdetectionforfusionoffundusandmritowardapat</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">610</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">XA 48665</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">De Zanet, Sandro I</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Landmark Detection for Fusion of Fundus and MRI Toward a Patient-Specific Multimodal Eye Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automatic fovea detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical tomography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomedical MRI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fundus fusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Retina</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lenses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic resonance imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automatic vitreous humor segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computerised tomography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ophthalmologist</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automatic optic axis detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">patient-specific multimodal eye model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automatic optic disc detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">eye</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomedical optical imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">eye pathology diagnosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">medical image processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computed tomography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fundus photography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MRI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">landmark detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical coherence tomography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical filters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Retinoscopy - methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Retinoblastoma - pathology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image Interpretation, Computer-Assisted - methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Retinal Neoplasms - pathology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern Recognition, Automated - methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ciller, Carlos</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rudolph, Tobias</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maeder, Philippe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Munier, Francis</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balmer, Aubin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cuadra, Meritxell Bach</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kowal, Jens H</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on biomedical engineering</subfield><subfield code="d">New York, NY : IEEE, 1964</subfield><subfield code="g">62(2015), 2, Seite 532-540</subfield><subfield code="w">(DE-627)129358452</subfield><subfield code="w">(DE-600)160429-6</subfield><subfield code="w">(DE-576)01473074X</subfield><subfield code="x">0018-9294</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:532-540</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TBME.2014.2359676</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6906270</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25265602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2410</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">XA 48665</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="h">532-540</subfield></datafield></record></collection>
|
author |
De Zanet, Sandro I |
spellingShingle |
De Zanet, Sandro I ddc 620 rvk XA 48665 bkl 44.09 bkl 44.40 misc automatic fovea detection misc optical tomography misc biomedical MRI misc fundus fusion misc Retina misc Lenses misc Optical imaging misc magnetic resonance imaging misc automatic vitreous humor segmentation misc computerised tomography misc ophthalmologist misc automatic optic axis detection misc patient-specific multimodal eye model misc automatic optic disc detection misc image segmentation misc eye misc Biomedical optical imaging misc eye pathology diagnosis misc medical image processing misc computed tomography misc fundus photography misc MRI misc landmark detection misc optical coherence tomography misc Photography misc Optical filters misc Retinoscopy - methods misc Retinoblastoma - pathology misc Image Interpretation, Computer-Assisted - methods misc Retinal Neoplasms - pathology misc Pattern Recognition, Automated - methods Landmark Detection for Fusion of Fundus and MRI Toward a Patient-Specific Multimodal Eye Model |
authorStr |
De Zanet, Sandro I |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129358452 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9294 |
topic_title |
620 610 DNB XA 48665 AVZ rvk 44.09 bkl 44.40 bkl Landmark Detection for Fusion of Fundus and MRI Toward a Patient-Specific Multimodal Eye Model automatic fovea detection optical tomography biomedical MRI fundus fusion Retina Lenses Optical imaging magnetic resonance imaging automatic vitreous humor segmentation computerised tomography ophthalmologist automatic optic axis detection patient-specific multimodal eye model automatic optic disc detection image segmentation eye Biomedical optical imaging eye pathology diagnosis medical image processing computed tomography fundus photography MRI landmark detection optical coherence tomography Photography Optical filters Retinoscopy - methods Retinoblastoma - pathology Image Interpretation, Computer-Assisted - methods Retinal Neoplasms - pathology Pattern Recognition, Automated - methods |
topic |
ddc 620 rvk XA 48665 bkl 44.09 bkl 44.40 misc automatic fovea detection misc optical tomography misc biomedical MRI misc fundus fusion misc Retina misc Lenses misc Optical imaging misc magnetic resonance imaging misc automatic vitreous humor segmentation misc computerised tomography misc ophthalmologist misc automatic optic axis detection misc patient-specific multimodal eye model misc automatic optic disc detection misc image segmentation misc eye misc Biomedical optical imaging misc eye pathology diagnosis misc medical image processing misc computed tomography misc fundus photography misc MRI misc landmark detection misc optical coherence tomography misc Photography misc Optical filters misc Retinoscopy - methods misc Retinoblastoma - pathology misc Image Interpretation, Computer-Assisted - methods misc Retinal Neoplasms - pathology misc Pattern Recognition, Automated - methods |
topic_unstemmed |
ddc 620 rvk XA 48665 bkl 44.09 bkl 44.40 misc automatic fovea detection misc optical tomography misc biomedical MRI misc fundus fusion misc Retina misc Lenses misc Optical imaging misc magnetic resonance imaging misc automatic vitreous humor segmentation misc computerised tomography misc ophthalmologist misc automatic optic axis detection misc patient-specific multimodal eye model misc automatic optic disc detection misc image segmentation misc eye misc Biomedical optical imaging misc eye pathology diagnosis misc medical image processing misc computed tomography misc fundus photography misc MRI misc landmark detection misc optical coherence tomography misc Photography misc Optical filters misc Retinoscopy - methods misc Retinoblastoma - pathology misc Image Interpretation, Computer-Assisted - methods misc Retinal Neoplasms - pathology misc Pattern Recognition, Automated - methods |
topic_browse |
ddc 620 rvk XA 48665 bkl 44.09 bkl 44.40 misc automatic fovea detection misc optical tomography misc biomedical MRI misc fundus fusion misc Retina misc Lenses misc Optical imaging misc magnetic resonance imaging misc automatic vitreous humor segmentation misc computerised tomography misc ophthalmologist misc automatic optic axis detection misc patient-specific multimodal eye model misc automatic optic disc detection misc image segmentation misc eye misc Biomedical optical imaging misc eye pathology diagnosis misc medical image processing misc computed tomography misc fundus photography misc MRI misc landmark detection misc optical coherence tomography misc Photography misc Optical filters misc Retinoscopy - methods misc Retinoblastoma - pathology misc Image Interpretation, Computer-Assisted - methods misc Retinal Neoplasms - pathology misc Pattern Recognition, Automated - methods |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
c c cc t r tr p m pm f m fm a b ab m b c mb mbc j h k jh jhk |
hierarchy_parent_title |
IEEE transactions on biomedical engineering |
hierarchy_parent_id |
129358452 |
dewey-tens |
620 - Engineering 610 - Medicine & health |
hierarchy_top_title |
IEEE transactions on biomedical engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X |
title |
Landmark Detection for Fusion of Fundus and MRI Toward a Patient-Specific Multimodal Eye Model |
ctrlnum |
(DE-627)OLC1964906385 (DE-599)GBVOLC1964906385 (PRQ)c1545-962539931605e48d07430a9b0d8421dec30e02a842636d97893f084affe05ddd0 (KEY)0037705820150000062000200532landmarkdetectionforfusionoffundusandmritowardapat |
title_full |
Landmark Detection for Fusion of Fundus and MRI Toward a Patient-Specific Multimodal Eye Model |
author_sort |
De Zanet, Sandro I |
journal |
IEEE transactions on biomedical engineering |
journalStr |
IEEE transactions on biomedical engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
532 |
author_browse |
De Zanet, Sandro I |
container_volume |
62 |
class |
620 610 DNB XA 48665 AVZ rvk 44.09 bkl 44.40 bkl |
format_se |
Aufsätze |
author-letter |
De Zanet, Sandro I |
doi_str_mv |
10.1109/TBME.2014.2359676 |
dewey-full |
620 610 |
title_sort |
landmark detection for fusion of fundus and mri toward a patient-specific multimodal eye model |
title_auth |
Landmark Detection for Fusion of Fundus and MRI Toward a Patient-Specific Multimodal Eye Model |
abstract |
Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye. |
abstractGer |
Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye. |
abstract_unstemmed |
Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OPC-PHA GBV_ILN_70 GBV_ILN_170 GBV_ILN_2061 GBV_ILN_2410 GBV_ILN_4219 |
container_issue |
2 |
title_short |
Landmark Detection for Fusion of Fundus and MRI Toward a Patient-Specific Multimodal Eye Model |
url |
http://dx.doi.org/10.1109/TBME.2014.2359676 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6906270 http://www.ncbi.nlm.nih.gov/pubmed/25265602 |
remote_bool |
false |
author2 |
Ciller, Carlos Rudolph, Tobias Maeder, Philippe Munier, Francis Balmer, Aubin Cuadra, Meritxell Bach Kowal, Jens H |
author2Str |
Ciller, Carlos Rudolph, Tobias Maeder, Philippe Munier, Francis Balmer, Aubin Cuadra, Meritxell Bach Kowal, Jens H |
ppnlink |
129358452 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1109/TBME.2014.2359676 |
up_date |
2024-07-03T15:44:56.971Z |
_version_ |
1803573261205766144 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1964906385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220115736.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TBME.2014.2359676</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1964906385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1964906385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1545-962539931605e48d07430a9b0d8421dec30e02a842636d97893f084affe05ddd0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0037705820150000062000200532landmarkdetectionforfusionoffundusandmritowardapat</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">610</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">XA 48665</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">De Zanet, Sandro I</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Landmark Detection for Fusion of Fundus and MRI Toward a Patient-Specific Multimodal Eye Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automatic fovea detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical tomography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomedical MRI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fundus fusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Retina</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lenses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic resonance imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automatic vitreous humor segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computerised tomography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ophthalmologist</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automatic optic axis detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">patient-specific multimodal eye model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automatic optic disc detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">eye</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomedical optical imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">eye pathology diagnosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">medical image processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computed tomography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fundus photography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MRI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">landmark detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical coherence tomography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical filters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Retinoscopy - methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Retinoblastoma - pathology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image Interpretation, Computer-Assisted - methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Retinal Neoplasms - pathology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern Recognition, Automated - methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ciller, Carlos</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rudolph, Tobias</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maeder, Philippe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Munier, Francis</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balmer, Aubin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cuadra, Meritxell Bach</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kowal, Jens H</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on biomedical engineering</subfield><subfield code="d">New York, NY : IEEE, 1964</subfield><subfield code="g">62(2015), 2, Seite 532-540</subfield><subfield code="w">(DE-627)129358452</subfield><subfield code="w">(DE-600)160429-6</subfield><subfield code="w">(DE-576)01473074X</subfield><subfield code="x">0018-9294</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:532-540</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TBME.2014.2359676</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6906270</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25265602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2410</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">XA 48665</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="h">532-540</subfield></datafield></record></collection>
|
score |
7.4019346 |